Standard secure encryption under stronger forms of attacks, with applications to computational soundness

Mohammad Hajiabadi, Bruce Kapron Computer Science Department University of Victoria

December 3, 2013

What I am going to present

Encryption security and stronger attack models KDM attack models
Adaptive corruption attacks
What can we show?

Computational soundness of symbolic security

Overview of standard semantic security

▶ Syntax of Public-key encryption: $\mathcal{E} = (Gen, Enc, Dec)$

Overview of standard semantic security

- ▶ Syntax of Public-key encryption: $\mathcal{E} = (Gen, Enc, Dec)$
 - ▶ Key generation: $(pk, sk) \leftarrow K(1^n)$;
 - ▶ Encryption: $c \leftarrow E_{pk}(m)$;
 - ▶ Decryption: $D_{sk}(c) = m$.

Overview of standard semantic security

- ▶ Syntax of Public-key encryption: $\mathcal{E} = (Gen, Enc, Dec)$
 - ▶ Key generation: $(pk, sk) \leftarrow K(1^n)$;
 - ▶ Encryption: $c \leftarrow E_{pk}(m)$;
 - ▶ Decryption: $D_{sk}(c) = m$.
- ▶ Semantic (CPA) security: For every PPT A:
 - $(pk, sk) \leftarrow G(1^n)$
 - $\blacktriangleright (m_0, m_1) \leftarrow \mathcal{A}(pk);$
 - ▶ $|\Pr[\mathcal{A}(Enc_{pk}(m_0), pk) = 1] \Pr[\mathcal{A}(Enc_{pk}(m_1), pk) = 1]| = negl$

Circular security

▶ *I*-circular security: $(E_{pk_1}(sk_2), \ldots, E_{pk_l}(sk_1))$ looks as good as $(E_{pk_1}(r_1), \ldots, E_{pk_l}(r_l))$.

Circular security

- ▶ *I*-circular security: $(E_{pk_1}(sk_2), \ldots, E_{pk_l}(sk_1))$ looks as good as $(E_{pk_1}(r_1), \ldots, E_{pk_l}(r_l))$.
- What is known:
 - for any I, semantic security

 I-circular security (using obfuscation techniques) [Koppula-Ramchen-Waters eprint-2013]

Circular security

- ▶ *I*-circular security: $(E_{pk_1}(sk_2), \ldots, E_{pk_l}(sk_1))$ looks as good as $(E_{pk_1}(r_1), \ldots, E_{pk_l}(r_l))$.
- ▶ What is known:
 - for any I, semantic security

 I-circular security (using obfuscation techniques) [Koppula-Ramchen-Waters eprint-2013]
 - ► $(E_{pk_1}(sk_2), ..., E_{pk_i}(sk_1))$ reveals all sk_i 's! [Koppula-Ramchen-Waters eprint-2013]

 $\blacktriangleright (pk_1, sk_1), \ldots, (pk_l, sk_l)$

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)

- \triangleright $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- ▶ Interleaving corruption queries (corrupt(sk_i))

- $\blacktriangleright (pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

How we are going to do it:

Sequence of games, where each game:

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

- Sequence of games, where each game:
 - ▶ multiple key based: $(pk_1, sk_1) \dots, (pk_l, sk_l)$

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

- Sequence of games, where each game:
 - ▶ multiple key based: $(pk_1, sk_1) \dots, (pk_l, sk_l)$
 - Consists of two phases:

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

- Sequence of games, where each game:
 - ▶ multiple key based: $(pk_1, sk_1) \dots, (pk_l, sk_l)$
 - Consists of two phases:
 - First phase: A gets to obtain some info about ski's through KDM and corruption queries

- $(pk_1, sk_1), \ldots, (pk_l, sk_l)$
- ▶ Sequence of KDM queries $(E_{pk_i}(sk_j))$ or $E_{pk_i}(E_{pk_i}(sk_r))$, etc.)
- Interleaving corruption queries (corrupt(sk_i))
- Goal: Proving secrecy of non-corrupted keys under the CPA assumption.

- Sequence of games, where each game:
 - ▶ multiple key based: $(pk_1, sk_1) \dots, (pk_l, sk_l)$
 - Consists of two phases:
 - First phase: A gets to obtain some info about ski's through KDM and corruption queries
 - ightharpoonup Second phase: \mathcal{A} participates in a standard indist experiment.

• We denote $Enc_{pk_i}(sk_j)$ as $\{sk_j\}_{pk_i}$.

- We denote $Enc_{pk_i}(sk_j)$ as $\{sk_j\}_{pk_i}$.
- ▶ Nested encryptions: $Enc_{pk_1}(Enc_{pk_2}(sk_3))$ as $\{\{sk_3\}_{pk_2}\}_{pk_1}$.

- We denote $Enc_{pk_i}(sk_j)$ as $\{sk_j\}_{pk_i}$.
- ▶ Nested encryptions: $Enc_{pk_1}(Enc_{pk_2}(sk_3))$ as $\{\{sk_3\}_{pk_2}\}_{pk_1}$.
- ▶ What do I mean by a key cycle:

- We denote $Enc_{pk_i}(sk_j)$ as $\{sk_j\}_{pk_i}$.
- Nested encryptions: $Enc_{pk_1}(Enc_{pk_2}(sk_3))$ as $\{\{sk_3\}_{pk_2}\}_{pk_1}$.
- ▶ What do I mean by a key cycle:
 - $(\{sk_1\}_{pk_2}, \{sk_2\}_{pk_1})$ is a key cycle;
 - $\{\{sk_1\}_{pk_2}\}_{pk_1}$ is also a key cycle!

- We denote $Enc_{pk_i}(sk_j)$ as $\{sk_j\}_{pk_i}$.
- Nested encryptions: $Enc_{pk_1}(Enc_{pk_2}(sk_3))$ as $\{\{sk_3\}_{pk_2}\}_{pk_1}$.
- ▶ What do I mean by a key cycle:
 - $(\{sk_1\}_{pk_2}, \{sk_2\}_{pk_1})$ is a key cycle;
 - $\{\{sk_1\}_{pk_2}\}_{pk_1}$ is also a key cycle!
- No key cycle = ordering $(sk_1, ..., sk_l)$ s.t. every plaintext occurrence of sk_i is encrypted under $\{pk_1, ..., pk_{i-1}\}$.

- ► First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:

- ► First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - \mathcal{A} may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$

- First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - A may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$
 - No corruptions.
- ▶ Second phase: Choose any pk_j ; LOR interaction.

- First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - A may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$
 - No corruptions.
- ▶ Second phase: Choose any pk_j ; LOR interaction.

A simple hybrid argument: Game1-security = semantic security.

- First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - A may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$
 - No corruptions.
- ▶ Second phase: Choose any pk_j ; LOR interaction.

A simple hybrid argument: Game1-security = semantic security.

 ${\sf Game2} = {\sf Game1} + {\sf the}$ encryption ordering is adaptively made by ${\cal A}$ (i.e., a priori unknown).

- First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - A may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$
 - No corruptions.
- ▶ Second phase: Choose any pk_j ; LOR interaction.

A simple hybrid argument: Game1-security = semantic security.

 $\mathsf{Game2} = \mathsf{Game1} + \mathsf{the}$ encryption ordering is adaptively made by \mathcal{A} (i.e., a priori unknown).

Is security under Game2 = semantic security?

- ► First phase:
 - ▶ A priori known fixed ordering $\langle sk_1, \ldots, sk_n \rangle$:
 - A may obtain encryptions of any sk_i under any key in $\{pk_1, \ldots, pk_{i-1}\}$
 - No corruptions.
- ▶ Second phase: Choose any pk_j ; LOR interaction.

A simple hybrid argument: Game1-security = semantic security.

 ${\sf Game2} = {\sf Game1} +$ the encryption ordering is adaptively made by ${\cal A}$ (i.e., a priori unknown).

Is security under Game2 = semantic security?

We don't know. (discuss partial results later)

KDM attack models
Adaptive corruption attacks
What can we show?

benign circular encryption

Question: Benign forms of key cycles?

benign circular encryption

Question: Benign forms of key cycles?

Example 1: $\{sk_1\}_{pk_2}, \{sk_2\}_{pk_1}$ is not benign.

Example 2: $\{\{sk_1\}_{pk_2}\}_{pk_1}$ is benign.

benign circular encryption

Question: Benign forms of key cycles?

Example 1: $\{sk_1\}_{pk_2}$, $\{sk_2\}_{pk_1}$ is *not* benign.

Example 2: $\{\{sk_1\}_{pk_2}\}_{pk_1}$ is benign.

Question: So what is the structure?

New interpretation of ordering

▶ Fix ordering $\langle sk_1, \ldots, sk_n \rangle$.

New interpretation of ordering

- ▶ Fix ordering $\langle sk_1, \ldots, sk_n \rangle$.
- ▶ Rule: if sk_i is every encrypted, at least *one* of the encryption keys is in $\{pk_1, \ldots, pk_{i-1}\}$.

New interpretation of ordering

- ▶ Fix ordering $\langle sk_1, \ldots, sk_n \rangle$.
- ▶ Rule: if sk_i is every encrypted, at least *one* of the encryption keys is in $\{pk_1, \ldots, pk_{i-1}\}$.
- \checkmark in $\{\{sk_1\}_{pk_2}\}_{pk_1}$ respects this rule; (ie $\langle sk_2, sk_1 \rangle$)
- \times In $\{sk_1\}_{pk_2}, \{sk_2\}_{pk_1}$ doesn't.

Benign cyclic encryption

Game3: fixed ordering $\langle sk_1, \ldots, sk_n \rangle$.

Benign cyclic encryption

Game3: fixed ordering $\langle sk_1, \ldots, sk_n \rangle$.

: First phase: key-dependent encryptions that respects the ordering

$$\checkmark \{\{sk_i\}_{pk_i}\}_{pk_{i-1}}
\times \{sk_i\}_{pk_i}$$

- No corruption.
- Second phase: like before.

Then

Benign cyclic encryption

Game3: fixed ordering $\langle sk_1, \ldots, sk_n \rangle$.

: First phase: key-dependent encryptions that respects the ordering

$$\checkmark \{\{sk_i\}_{pk_i}\}_{pk_{i-1}}
\times \{sk_i\}_{pk_i}$$

- No corruption.
- Second phase: like before.

Then

Security under Game3 = semantic security.

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

- ▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

- ▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.
 - $\$ $\langle sk_{i_1},\ldots,sk_{i_p}
 angle$ s.t. sk_{i_r} is always encrypted under one of $\{pk_{i_1},\ldots,pk_{i_{r-1}}\}$, where $S=\{sk_{i_1},\ldots,sk_{i_p}\}$.

<u>Fact:</u> The set of all safe *S*'s admits a *greatest* set.

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

- ▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.
 - $\langle sk_{i_1},\ldots,sk_{i_p}\rangle$ s.t. sk_{i_r} is always encrypted under one of $\{pk_{i_1},\ldots,pk_{i_{r-1}}\}$, where $S=\{sk_{i_1},\ldots,sk_{i_p}\}$.

Fact: The set of all safe S's admits a *greatest* set.

This maximal safe set (call MS) is the set of keys we want to show they remain "secure".

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

- ▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.
 - $\$ $\langle sk_{i_1},\ldots,sk_{i_p} \rangle$ s.t. sk_{i_r} is always encrypted under one of $\{pk_{i_1},\ldots,pk_{i_{r-1}}\}$, where $S=\{sk_{i_1},\ldots,sk_{i_p}\}$.

Fact: The set of all safe S's admits a greatest set.

This maximal safe set (call MS) is the set of keys we want to show they remain "secure".

Example:

- ► First phase: $\{sk_1\}_{pk_2}$, $\{sk_2\}_{pk_1}$, $\{\{\{sk_3\}_{pk_3}\}_{pk_2}\}_{pk_4}$, $\{sk_4\}_{pk_5}$
- ▶ Second phase: $\{sk_4, sk_5\}$ is the maximal safe set.

$$(pk_1, sk_1), \ldots, (pk_n, sk_n).$$

- ▶ Definition: Call $S \subseteq \{sk_1, ..., sk_n\}$ safe if S admits an ordering respected by adversary's queries.
 - $\langle sk_{i_1}, \dots, sk_{i_p} \rangle$ s.t. sk_{i_r} is always encrypted under one of $\{pk_{i_1}, \dots, pk_{i_{r-1}}\}$, where $S = \{sk_{i_1}, \dots, sk_{i_p}\}$.

Fact: The set of all safe S's admits a *greatest* set.

This maximal safe set (call MS) is the set of keys we want to show they remain "secure".

Example:

- ▶ First phase: $\{sk_1\}_{pk_2}$, $\{sk_2\}_{pk_1}$, $\{\{\{sk_3\}_{pk_3}\}_{pk_2}\}_{pk_4}$, $\{sk_4\}_{pk_5}$
- ▶ Second phase: $\{sk_4, sk_5\}$ is the maximal safe set.

The remaining keys have occurred in key cycles like:

- $ightharpoonup \{sk_1\}_{pk_2}, \ldots, \{sk_i\}_{pk_1}$
- $ightharpoonup \{\{sk_1\}_{pk_1}\}_{pk_1}$
- $\{\{sk_1\}_{pk_2}\}_{pk_2}, \{sk_2\}_{pk_1}$

KDM attack models

Adaptive corruption attacks
What can we show?

Final strengthening: Adaptive corruption in the first phase.

- Final strengthening: Adaptive corruption in the first phase.
- The notion of a safe set extends easily.

Again over keys $(pk_1, sk_1) \dots, (pk_n, sk_n)$, and in two phases:

Again over keys $(pk_1, sk_1) \dots, (pk_n, sk_n)$, and in two phases:

► First phase: Key-dependent encryptions+adaptive corruptions (No restrictions)

Again over keys $(pk_1, sk_1) \dots, (pk_n, sk_n)$, and in two phases:

- First phase: Key-dependent encryptions+adaptive corruptions (No restrictions)
- Second phase: LOR indist for the maximal safe set.

Again over keys $(pk_1, sk_1) \dots, (pk_n, sk_n)$, and in two phases:

- First phase: Key-dependent encryptions+adaptive corruptions (No restrictions)
- Second phase: LOR indist for the maximal safe set.

We call this notion RC-security (restricted circular security).

KDM attack models Adaptive corruption attacks What can we show?

Our results

Question: Is RC-security implied by CPA security?

- Question: Is RC-security implied by CPA security?
- Previous results: Panjwani (TCC 2007) shows a reduction $O(n^l)$ for: single encryptions+absence of key cycles.

- Question: Is RC-security implied by CPA security?
- Previous results: Panjwani (TCC 2007) shows a reduction $O(n^l)$ for: single encryptions+absence of key cycles.
 - ▶ *l*: length of the longest encryption path.

- Question: Is RC-security implied by CPA security?
- Previous results: Panjwani (TCC 2007) shows a reduction $O(n^l)$ for: single encryptions+absence of key cycles.
 - I: length of the longest encryption path.
- By building on Panjwani's work, we show if the diameter of the induced subgraph on the "maximal safe set" is constant, RC security is implied by CPA security.

- Question: Is RC-security implied by CPA security?
- Previous results: Panjwani (TCC 2007) shows a reduction $O(n^l)$ for: single encryptions+absence of key cycles.
 - ▶ *l*: length of the longest encryption path.
- By building on Panjwani's work, we show if the diameter of the induced subgraph on the "maximal safe set" is constant, RC security is implied by CPA security.
- ▶ We next generalize it to the CCA2 setting for applications to computationally soundsymbolic security (described next).

- Question: Is RC-security implied by CPA security?
- Previous results: Panjwani (TCC 2007) shows a reduction $O(n^l)$ for: single encryptions+absence of key cycles.
 - ▶ *l*: length of the longest encryption path.
- By building on Panjwani's work, we show if the diameter of the induced subgraph on the "maximal safe set" is constant, RC security is implied by CPA security.
- ▶ We next generalize it to the CCA2 setting for applications to computationally soundsymbolic security (described next).

Extensions and Open Questions

▶ Improving the $O(n^l)$ -reduction factor.

Extensions and Open Questions

- ▶ Improving the $O(n^l)$ -reduction factor.
- Enhancing KDM security with adaptive corruptions.

Extensions and Open Questions

- ▶ Improving the $O(n^l)$ -reduction factor.
- Enhancing KDM security with adaptive corruptions.
 - This would enable secure realizations of protocols with inductive (as opposed to coinductive), symbolic security proofs.

Overview

- 1. Computational cryptography
 - Cryptographic primitives are modeled as PPT algorithms,
 - Security holds against poly-time adversaries.
- 2. Symbolic security (Dolev-Yao models)
 - High-level abstractions of cryptographic primitives,
 - (non-deterministic) symbolic adversaries: following certain symbolic rules.
 - Much easier proofs (due to abstractions), Allowing automation,

Relating the two views

Goal: Achieving the best of the two worlds.

One possible approach:

Computational Soundness: Allowing to obtain computational security guarantees from symbolic proofs.

Relating the two views

Goal: Achieving the best of the two worlds.

One possible approach:

- Computational Soundness: Allowing to obtain computational security guarantees from symbolic proofs.
- Typical form: If protocol Π is symbolically secure ⇒ generic instantiations of Π (under exactly-defined secure primitives) are computationally secure.

Relating the two views

Goal: Achieving the best of the two worlds.

One possible approach:

- Computational Soundness: Allowing to obtain computational security guarantees from symbolic proofs.
- Typical form: If protocol Π is symbolically secure ⇒ generic instantiations of Π (under exactly-defined secure primitives) are computationally secure.

This enables:

- Doing proofs in a symbolic model (without explicitly dealing with complexity-based notions), and
- obtaining computational security from (once and for all) established computational soundness theorems.

What we demand

We want from soundness:

- ▶ Not too demanding assumptions (e.g, not rely on random-oracles, etc.),
- Applicable to large classes of protocols and security properties,

Prior work

▶ Abadi & Rogaway 2001: Pioneering work. Limited to eavesdropping adversaries and single-message protocols. Many extensions since then in the eavesdropping setting ([AJ'2001], [MW'2002], [H'2004], . . .)

Prior work

- Abadi & Rogaway 2001: Pioneering work. Limited to eavesdropping adversaries and single-message protocols. Many extensions since then in the eavesdropping setting ([AJ'2001], [MW'2002], [H'2004], ...)
- Micciancio, Warinschi TCC 2004:
 - Active adversaries,
 - Discussing general types of security: trace-based security properties (e.g., entity authentication [BR-Crypto 94])

Assumptions in Micciancio & Warinschi framework:

- static corruption (all corruptions are made nonadaptively at the beginning),
- secret keys cannot be part of messages.

Prior work

- Abadi & Rogaway 2001: Pioneering work. Limited to eavesdropping adversaries and single-message protocols. Many extensions since then in the eavesdropping setting ([AJ'2001], [MW'2002], [H'2004], ...)
- Micciancio, Warinschi TCC 2004:
 - Active adversaries,
 - Discussing general types of security: trace-based security properties (e.g., entity authentication [BR-Crypto 94])

Assumptions in Micciancio & Warinschi framework:

- static corruption (all corruptions are made nonadaptively at the beginning),
- secret keys cannot be part of messages.

Our work: Trying to relax both assumptions above.

Some assumptions (Informal)

Assumptions used in our soundness theorem:

Some assumptions (Informal)

Assumptions used in our soundness theorem:

- Assumptions on protocols:
 - symmetric and asymmetric encryption as the only primitives.
 - ▶ protocols admit a symbolic specification. (e.g., NSL protocol: $(\{A, N_A\}_{k_B}, \{N_A, N_B, B\}_{k_A}, \{N_B\}_{k_B})$).
 - ▶ We allow secret keys to be part of messages.

Some assumptions (Informal)

Assumptions used in our soundness theorem:

- Assumptions on protocols:
 - symmetric and asymmetric encryption as the only primitives.
 - ▶ protocols admit a symbolic specification. (e.g., NSL protocol: $(\{A, N_A\}_{k_B}, \{N_A, N_B, B\}_{k_A}, \{N_B\}_{k_B})$).
 - ▶ We allow secret keys to be part of messages.
- Adversarial assumptions:
 - Active adversary with adaptively corrupting power.

Active adversaries and secret keys being part of messages

Question: What happens if we allow secret keys to be part of messages?

- 1. It may lead to the creation of key cycles.
- It may lead to the creation of some form of (a priori unknown) encryption-ordering between keys.

We explain further about these points through an example.

Motivating example

Consider the following protocol over A, B, C with public keys k_A , k_B , k_C :

$$A \to B: (\{k_1\}_{k_B}, \{k_2\}_{k_B})$$

 $B \to C: (\{k_1\}_{k_C}, \{k_2\}_{k_1})$

 k_1, k_2 : Local session keys.

Motivating example

Consider the following protocol over A, B, C with public keys k_A , k_B , k_C :

$$A \to B: (\{k_1\}_{k_B}, \{k_2\}_{k_B})$$

 $B \to C: (\{k_1\}_{k_C}, \{k_2\}_{k_1})$

 k_1, k_2 : Local session keys.

▶ What will happen if one flips the order of messages in the first pair? It will produce $\{k_1\}_{k_2}$.

Motivating example

Consider the following protocol over A, B, C with public keys k_A , k_B , k_C :

$$A \to B : (\{k_1\}_{k_B}, \{k_2\}_{k_B})$$

 $B \to C : (\{k_1\}_{k_C}, \{k_2\}_{k_1})$

 k_1, k_2 : Local session keys.

▶ What will happen if one flips the order of messages in the first pair? It will produce $\{k_1\}_{k_2}$.

Conclusion-1: A key cycle may easily be produced in the presence of an active adversary.

Coinductive symbolic security

We follow the general framework of Micciancio & Warinschi, but using co-induction (as opposed to induction) to model adversarial knowledge.

Coinductive symbolic security

- We follow the general framework of Micciancio & Warinschi, but using co-induction (as opposed to induction) to model adversarial knowledge.
- Coinduction was suggested by Miccinacio as tool to overcome limitations of previous soudnness theorems relying on the absence of key cycles.

Coinductive symbolic security

- We follow the general framework of Micciancio & Warinschi, but using co-induction (as opposed to induction) to model adversarial knowledge.
- Coinduction was suggested by Miccinacio as tool to overcome limitations of previous soudnness theorems relying on the absence of key cycles.
- Our work: applying co-induction in the case of active adversaries.

Computational soundness of coinductive symbolic security

- (Informal) For a protocol Π, a trace-expressible security property P, if all coinductive symbolic traces satisfy P (i.e., Π is coinductively secure), all (except a negligible fraction) of computational traces of any ARC-instantiation of Π against any PPT A satisfy P.
- Corollary (informal): If a protocol doesn't produce a "long" chain of key cycles, we can apply the soundness theorem to it (ie. Coinductive symbolic security implies computational security against adaptively corrupting adversaries)
- ▶ For all protocols that we considered from the Clark-Jacob library, the diameter of the corresponding coinductively-induced subgraph is at most 2, making the soundness theorem applicable to them.

Encryption security and stronger attack models Computational soundness of symbolic security

Thanks!