
Ofir Weisse

Joint work with

Breaking the Virtual Memory Abstraction with
Transient Out-of-Order Execution

Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, Raoul Strackx

ForeshadowAttack.com
2

Foreshadow (SGX)

Cloud HostUntrusted OS/VMM

Confidentiality

Secure storage

Proof of integrity

Foreshadow-NG

VM1 VM2

3

Evolution of Side Channel Attacks

Classic Cache Timing
(Algorithm specific, e.g., AES)

Spectre & Meltdown
(on own address space)

Foreshadow
(on others’
address space)

4

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG

5

Side Channel Attacks –
Abusing Non-standard Output Channels

6

Cache Side Channels

7

Cache Hierarchy

Slow Memory, 128GB, 300-400 cycles to access

L3 $
~60-80 cycles

L2 $
~12 cycles

L1 $
~4 cycles

8

Osvik et. al. 2006

Background: Cache Timing Side Channel

Attacker

Read (fast)

Read (fast)

Read (fast)

Read (fast)

Read (slow)

Read (fast)

Cache Lines Victim

• Attacker infers victim’s

data access pattern

• Attack is algorithm specific

9

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG

10

Speculative Execution

data = *user_input;

res = 42 / data;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Retired instruction

Speculating future tasks

data = *user_input;

Speculative Execution

res = 42 / data;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Speculatively
executed

Retired instruction

Pending instruction

12

Speculating future tasks

res = 42 / data;

data = *user_input;

Speculative Execution

*user_input = 0;

b -= res;

b++;

c[0] *=2;

d[1] += 42;

Exception handler (division by 0)

Retired instruction

Pending instruction

Squashed instructionSquashed instructions may leave footprints in cache
13

can never retire!!

Speculatively
executed

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG

14

Background: Meltdown

User Virtual
Address Space

Kernel Virtual
Address Space

secret = *kernel_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Cache Lines

probe[0*STEP]

probe[1*STEP]

probe[2*STEP]

probe[3*STEP]

probe[4*STEP]

Cache hit!

Process Virtual Memory

Attacker’s user-space code

15

Virtual Address Space

Kernel-Space User-Space

Physical memory

frames
16

Process virtual

memory pages

The Page Table

Virtual address bits:

63 47 12 11 0

Page offsetUnused

PTE (Page Table Entry):

17

Virtual page number

User/OSPhysical frame number R/WMisc. Present

Page Table secret = *kernel_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Page attribute bits

Meltdown Mitigation - KPTI

Kernel-Space User-Space

Process
virtual

memory

18

During user-code execution:
kernel memory is unmapped

Meltdown Mitigation - KPTI

Virtual address bits:

63 47 12 11 0

Page offsetUnused

No translation
19

Virtual page number

Page Table

Physical memory:

User Virtual
Address
Space

Kernel Virtual
Address
Space

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG

20

SGX (Software Guard eXtensions)

21

SGX in a nutshell

User Space

OS Kernel

VMM

SMM

RAM HW CPU

Enclave

22

Attestation

Remote

Client

SGX – Memory Organization

Physical Memory

Enclave Page Cache (EPC)

EPC Metadata

Encrypted by

Memory Encryption Engine
(MEE)

23

SGX Abort Page Semantics

Physical Memory

Enclave Page Cache (EPC)

EPC Metadata

24

0xFF

SGX Abort Page Semantics

25

No exception raised

Writes are ignored

Reads return 0xFF

0xFF

secret = *enclave_addr;

clflush(probe)

char probe[256*STEP];

probe[secret*STEP]++

0xFF

26

SGX Abort Page Semantics

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG

27

Foreshadow –
Causing a Translation Terminal Fault

- Variant 1: Invalid PTE (Page Table Entry)

- Variant 2: Enclave to Enclave (E2E) rogue mapping

Foreshadow –
Causing a Translation Terminal Fault

Virtual address bits:

63 47 12 11 0

Page offsetUnused

PTE (Page Table Entry):

29

Virtual page number

User/OSPhysical frame number R/WMisc. Present

Page Table Poison PTE:

Clear present bit

What happens when the translation faults?

30Source: https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault

Following a terminal fault (from Intel’s report):

• SGX memory checks are skipped (no 0xFF)

• Boundaries between VM and host are ignored

• System Management Mode (SMM) checks are skipped

Faulty PTE (Page Table Entry):

User/OSPhysical frame number R/WMisc. Present

L1 $
~4 cycles

speculatively

fetch data

Micro-Architectural Behavior

Foreshadow Attack

secret = *enclave_addr;

clflush(probe);

char probe[256*STEP];

probe[secret*STEP]++;

Fetch data from L1 cache

walk page table-get PFN
PoisonPTE(enclave_addr);

Malicious OS attacker code
Cache
Lines

31

User/OSPhysical Frame Number (PFN) R/WMisc. Present

Terminal fault-
skip further checks

no abort page (0xFF)

Verify translation OK

L1 $
~4 cycles

PTE:

Only Data in L1 Cache is Exposed

• Following a “terminal fault” only data in L1 cache may be fetched

32

L1 $
~4 cycles

Slow Memory, 128GB, 300-400 cycles to access

But what if the attacker can bring data into L1 cache?

Maliciously Fetching Into L1 Cache

Enclave Page Cache (EPC)

Small: ~93 MB

33

Physical Memory

Regular/unsecure memory

Large: e.g., 32 GB

Victim doesn’t

need to run!!

 The OS can “securely” page-

out and page-in SGX pages

 On page-in - the decrypted

data passes through L1 cache

L1 Cache

Foreshadow in Action

34

Implications on SGX Enclaves and Ecosystem

• Confidentiality is completely gone:
Foreshadow can dump entire enclaves

• At any given time, without the enclave running

• Secure storage is not safe:
Foreshadow can extract SGX sealing (secure storage) keys

• Proof of integrity (attestation) can be forged:
Foreshadow can extract secrets from
• Intel Launch Enclave

• Intel Quote Enclave

Ramification: a collapse of the attestation ecosystem
35

Security Quiz

If a machine was hacked,

no one knows,

and there is no data on it…

Should we care?

SGX Machine

@ForeshadowAaaS

Architectural
Quote Enclave

36

Remote Attestation:
Establishing Trust with Remote Enclaves

1. I am software running inside
an SGX enclave. Key share: 𝑎 ⋅ 𝐺

quote 2. Verify Quote
with Intel3. I believe you. Key share: 𝑏 ⋅ 𝐺

4. Session key: 𝑎𝑏 ⋅ 𝐺

Intel Attestation Service
(IAS)

Client

quote

Takeaway: trust is based on the EPID key

37

EPID - Enhanced Privacy ID

• EPID mega feature – awesome privacy

• Millions of signatures are unlinkable

• No one knows who signed what

EPID failure – abusing privacy
A single extracted EPID key can be used
to sign millions of unlinkable signatures

@ForeshadowAaaS
38

quote

quote quote

quote

quote

quote

quote

quote

Foreshadow-SGX Mitigations

• Flush L1 Cache after enclave exits and “page-in/out” operations
• New L1 flush “instruction” added

• Disable HyperThreading

• Have two sets of Attestation/Sealing keys
• For HyperThreading On/Off

Core 1

Core 2L1 Cache

39

Roadmap

• Cache side channels

• Speculative execution

• Meltdown

• SGX

• Foreshadow-SGX

• Foreshadow-NG
• User-space to kernel
• Reading SMM memory
• VM-to-VM/M

40

Nested Virtual Address Space

Kernel-Space User-Space

Physical memory

41

Process virtual

memory pages

Guest

Physical memory

Host

Physical memory

Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:

Page offsetUnused

Guest PTE:

42

Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Host PTE:

User/OSHost physical frame number R/WMisc. Present

Extended Page Table (EPT)

Present

Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:

Page offsetUnused

Guest PTE:

43

Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Host PTE:

User/OSHost physical frame number R/WMisc. Present

Extended Page Table (EPT)

Present

Guest physical address

is treated as

host physical address

Controlled by the Malicious VM

The Extended Page Table & Foreshadow

Virtual address bits:

Page offsetUnused

Guest PTE:

Virtual page number

User/OSGuest physical frame number R/WMisc. Present

Page Table

Present

L1 $
~4 cycles

Guest physical address

is treated as

host physical address

Implications

• VM boundary is broken

• A malicious VM can read data from a neighboring VM or the VMM

45

Attack Limitations

• Data needs to reside in L1 cache (unlike the SGX attack)

• Attacker needs to guess/know physical address

• no know attacks in the wild

46

Mitigating Foreshadow-NG

• Disabling HyperThreading is devastating for performance
• So what can we do?

• Never run two VMs on the same physical core
• May impact performance

• Flush L1 cache on VMENTER

• On VMEXIT to hypervisor –
make sure other sibling core
is trusted

47

Conclusions

• Foreshadow-SGX: a complete break of SGX, including
• Confidentiality

• Secure storage

• Attestation

• Privacy-preserving protocols can backfire (e.g., EPID)

• Foreshadow-NG: VM boundary is cracked

• Mitigations come at a performance cost

48

ForeshadowAttack.com

Patch your
machine!

