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Evolution of Side Channel Attacks

Classic Cache Timing 
(Algorithm specific, e.g., AES)

Spectre & Meltdown
(on own address space)

Foreshadow
(on others’ 
address space)
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Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
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Side Channel Attacks –
Abusing Non-standard Output Channels
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Cache Side Channels
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Cache Hierarchy

Slow Memory, 128GB, 300-400 cycles to access

L3 $
~60-80 cycles

L2 $ 
~12 cycles

L1 $
~4 cycles
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Osvik et. al. 2006

Background: Cache Timing Side Channel

Attacker

Read (fast)

Read (fast)

Read (fast)

Read (fast)

Read (slow)

Read (fast)

Cache Lines Victim

• Attacker infers victim’s 

data access pattern

• Attack is algorithm specific
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Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
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Speculative Execution

data = *user_input;

res = 42 / data;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Retired instruction

Speculating future tasks



data = *user_input;

Speculative Execution

res = 42 / data;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Speculatively 
executed

Retired instruction

Pending instruction
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Speculating future tasks



res = 42 / data;

data = *user_input;

Speculative Execution

*user_input = 0;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Exception handler (division by 0) 

Retired instruction

Pending instruction

Squashed instructionSquashed instructions may leave footprints in cache
13

can never retire!!

Speculatively
executed



Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
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Background: Meltdown

User Virtual 
Address Space

Kernel Virtual 
Address Space

secret = *kernel_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Cache Lines

probe[0*STEP]

probe[1*STEP]

probe[2*STEP]

probe[3*STEP]

probe[4*STEP]

Cache hit!

Process Virtual Memory

Attacker’s user-space code
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Virtual Address Space

Kernel-Space                          User-Space

Physical memory

frames
16

Process virtual

memory pages



The Page Table

Virtual address bits:  

63               47                                                                         12  11                         0 

Page offsetUnused

PTE (Page Table Entry):
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Virtual page number

User/OSPhysical frame number R/WMisc. Present

Page Table secret = *kernel_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Page  attribute bits



Meltdown Mitigation - KPTI

Kernel-Space                          User-Space

Process
virtual

memory
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During user-code execution:
kernel memory is unmapped



Meltdown Mitigation - KPTI

Virtual address bits:  

63               47                                                                         12  11                         0 

Page offsetUnused

No translation
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Virtual page number

Page Table

Physical memory:

User Virtual 
Address 
Space

Kernel Virtual 
Address 
Space



Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
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SGX (Software Guard eXtensions)
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SGX in a nutshell

User Space              

OS Kernel

VMM

SMM

RAM HW CPU

Enclave
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Attestation

Remote

Client



SGX – Memory Organization

Physical Memory

Enclave Page Cache (EPC)

EPC Metadata

Encrypted by

Memory Encryption Engine
(MEE)
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SGX Abort Page Semantics

Physical Memory

Enclave Page Cache (EPC)

EPC Metadata
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0xFF



SGX Abort Page Semantics
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No exception raised

Writes are ignored

Reads return 0xFF

0xFF

secret = *enclave_addr;

clflush(probe)

char probe[256*STEP];

probe[secret*STEP]++

0xFF
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SGX Abort Page Semantics



Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
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Foreshadow –
Causing a Translation Terminal Fault

- Variant 1: Invalid PTE (Page Table Entry)

- Variant 2: Enclave to Enclave (E2E) rogue mapping



Foreshadow –
Causing a Translation Terminal Fault

Virtual address bits:  

63               47                                                                         12  11                         0 

Page offsetUnused

PTE (Page Table Entry):
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Virtual page number

User/OSPhysical frame number R/WMisc. Present

Page Table Poison PTE:

Clear present bit



What happens when the translation faults?

30Source: https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault

Following a terminal fault (from Intel’s report):

• SGX memory checks are skipped (no 0xFF)

• Boundaries between VM and host are ignored

• System Management Mode (SMM) checks are skipped

Faulty PTE (Page Table Entry):

User/OSPhysical frame number R/WMisc. Present

L1 $
~4 cycles

speculatively 

fetch data



Micro-Architectural Behavior

Foreshadow Attack

secret = *enclave_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Fetch data from L1 cache

walk page table-get PFN
PoisonPTE(enclave_addr);

Malicious OS attacker code
Cache
Lines
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User/OSPhysical Frame Number (PFN) R/WMisc. Present

Terminal fault-
skip further checks

no abort page (0xFF)

Verify translation OK

L1 $
~4 cycles

PTE:



Only Data in L1 Cache is Exposed

• Following a “terminal fault” only data in L1 cache may be fetched

32

L1 $
~4 cycles

Slow Memory, 128GB, 300-400 cycles to access

But what if the attacker can bring data into L1 cache?



Maliciously Fetching Into L1 Cache

Enclave Page Cache (EPC)

Small: ~93 MB
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Physical Memory

Regular/unsecure memory

Large: e.g., 32 GB

Victim doesn’t 

need to run!!

 The OS can “securely” page-

out and page-in SGX pages

 On page-in - the decrypted 

data passes through L1 cache  

L1 Cache



Foreshadow in Action
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Implications on SGX Enclaves and Ecosystem

• Confidentiality is completely gone: 
Foreshadow can dump entire enclaves

• At any given time, without the enclave running

• Secure storage is not safe: 
Foreshadow can extract SGX sealing (secure storage) keys

• Proof of integrity (attestation) can be forged:
Foreshadow can extract secrets from
• Intel Launch Enclave

• Intel Quote Enclave

Ramification: a collapse of the attestation ecosystem
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Security Quiz

If a machine was hacked,

no one knows, 

and there is no data on it…

Should we care?

SGX Machine

@ForeshadowAaaS

Architectural
Quote Enclave
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Remote Attestation:
Establishing Trust with Remote Enclaves

1. I am software running inside 
an SGX enclave. Key share: 𝑎 ⋅ 𝐺

quote 2. Verify Quote
with Intel3. I believe you. Key share: 𝑏 ⋅ 𝐺

4.  Session key: 𝑎𝑏 ⋅ 𝐺

Intel Attestation Service
(IAS)

Client

quote

Takeaway: trust is based on the EPID key

37



EPID - Enhanced Privacy ID 

• EPID mega feature – awesome privacy

• Millions of signatures are unlinkable

• No one knows who signed what

EPID failure – abusing privacy
A single extracted EPID key can be used 
to sign millions of unlinkable signatures

@ForeshadowAaaS
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quote

quote quote

quote

quote

quote

quote

quote



Foreshadow-SGX Mitigations

• Flush L1 Cache after enclave exits and “page-in/out” operations
• New L1 flush “instruction” added

• Disable HyperThreading

• Have two sets of Attestation/Sealing keys
• For HyperThreading On/Off

Core 1

Core 2L1 Cache
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Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
• User-space to kernel
• Reading SMM memory
• VM-to-VM/M 
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Nested Virtual Address Space

Kernel-Space                          User-Space

Physical memory

41

Process virtual

memory pages

Guest

Physical memory

Host

Physical memory



Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:  

Page offsetUnused

Guest PTE:
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Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Host PTE:

User/OSHost physical frame number R/WMisc. Present

Extended Page Table (EPT)

Present



Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:  

Page offsetUnused

Guest PTE:

43

Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Host PTE:

User/OSHost physical frame number R/WMisc. Present

Extended Page Table (EPT)

Present

Guest physical address

is treated as 

host physical address



Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:  

Page offsetUnused

Guest PTE:

Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Present

L1 $
~4 cycles

Guest physical address

is treated as 

host physical address



Implications

• VM boundary is broken

• A malicious VM can read data from a neighboring VM or the VMM

45



Attack Limitations

• Data needs to reside in L1 cache (unlike the SGX attack)

• Attacker needs to guess/know physical address

• no know attacks in the wild
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Mitigating Foreshadow-NG

• Disabling HyperThreading is devastating for performance
• So what can we do?

• Never run two VMs on the same physical core
• May impact performance

• Flush L1 cache on VMENTER

• On VMEXIT to hypervisor –
make sure other sibling core 
is trusted
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Conclusions

• Foreshadow-SGX: a complete break of SGX, including 
• Confidentiality

• Secure storage

• Attestation

• Privacy-preserving protocols can backfire (e.g., EPID)

• Foreshadow-NG: VM boundary is cracked

• Mitigations come at a performance cost
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ForeshadowAttack.com

Patch your 
machine!


