
The Hippocratic File System: Protecting Privacy in Networked Storage

Abstract

Privacy protection is increasingly difficult in today’s in-
formation society. In this paper, we look at an impor-
tant link in the chain of information protection: the file
system, and propose mechanisms to enhance the disclo-
sure control of personal data. The scheme, called the
Hippocratic File System, stores personal data’s purpose
and use limitation as the data’s label, propagates the la-
bel as the information flows from one place to another,
and enforces the label to prevent accidental disclosures.
We describe the design, implementation and experience
with the Hippocratic file system. In particular, we high-
light a deployment obstacle: “cross-invocation contam-
ination” of legacy applications, and describe techniques
to alleviate this problem.

1 Introduction

The growth of the Internet and the trend to conduct
business electronically have resulted in an explosive
growth in the amount of personal information stored
online. Medical and financial records are now almost
all stored online. Web sites routinely harvest surfing
and purchase patterns for better targeting and business
analytics. [Ols] Amid the growth in online personal in-
formation came the increased risk to individual privacy.
Over the past few years, there has been a series of well-
publicized privacy breaches. Below are a few example
among many similar instances [HIP]:

• About 400 pages of detailed psychological records
concerning visits and diagnoses of at least 62 chil-
dren and teenagers were accidentally posted on the
University of Montana Web site for eight days.
(C. Piller, ”Web Mishap: Kids’ Psychological Files
Posted,” Los Angeles Times, November 7, 2001, p.
A1)

• Eli Lilly and Co. inadvertently revealed over 600
patient e-mail addresses when it sent a message
to every individual registered to receive reminders
about taking Prozac. (R. O’Harrow, ”Prozac

Maker Reveals Patient E-Mail Addresses,” The
Washington Post, July 4, 2001, p. E1)

• A psychiatrist from New Hampshire was fined
$1,000 for repeatedly looking at the medical records
of an acquaintance without permission. (”Psychi-
atrist Convicted of Snooping in Records,” The As-
sociated Press State & Local Wire, May 5, 1999)

• Confidential Medicaid records were disclosed dur-
ing the sale of surplus equipment by the Arkansas
Department of Human Services twice in six months.
In October 2001, the state stopped the sale of the
department’s surplus computer storage drives when
it was discovered that Medicaid records that were
supposed to be erased were found on the comput-
ers. (”DHS Surplus Sales Again Reveal Confiden-
tial Information,” Associated Press, April 3, 2002)

Almost all of the breaches are due to human error of
the insiders, rather than attacks by hackers from the
outside.

One can argue that the current structure of file sys-
tems makes it easy to accidentally disclose confidential
information:

• The use of Discretionary Access Control (DAC)
puts the responsibility of setting proper permis-
sions on files entirely in the hands of users, who
often just use the default permissions on all files.

• Even if a sensitive file has its permission set prop-
erly, if the data in the file are transformed into
a new file, the permission on the derived file is
again set via discretionary access control (i.e. set
by users).

• Aggregate files containing multiple people’s per-
sonal data should have access control lists that are
intersections of the individuals’ access control lists,
so that the aggregate won’t be sent to any of the in-
dividual. Unfortunately, the aggregate file is again
protected by discretionary access control only.

Existing techniques that enhance file system security
unfortunately are not adequate. Improving the access

1

control at the file server can make it harder for certain
clients to retrieve sensitive files. However, the file server
has no visibility about the information flow once the
file leaves the server. The file might be transformed or
aggregated into other files, and the file server has no
information to protect the derived files. Hence, client-
side information-flow tracking mechanisms are needed
to protect sensitive information.

Using a military style multi-level security (MLS) sys-
tem would address the information flow issue. How-
ever, privacy data do not conform to military-style in-
formation model. In particular, a person’s confiden-
tial data are secret to certain people, but not others.
Traditional MLS system captures this aspect via com-
partments; however existing research mostly assume a
finite number of predefined compartments. If one uses
compartments to model individual’s privacy data, the
number of compartments is infinite.

Encrypting files is another way to enhance access con-
trol. In essence, access control is achieved by judiciously
handing out decryption keys. The difficulty thus lies
in key management. A key management scheme that
can reflect rich group/subgroup relationships is difficult.
Furthermore, when external communication is involved
(e.g. emails or web site submissions), setting up the key
management involves Public Key Infrastructures that
are even harder to manage.

In this paper, we describe a set of client-side mecha-
nisms that track information flow and enhance protec-
tion of personal data. Sensitive, personal data carry la-
bels, which are instantiated purposes of such data, spec-
ifying for what purpose the data are used, and who can
access or receive such data. The label propagates to
all descendant files containing the data, implemented
through a lineage tracking module in the operating sys-
tem of the hosts where the data reside. The label is then
enforced upon storage of data in networked file system,
and transmission of data to other organization and in-
dividuals.

We call the system the Hippocratic file system, as it
aspires to uphold the privacy protection tenet of the
Hippocratic Oath: “And about whatever I may see or
hear in treatment, or even without treatment, in the life
of human beings – things that should not ever be blurted
out outside — I will remain silent, holding such things
to be unutterable.” — Hippocratic Oath, 8. [Sta66].

A prototype Hippocratic file system has been im-
plemented in Linux, and experience with it shows
that a number of common productivity applications
on Linux suffer from cross-invocation contamination.
Cross-invocation contamination means that once the

application open one labeled file, all future files written
by the application carry the label, even if the applica-
tion is terminated and then restarted. This is usually
a problem due to the logic of the application. Since
rewriting applications is not a viable option in most
environments, we describe techniques to contain con-
tamination with as little risk as possible to enabling
unauthorized information disclosure.

The Hippocratic file system focuses on preventing ac-
cidental disclosure of personal data, not dedicated at-
tempts at obtaining the information. Preventing ded-
icated attempts involves secure operating systems and
network infrastructure, and is a much bigger issue than
we can address in this paper.

Despite its name, the Hippocratic file system is not
focused on protecting medical records, nor does it solve
all the complex issues involving aggregation and access
control of medical information. Rather, it’s a design
that aims to implement the four OECD principles in
file systems, and apply to all personal data including e-
commerce transactions, web surfing logs, mortgage ap-
plications, etc.

2 A Privacy-Conscious Infras-
tructure

The Hippocratic file system does not operate by itself.
It works in tandem with other system components that
are aware of care needed for personal data. Below we
first describe principles upon which the Hippocratic file
system is designed, then describe a simple usage sce-
nario and introduce the other system components in-
volved.

2.1 OECD Principles on Privacy

If one were to build a file system that enhance privacy
protection, where should one start? One source of inspi-
ration are the laws and regulations that many govern-
ments around the world passed to govern the collection,
usage and transmission of personal information. Under-
lying these laws are a set of international consensus for
privacy protection, the most well known of which is the
OECD (Organization for Economic Co-operation and
Development) guidelines [Org]. The OECD guidelines
stipulate eight principles for handling privacy data, of
which the following four are particularly relevant:

• Purpose Specification: The purposes for which per-
sonal data are collected should be specified not

2

later than at the time of data collection and the
subsequent use limited to the fulfillment of those
purposes or such others as are not incompatible
with those purposes and as are specified on each
occasion of change of purpose.

• Use Limitation: Personal data should not be dis-
closed, made available or otherwise used for pur-
poses other than those specified in accordance with
Purpose Specification except: a) with the consent
of the data subject; or b) by the authority of law.

• Security Safeguards: Personal data should be pro-
tected by reasonable security safeguards against
such risks as loss or unauthorized access, destruc-
tion, use, modification or disclosure of data.

• Accountability: A data controller should be ac-
countable for complying with measures which give
effect to the principles stated above.

The principles are policy statements specifying the stan-
dard of care for personal data. However, privacy protec-
tion cannot be implemented solely by legislative means;
it needs technical enforcement.

As designers and builders of computer storage sys-
tems, the file system community has a unique responsi-
bility for making sure that personal data are well pro-
tected and highly resistant to accidental disclosure. Our
paper serves as a first step in this direction.

2.2 A Simple Usage Scenario

To illustrate the issues facing protection and commu-
nication of privacy data, we use a medical clinic as an
example. The example does not necessarily resemble
reality. A more realistic design can be found in Ander-
son’s work. [And96]

The clinic uses database servers to hold various
records, for example, patient information, insurance
provider billing addresses, doctor’s notes, etc. There
are six tables in the database, with schema shown in
Table 1. We assume that insurance providers have elec-
tronic billing methods, such as Web (HTTPS) or email
(SMTP), and associated billing addresses, such as web
site addresses or email addresses. Similarly, pharmacies
may also electronic methods to call in a prescription,
and associated electronic call-in addresses.

The administrators of the clinic access the database to
carry out the daily tasks. Whenever an admin accesses
personal data stored in the database, there is a purpose
as to why he or she needs the personal data. In this
example, there are the following possible purposes:

• billing for patient x: bill the insurance provider for
procedure performed;

• prescription reminder for patient x: send email to
the patient to remind him or her to take prescrip-
tions;

• medical history request for patient x: send a pa-
tient’s medical history file to the patient, as per
the patient’s request;

• daily statistics: collect statistics of medical proce-
dures performed each day;

Note that the first three purposes are associated with
specific patients, while the last is not.

The admin’s activities are carried out on desktop ma-
chines, which are also used for the administrators’ per-
sonal tasks, such as emailing friends and colleagues, in-
stant messaging, and browsing the web. The desktop
machines store data both locally and on a file server.

The challenge is designing the system such that the
administrator does not accidentally place the doctor’s
notes in the public web directory, or email a patient’s
prescription information to the insurance provider.

2.3 Purpose Binding

Among the OECD principles, Purpose Specification and
Use Limitation stipulate that when a data item is col-
lected, its purpose must be specified to the user, and
when a data item is used, its usage must be consistent
with the purpose. While the file system is not involved
with data collection, it is involved with data storage and
use. The Security Safeguards principle thus mandates
that the file system built in mechanisms to enforce use
limitation and prevent accidental disclosure.

From the computer system’s perspective, a “purpose”
carries three constraints:

• authorized issuers: those who are authorized to
carry out activities for the purpose. For example,
while any of the clinic admins can carry out billing
and prescription filling, only one designated person
can respond to patient request of the medical his-
tory file due to the sensitivity of the information.

• allowed data: the kinds of personal data that the
purpose can access, expressed as the allowed tables
and allowed attributes in the tables.

• allowed viewers and recipients: the list of inter-
nal users and external recipients who can view the

3

Table Attributes
patient info patient-id, name, address, email-address, insurance-provider-id, insured-id, pharmacy-id
procedure info patient-id, doctor, procedure-code, date
prescriptions patient-id, doctor, drug-name, dosage, refile-cycle, num-refills, date
doctor notes patient-id, doctor, date, notes
insurance provider id, name, address, electronic-billing-method, electronic-billing-address
pharmacy id, name, address, call-in-method, call-in-address

Table 1: Schema of database relations that store patients’ personal information in the example clinic.

Purpose billing for patient id x
Authorized Issuers anyone in the billing office (i.e. group finance)
Allowed Data insurance provider.*, procedure info.*,

patient info.insurance-provider-id(x), patient info.insured-id(x)
Allowed Recipients group finance,

insurance provider.electronic-billing-address(patient info.insurance-provider-id(x)) with method
insurance provider.electronic-billing-method(patient info.insurance-provider-id(x))

Purpose prescription reminder for patient id x
Authorized Issuers anyone in the IT office (i.e. group IT)
Allowed Data patient info.*(x), prescriptions.*(x)
Allowed Recipients group IT, group doctors, group nurses

patient info.email-address(x) via SMTP
Purpose medical history request for patient x
Authorized Issuers the designated patient representative in the clinic
Allowed Data patient info.*(x), prescriptions.*(x), doctor notes.*(x)
Allowed Recipients the designated “patient representative”,

patient info.email-address(x) via SMTP
Purpose daily statistics
Authorized Issuers anyone in the IT office (i.e. group IT)
Allowed Data procedure info.doctor, procedure info.procedure-code, procedure info.date
Allowed Recipients everyone in the medical office

Table 2: Semantics of the purposes in terms of access control. Notations such as insurance provider.* means
that all columns in the table insurance provider can be accessed. Note that the allowed recipient is frequently
a function of the subject (i.e. patient) of the purpose. For example, patient info.email-address(x) means the
email-address column of the patient info table for the row where patient Id is x.

4

data. By internal users, we mean the users who
have an account in the computer system. In gen-
eral, the allowed viewers always include at least the
issuer of the activity. External recipients are indi-
cated by a means of communication and a com-
munication address. Note that recipients often are
functions of the subject (i.e. patient) for whom the
activity is carried out.

The constraints on the four purposes in the clinic ex-
ample are listed in Table 2.

To implement use limitations, each purpose can only
access the data that it is allowed to, and once ac-
cessed, the data must carry the limitation of that pur-
pose around. In other words, data (i.e. files) need to
be associated with the purpose and the access control
specified by the purpose.

2.4 Database Support

The Hippocratic file system cannot enforce use limita-
tion by itself. Enforcing that only authorized issuers can
issue a “purpose” and that a purpose can only access
allowed data is done by the database system.

Fortunately, the database community has long no-
ticed the need of privacy protection and designed the
Hippocratic Databases architecture [AKSX02]. Hippo-
cratic databases are also organized around purposes,
and understand the constraints associated with each
purpose. The Hippocratic Database requires that ev-
ery query presented to the database state its purpose,
and only data allowed for the purpose be retrieved.

We assume that the Hippocratic databases are in-
stalled at the clinic, and can consult an authentication
and authorization server to verify that: a) the user is-
suing the query is the claimed user, and b) the user
is authorized to issue queries for the specified purpose.
The retrieved results from the database are stored in a
file on the desktop machine. We further assume that
the program that retrieve data for a purpose will also
look up the database to obtain the list of allowed view-
ers and recipients, and store the list as an “read control
list” (RCL) for the data.

However, the database protection mechanism stops
the moment the data leave the database server and re-
side on the desktop machine. From there on, Hippo-
cratic file system takes over the protection of the data.

3 Design Overview

In Hippocratic file system, files carry security labels
with them, stored as extended attribute of the file. Two
set of mechanisms, label propagation and label enforce-
ments, manipulates and interprets the labels on files.

3.1 Labels

In the Hippocratic file system, every file containing per-
sonal information has a label on it. Initial labels are
assigned by a trusted application, which retrieves per-
sonal data from the database and then assign labels to
the file containing the data. The application is assumed
to be examined and verified, as commonly done in the
Clark&Wilson commercial security framework. [CW87]

A label is an instantiated purpose, consisting of the
purpose and instantiated Read-Control-List (RCL)
of the purpose. The trusted application that query
the database to carry out a particular purpose for
a subject (e.g. patient) also query the database
to obtain the list of allowed viewers and external
recipients. The RCL is instantiated because the list
depends on the subject and the trusted applica-
tion looks up the database to determine the list’s
contents. Example labels are billing + {Read/finance-
group, HTTPS/billing.blueshield.com:443}, pre-
scription reminder + {Read/medical-staff,
SMTP/john.doe@yahoo.com}, and daily statistics
+ {Read/clinic-everyone}. Note that the RCLs
carry both file system access restrictions, but also
communication restrictions.

Only a limited number of verified and trusted appli-
cation can assign or change labels on a file. Besides the
database query application, other applications that de-
classify or encrypt the data should be allowed to rewrite
or delete labels on a file. All such applications must be
verified and trusted, similar to how trusted programs
are handled in Clark&Wilson, or trusted subjects in
multi-level secure systems.

3.2 Label Propagation

Label propagation ensures any file whose content might
be causally affected by sensitive files carries a label that
reflects the sensitivity. In other words, the label should
go where the information propagates to.

However, since label propagation is a kernel mech-
anism, its determination of causal relations is neces-
sarily conservative, like all access control mechanisms
that try to constrain information flows while treating

5

the application as a black box. In other words, if the
kernel sees that a process reads data from file A and
then writes data to file B, the kernel has to assume
that file B contain information from file A. Of course, a
finer level of observation, such as at the memory page
level [KEF+05], can eliminate certain false correlations,
as can knowledge of a program’s properties, e.g. via
Proof-Carrying Code.

The task performed by label propagation is thus the
following: for each file that is written by a process, as-
sign a label that is the combination of the labels of all
files that have been read by the process.

3.2.1 Label Combination Function

The label combination function has two parts: generat-
ing a new purpose, and generating a new read-control-
list.

Combining RCLs The rule for generating a new
real-control-list is simple: the new RCL is the inter-
section of all the input label’s RCLs. Note that this set
cannot be empty since the user who runs the process
has read access to all the files involved, thus the user is
on the RCLs of all input labels.

Following this rule, label propagation thus has the
following simple property.

Theorem. As the data propagate through the file sys-
tem, the set of users and external recipients never ex-
pands.

Combining Labels The rule determining the new
“purpose” is more complex. The semantics of combin-
ing data of multiple purposes depends on the semantics
of the purposes themselves. In our view, a “purpose”
has two aspects associated with it: a sensitivity level of
the data, and the “conflict-of-interests” constraints.

One can have a completely-ordered “sensitivity lev-
els” and place purposes on these levels. For example, in
our clinic example, there are two sensitivity levels, med-
ical history request at the higher sensitivity level while
the rest are at the lower level. For each sensitivity level
that has more than one purpose, we associate a syn-
thetic purpose indicating that the file combines data
from multiple purposes from the level. When purposes
combine, the result should be of the highest sensitivity
level among the purposes.

To reflect “conflict of interests” relationships, our cur-
rent proposal is to use manually specified combination
functions. If there are “conflict of interests” relation-

ships between the purposes, then the output purpose
ought to reflect the combined “conflict of interests” re-
strictions of the input purposes. If there doesn’t exist a
purpose that reflect such restrictions, then a new “syn-
thetic” purpose should be generated to reflect such re-
strictions. Modeling “conflict of interest” relationships
in an easy-to-use fashion is outside the scope of this
paper, and is part of our future work.

Taking the above considerations into account, here
are the rules that determine the combined purpose:

• If all the input labels have the same purpose, then
the output purpose is the input purpose;

• If the security officer specified a combination func-
tion of the purposes, then that combination func-
tion is used to generate the new purpose.

• The purpose with the highest sensitivity level is
chosen as the output purpose, if there is only one
purpose at that level. If there are more than one
purpose at the highest sensitive level, then the syn-
thetic purpose for that level is used.

Difference from Multi-Level Security How is the
above scheme different from traditional multi-level se-
curity such as Bell-LaPudula? The difference lies in
the fact that in addition to purposes, the RCL is used
for use limitation. Unlike multi-level security scheme
such as Bell-LaPudula, purposes here are specific to in-
dividuals, and it may occur that data of purpose A for
individual x are combined with data of purpose B for
individual y. In this case, we rely on the intersection
of RCL to make sure that neither x or y can view the
combined data.

In a lattice model, one can view our scheme as being
the cross-product of two lattices. One lattice is gener-
ated by sensitivity levels. The other lattice is the infi-
nite lattice formed over sets, with one set dominating
another if the former is a subset of the latter, and the
common dominating set of two sets is the intersection
of the two.

3.2.2 Special Domains of Trusted Applications

While the above rules specify the default behavior of
applications, the combination function needs to change
if the application is a special one, for example, an en-
cryptor that allows the sensitive data to be transmitted
over the network.

To accommodate the special applications, we bor-
row the idea of domains from Domain-Type en-

6

forcement (the security implementation framework in
SELinux) [BK85, BSS+95], and place the special appli-
cations in a separate domain with its own label genera-
tion function. For example, a de-classifier domain holds
the encryptor program and other programs that delete
sensitive information, and all files generated from that
domain have no label, i.e. its label generation function
generates a NULL label.

In summary, the rules of label propagation are the
following:

• Special domains: if the executable of the process
belongs to a special domain, then the output file
carries the label that is generated by the domain’s
label generation function;

• Regular domains: if the executable of the process
does not belong to a special domain, then the rules
described above are used to determine the label on
the output file;

Note that all applications placed in the special domains
need to be verified and trusted.

3.3 Label Enforcement

Labels need to be enforced in three areas: access to
data residing in the machine’s local file system, access
to data residing in file servers, and communication of
data to external world.

3.3.1 Local File System Enforcement

For a labeled file on local disk, the kernel needs to make
sure that not only the file’s permission bits or ACLs are
enforced when the file is read, but also the RCL in the
file’s label are enforced. The check is performed upon
every file read; the check should only incur overhead if
the file’s label is changed.

3.3.2 Network File System Enforcement

In network file systems, the labels are stored at the file
server as extended attributes of files. We note that
many commonly used file systems, such as CIFS and
AFS, all support extended attributes.

When the file is stored at a file server via a distributed
file system protocol, the kernel further changes the file’s
ACL such that it is an intersection of the ACL specified
by the user and the restriction specified by the label.
That is, when a file is newly created, instead of its ACL
being the default access permissions in the user’s profile,

the file’s ACL is the intersection of the default and the
label’s restriction list. Similarly, a request to change
the file’s ACL, if generated by the local machine that
retrieved the data to begin with, will also be enforced
by the machine’s kernel so that the resulting ACL is an
intersection of the request and the label’s restrictions.
With this mechanism in place, a file containing personal
data cannot be accidentally put on the web, since the
access permission on the file will never be set to world-
readable.

Care needs to be taken when label propagation in-
teracts with client-side caches, particularly write-back
caches. If a file’s label is changed when it is written
and as a result, the file’s ACL is changed, the change in
file’s ACL must be sent to the file server before the dirty
data in the file. Even with this precaution, systems such
as NFS V2/V3 have a vulnerability, since they allow a
client to cache a stale file attribute for up to 60 seconds.
Thus, information leakage may occur if the client writes
back the dirty data to the server and the client caching
the stale attribute happens to be missing those dirty
data in its cache. This is a fundamental problem with
NFS V2/V3 that we will not attempt to solve in the
Hippocratic file system.

The approach described above relies on client-side
kernel mechanisms, and is only effective in environments
where the client machines all support the Hippocratic
file system. This is the case in environments such as
financial and medical institutions where IT personnel
makes sure that all clients use the same kernel, are
configured uniformly, and perform nightly checkup on
the clients. The advantage of this approach is that it
doesn’t require file server modifications. For environ-
ments where there are clients that do not support the
Hippocratic file system, the file server should not permit
such clients receive labeled files.

3.3.3 Communication Enforcement

For files that need to sent out to an external party,
for example, submitted via HTTP to an external web
site, or sent via email (SMTP) to an external email
address, label enforcement employs “proxies” to inter-
cept the communication and verify that the recipient
address is on the label’s restriction list. If a socket be-
comes labeled, its content is automatically intercepted
by a proxy process running on the desktop machine.
The proxy process understand every high-level proto-
cols used for communication of sensitive data, including
HTTP, HTTPS and SMTP, and can interpret the com-
mands to understand where on the Internet the data is
going to, and whether that destination is permitted by

7

the label. In the case of HTTPS, the proxy can only
determine if the destination hostname or IP address is
allowed, not the actual URL.

This approach requires that the proxy understands
the common protocols used to send privacy data to
other third parties. An alternative would be to use
encryption, which requires keys to be set up before
hand among the parties so that only a party holding
the key can read the data. While the encryption ap-
proach is definitely more secure, in practice the setup
is too complicated for many types of communications,
notably email messages to individual users. Since our
focus is on preventing human error in breach of individ-
ual privacy, we feel that using a proxy is a more suitable
approach.

Due to time limitations, we have not implemented the
proxy based solution in this paper.

3.4 Preventing Human Errors

We argue that, with label propagation and label enforce-
ment, many of the errors made in the privacy breaches
mentioned in Section 1 can be avoided:

• Medical records can no longer be posted on the web
accidentally. Both on the local machine and on the
file server, a file containing medical records has a
label restricting those who can read it. The label
enforcement mechanisms described above will make
sure that the file’s access permission can never be
changed to “readable by the world” accidentally.

• Any user who is not allowed to view a patient’s file
cannot “accidentally” gain read permission when
the data in the file is copied around or included in
other files. Label propagation makes sure that the
original restriction can only be strengthened with
derived data, not weakened.

• Group email messages containing many patient’s
email addresses cannot be sent out. The process
generating the group email reads the prescription
reminder data of many patients. Since the com-
bined RCL is the intersection of all input RCLs, the
email that this process generates cannot be sent to
any patient. The constraint thus force the system
to send email messages by reading one patient’s in-
formation at a time and send an email message to
that patient only.

Of course, the Hippocratic file system is not a panacea
for privacy breaches. For example, the scheme does not
prevent the sale of disk drives containing personal data.

In this case, good physical security and data scrubbing
processes are needed. However, by propagating labels,
the Hippocratic file system helps other mechanisms to
catch all places where sensitive data may reside in stable
storage. [CPG+04]

4 Implementation Details

We have implemented a prototype of the Hippocratic
file system as a security module in Linux 2.6. The pro-
totype implementation uses ASCII to represent the pur-
pose and the RCL in a label. A production system is
likely to use a representation that can be interpreted
by other components such as the Hippocratic database.
After the module is loaded, a trusted user-level appli-
cation specifies the combination function via /proc to
the security module.

4.1 Implementing Label Propagation
via LSM

We implemented label propagation on a prototype
Linux system using the Linux Security Module (LSM)
infrastructure [Ope]. LSM is a flexible mechanism
for adding security and access control mechanisms to
the kernel and is currently best known for its use
by SELinux, an extension to Linux that implements
mandatory access control. It allows different security
modules to be implemented without kernel modifica-
tions. LSM is ideal for our purposes because it adds
hooks in all places where information flow might occur.
Using LSM, we implemented label propagation as a se-
curity module that can be loaded into any 2.6 Linux
kernel.

Generally speaking, LSM support in the kernel
works by adding an extra pointer field to data
structures of kernel objects [SFV], including struct
task struct (for processes and threads), struct
inode and struct file (for files, pipes and sockets),
struct kern ipc perm (for System V IPC), etc. The
pointer field is used to store module-specific security in-
formation. LSM also adds calls to module-provided au-
thorization functions at access control decision points,
for example, inode creation, file open/read/write, pro-
cess creation, etc. The security module functions are
called before operations are performed and return a
value indicating whether the operation should be per-
formed or denied. The contents of the security struc-
tures and implementation of the authorization functions
are entirely up to the particular LSM module.

8

Storing Labels In the Hippocratic file system, the
security module keeps labels for files, processes, Sys-
tem V IPC mechanisms, and other types of files (named
pipes, UNIX domain sockets, sockets, etc.). The labels
for processes are used to aid in the implementation of
label propagation.

There are two versions of labels stored for on-disk
files. The in-memory version is associated with the
struct inode. We decide to use struct inode in-
stead of struct file, because two programs opening
the same on-disk file have two separate struct file,
while every struct inode always uniquely corresponds
to one particular on-disk file. To ensure that two pro-
grams opening the same file see label changes to that
file caused by the other program, we store a pointer
to the label in the struct inode for the file. The
on-disk version of the label is stored as extended at-
tributes, which are supported by all common Linux
file systems and is also the choice of label storage in
SELinux. The label is stored as an extended attribute
called security.Hippocratic.

For processes, the pointer to the label is stored in
struct task of the thread group leader. In Linux
2.6, tasks are threads that can potentially share ad-
dress spaces with other threads. A POSIX pro-
cess is represented by a group of tasks (often just
one), one of which is the so-called task group leader.
Since the shared address space is also an informa-
tion conduit, label propagation needs to work at the
granularity of processes, rather than threads. Thus,
labels are tracked in the thread group leader, in-
stead of every task/thread. In other words, for a
struct task struct *task, the pointer to the label
is task->group_leader->security.

Propagating Labels On every file read, the module
checks if the label of the file is different from the current
label of the process. If so, the combination function is
applied to the file’s label and the process’s label (which
can be NULL if the process doesn’t have a label) and
the result is set to be the new label of the process. On
every file write, the module checks if the label of the
process is the same as the label of the file. If not, then
the combination is applied to the process’s label and
the file’s label (when can be NULL if the file is newly
created) and the result is set to be the new label for
the file. Thus, no action is taken when a file’s label
is changed. Instead, the propagation occurs next time
the information flows out of the file (i.e. read) into a
process, and then flown out of the process (i.e. written)
into another file.

Since information flow must occur via actions of cer-
tain process running on the CPU (i.e. disks and mem-
ory do not perform information flow by themselves), the
above method of implementation is correct.

For applications in the special domain, the label for
their processes carries a special flag indicating that la-
bel propagation should stop, and also contains the result
label for all files written by applications in the domain
(for example, NULL if the domain consists of encryp-
tors). If the kernel detects that the process carries the
special flag, it takes the label stored in the process’s se-
curity information and assign it as the new label of any
file written by the process.

Currently, any change in a file’s label is written to
disk synchronously. An alternative higher-performance
scheme would be to always flush the change in the file’s
extended attribute before the file’s data. However, we
have not yet implemented it.

Assigning Labels Trusted applications can assign or
change the labels of files using the setxattr system call.
LSM provides a function inode setxattr that is called
from the setxattr system call. It is generally used to re-
strict user programs from changing arbitrary file labels
and thereby bypassing the kernel security mechanism.
We use it to check if program is trying to change the
security.Hippocratic label and if this is the case and
the operation is granted, we set the label inside struct
inode to the new label provided by the user program.

Label Contribution Log For usability of the sys-
tem, there needs to be tools that let users query how a
file acquires a label. To aid such tools, the module keeps
a log of label contributions. The log has three types of
entries:

• Label transition through inheritance: “Fork:
<label of parent process>, <parent pid>, <child
pid>”.

• Label transition from input file to process: “Read:
<process pid>, <label of input file>, <new la-
bel for the process>, <inode-number>, <file path
name>”.

• Label transition from process to output file:
“Write: <process pid>, <label of the process>,
<new label for the file>, <inode-number>, <file
path name>”.

The module outputs a log line upon the following cases:
every fork, every file write that leads to a label change

9

on the file, every file read that leads to a label change
on the process, and every file read that leads to a new
file contributing to the process’ label. For each file, the
module keeps a buffer in the security structure associ-
ated with each file to store the file’s pathname, which
is filled when the file is opened. The buffer is deallo-
cated with the rest of the security structure when the
file is closed. The log is output by the security module
through /proc; a user level daemon reads the data and
write to log files stored in the local file system.

The label contribution log needs to be cleaned every
time a labeled file is deleted from the storage. Due to
time limitations, we have not implemented the garbage
collection of the logs. Here is a brief description of the
algorithm that we plan to use. The log file is traversed
to build a tree, whose nodes are files or processes. An
edge exist from u to v if v is the only source of label con-
tribution to u. Then all lines associated with every node
in the tree can be deleted from the log. The cleaning
process ensures that the log only contains information
related to existing labeled files.

4.2 Implementing Label Enforcements

Label enforcement on the local machine is implemented
in “file permission”, which is called on every file read
and write, with an argument indicating whether the user
is attempting to read or write. If the call is for file
read, the function checks if the effective uid or gid is
listed in the RCL in the file’s label, retrieved via pointer
in struct inode of the file. If not, the read operation
fails. No checks are done for file write, since we are only
interested in protecting confidentiality, not integrity.

We have only implemented label enforcement for the
NFS v3 file system. Though NFS v3 doesn’t support ex-
tended attribute natively, we faked it by using a special
dot-named file associated with the main file. The file
permission change for NFS is performed when the file’s
label is changed. Whenever the label is changed, the
kernel tries to write the label to the extended attribute
of the file. At this point, the file system type structure
associated with the file system of the file is consulted.
If it is a local file system, then the label is stored as
an extended attribute. If it is NFS, it is stored in a
special dot-named file associated with the original file.
The UNIX permission bits for the file is then checked.
If there is a label associated with the file, then the read
permission for other is turned off. If the gid is not
in the RCL of the label, then the read permission for
group is turned off. If the check results in permission
bits changes, an RPC is issued to update the file server
immediately.

Kernel compilation Base HFS Overhead
real 92m20s 92m21 0%
user 78m45s 78m52 0%
sys 10m26s 10m51 3%

Table 4: Linux 2.6.11 kernel compilation.

4.3 Performance Experiments

Following the example of SELinux [LS01], we measure
the performance overhead of the implementation via
both microbenchmarks and macrobenchmarks. Due to
time limitations, we use only UnixBench [Nie] as the
microbenchmark, and kernel compilation as the mac-
robenchmark. We are continuing performance optimiza-
tion of the implementation and performance measure-
ment with more benchmarks. We ran all experiments
on a Pentium 3 with 256MB of RAM and a 1Ghz Pro-
cessor.

Microbenchmark Results We run UnixBench un-
der three systems. The first is an unmodified Linux
2.6.11 kernel. The second is Linux 2.6.11 kernel with
the Hippocratic File System (HFS) security module, but
the module is instrumented such that labels change on
every file read and write. The performance in this case
serves as the worst case scenario of HFS’s performance,
since in practice there are few long chains of informa-
tion flow and label propagation converges quickly. The
third is instrumented HFS such that labels change ev-
ery time a file is opened. The third system characterize
cases when working with new sensitive data. In regular
use, label change becomes less frequent and performance
gets closer to the baseline case. The results are shown
in Table 3.

Macrobenchmark Results We also timed our sys-
tem on compilation of the 2.6.11 Linux Kernel. We ran
our experiments in single user mode right after booting
after having previously performed a make clean. We
ran time make after putting different labels on about
10% of the source files which meant that every file
written by make would have a label and that labels
would change quite frequently. This is an example of
a worse-than-average workload when working with sen-
sitive data. The results are shown in Table 4.

Since we observed virtually no slow down we did not
run any tests for files without labels. These results con-
firm the absence of noticeable slowdown that we have
noticed during development even on slow hardware.

10

Microbenchmark Base HFS (worst case) Overhead HFS Overhead
file copy 4KB 51668 34386 50% 38604 30%
file copy 1KB 67987 27645 250% 58838 15%
file copy 256B 34227 8746 400% 25412 35%
pipe throughput 404101 374748 10% 387534 4%
pipe switching 145014 138194 7% 139785 4%
shell scripts (8) 193 176 10% 185 4%

Table 3: UnixBench system microbenchmark results.

5 Handling Cross-Invocation
Contamination

An obstacle to deploying the Hippocratic file system in
a real environment is the issue of cross-invocation con-
tamination. Applications may use helper files such as
history files or log files that are written every time the
application runs. Once the application is used on one
sensitive file, the helper files acquire labels. In sub-
sequent invocation of the application, the helper files
then propagate the labels to other files, and “contami-
nates” them. The problem is also recognized in general
Multi-Level Security (MLS) systems, phrased as “after
a while, everything flows to the top (level of secrecy)”.

While it’s easy to dismiss the problem by demanding
that applications be rewritten to eliminate the use of
helper files, we do not deem such options practical. In-
stead, we take the view point that the behavior of com-
mon applications can be observed and contaminations
through them can be eliminated by white-listing cer-
tain files. The drawback of this strategy is that bugs in
those applications may compromise the disclosure pro-
tection. However, we note that: a) the approach does
not make the situation worse than the current system,
which has no label propagations at all; and b) with-
out white-listing, we may end up with a system that is
simply not usable.

5.1 Experience with Common Linux
Applications

Since Linux is our implementation platform, we investi-
gate the scope of the contamination problem with com-
mon Linux applications,

• Firefox has two files that act as sources of cross-
invocation contamination: downloads.rdf, which
keeps the download listing, and localstore.rdf,
which is the configuration file for the GUI.

• OpenOffice contaminates through configuration
files and caches. If the user changes the configu-
ration of Openoffice while reading a file with label,
then the label propagates to the configuration file.

• Emacs has no cross-invocation contamination.

• vim has cross-invocation contamination through its
configuration file $HOME/.viminfo.

• gedit, the text editor for Gnome desktop envi-
ronment, can contaminate through the history
file gedit-metadata.xml and configuration file
gedit-2.

• gcc has no cross-invocation contamination.

• LATEX has no cross-invocation contamination.

The trend is that applications with more features,
particular features involving ”history”, are at the most
risk for cross-invocation contamination.

5.2 White-Listing Helper Files

To contain cross-invocation contamination, the Hippo-
cratic file system allows files to be white-listed. White-
listed files would not have labels propagate to them.
However, for a file to be white-listed, it must have an
owner application, and the system enforces that only
the owner application can write to the file.

The owner application must belong to a special do-
main called white-listed applications. These applica-
tions are not trusted to assign labels to files. Rather,
they are trusted that, under normal operations, they
do not disclose information contained in input files to
the white-listed file, and thus the labels do not propa-
gate to the white-listed file. This trust can be estab-
lished through code examination, manual observation
of application behavior, or certification of application
vendors. It is expected that the security officer of the
organization should examine commonly used applica-
tions and white-list files used by these applications that
cause cross-invocation contamination.

11

A white-listed file can have a reader restriction. If
imposed, the white-listed file can only be read by its
owner application and applications in special domains
(i.e. the encryptor domain and the file system mainte-
nance domain). The reader restriction will further limit
the chances of disclosure via the white-listed file.

White-listed files with reader restrictions are intended
for an application’s own files, such as history files, log
files and configuration files. These files are only in-
tended to be used by the application. White-listed files
without reader restriction can be used for system files
such as /var/run/utmp and /etc/ld.so.cache, which
might be read by many applications. The fact that only
utmp can write to the file limits the chance of informa-
tion disclosure to the file.

Only a trusted program, the white-lister, can spec-
ify white-listed files. The interface for white-listing a
file takes as arguments the path to the file and the
pathname of the owner application. If the white-listed
file is reader restricted, the interface also include the
list of special domains whose applications can read
the file. The information is then stored as a spe-
cial extended attribute, which is interpreted by the
security.Hippocratic module. If an application has
white-listed files, then the white-lister needs to be in-
voked everytime the application is installed.

5.3 The Decontaminator

Handling contamination also requires the existence of
a decontaminator. That is, despite efforts to inspect
applications and white-list helper files, there bound to
be cases when contamination happens and a user want
to request that files with labeled be reversed. Tools
should exist such that the user only specifies one file for
decontamination (the origin file), and the system takes
care of eliminating labels on files who have acquired a
label solely due to the origin file.

The Hippocratic file system provides a decontamina-
tor tool. The tool uses the label contribution log to
identify all files that need to be cleaned. Specifically,
when the de-contaminator tool is invoked, it takes a
snapshot of the label contribution log, then reads each
log line to construct a tree whose nodes are files and
whose root is the origin file. An edge from u to v exists
in the tree if u’s label is the only source of v’s label.
The decontaminate then resets the label of all nodes in
the tree. We are in the process of implementing the
de-contaminator tool.

6 Related Work

Comparison with Existing Security Frameworks
The best known lattice-based access control framework
is multi-level security (MLS), as first developed by Bell
and LaPadula. [BL76] In the original BLP definition,
mechanism and policy were tightly intertwined: the pol-
icy of “no downward information flow” was decomposed
into two safety properties (no read up – the simple se-
curity property, and no write down – the *-property).
In MLS systems, the lattice of security labels is the
cross product of a totally ordered set of levels (e.g., Un-
classified, Secret, Top Secret) and an unordered set of
compartments (e.g., NUCLEAR, CRYPTO, etc.). Im-
plementing MLS was the first major use of mandatory
access control (MAC), where the system, via a secu-
rity officer, enforces a policy regardless of the individ-
ual user’s actions. MAC is the key concept for enforcing
confidentiality in the MLS setting, and privacy in our
setting: users simply aren’t allowed to break certain
rules. While Bell-LaPadula is focused on confidential-
ity, Biba [Bib75] showed that integrity can be seen as
the dual (in a lattice theoretic sense) of confidentiality,
albeit over a different lattice.

Type Enforcement [BK85], and its generalization, Do-
main and Type Enforcement [BSS+95] is a mechanism
for enforcing MAC without baking a policy into the
mechanism. Instead, several matrices are used to con-
figure the policy in Type Enforcement, and Domain
Type Enforcement adds a policy specification language.
While MLS was the motivating example policy for type
enforcement, the matrices themselves do not encode any
fixed rules, a la “must go upwards in a lattice.”

Stephen Weeks’ paper, “Understanding Trust Man-
agement Systems,” [Wee01] offers a general framework
that explains why lattices are good models for access
controls. Weeks has a hierarchy of privileges, much like
this work, and uses properties of lattices to produce sen-
sible answers to all access control queries. Weeks con-
siders the distinguishing feature of trust management
(vs. other forms of access control) to be the search for
a solution to whether this access is allowed, rather than
a simple yes-or-no answer.

The Clark-Wilson model [CW87] focused on integrity
as the key security property for for commercial ap-
plications, rather than confidentiality. The model fo-
cuses on ensuring that only verified, well-formed trans-
actions run against the production database, and en-
forcing a separation-of-duty policy between software de-
velopment and deployment. The Chinese Wall security
model [BN89] is focused on enforcing separation of duty
policies. These policies are inherently history based

12

(working with company X prevents one from working
with company Y in the future).

Anderson has worked out a realistic medical informa-
tion privacy policy. [And96] However, his work is de-
signed for a single-payer medical system, as exists in
the UK. Our model more closely follows the American
system, with doctors receiving payment from multiple
insurance companies.

We unabashedly borrow from these frameworks. In
our example, we model each patient as a separate com-
partment (in MLS terms), with the associated privileges
and privacy rights somewhat corresponding to levels.
However, we allow for (countably) infinitely many com-
partments, which may be created dynamically, as in the
Chinese Wall policy. Our concept of verified programs
essentially corresponds to well-formed transactions in
the Clark-Wilson model. These programs, in a general-
ization of the MLS “trusted subject” notion, may place
arbitrary security labels on their outputs. While every
label is a lattice element, similar to all practical MLS
systems, we allow seeming downward flows: for exam-
ple, the verified program may have suitably anonymized
or encrypted the data.

Comparison with Floating Level MLS Systems
The Trusted Solaris system [Suna] also associates labels
with files and processes, has an option for “information
label floating”, which propagates labels along the path
of information flow. There are three types of labels in
Trusted Solaris: sensitivity label, information label, and
CMW label (which is simply a combination of sensitiv-
ity label and information label). The labels there, how-
ever, are used to implement multi-level security systems
in a dynamic fashion. The label combination function
is a simple MLS “write-up” rule.

The manual for Trusted Solaris [Sunb] did note the
problem of cross-invocation contamination. The pro-
posed solutions are changing applications, asking the
user to manually reset the labels, or allowing the appli-
cation to stop label propagation all together. None of
these are desirable. In contrast, the technique of white-
listing helper files avoids contamination while making
sure that labels still propagate through the applications.

Comparison with Encrypted Storage Encryption
is another means of access control. There are two ways
to encrypt storage: encrypting disks and encrypting
files. Encrypting disks (and tapes) mostly improves the
physical security of the storage medium, and is com-
pletely complementary to the scheme described here.
Encrypting files offers a method of access control that

does not weaken as the information is copied or stored
into other files. However, it is difficult to design an en-
cryption framework that accommodate the complexity
and richness of privacy protection, where both internal
and external recipients are involved.

7 Conclusions and Open Issues

We present a file system that prevents accidental infor-
mation leakage. The Hippocratic file system attempts
to balance security and usability. With modest effort,
it can be circumvented, but it will force the perpetrator
into the position of knowingly doing wrong. We de-
scribe a prototype implementation and experience with
existing applications.

Two main open issues remain.

Backup The system backup procedure must be able
to read all files during backup and assign labels during
restore. One solution is to use Domain and Type En-
forcement assured pipelines, so that the backup must
be encrypted for confidentiality and signed for integrity
before being written to removable media. The restore
program must be trusted to verify the signature and
properly label all files it restores.

Time limitation One of the other OECD principles
requires keeping personal data for only a limited time
period. In the presence of aggregate data and backups,
this can be difficult to enforce. While the challenge with
backups can be addressed with encryption techniques,
more effort is needed to develop suitable policies for
time-limits on aggregated data.

We plan to address these in our future work.

References

[AKSX02] Rakesh Agrawal, Jerry Kiernan, Ramakrish-
man Srikant, and Yirong Xu. Hippocratic
databases. In Proceedings of the 28th VLDB
Conference, 2002.

[And96] Ross Anderson. A security policy model
for clinical information systems. In Proceed-
ings of the 15th IEEE Symposium on Secu-
rity and Privacy, pages 30–43, Oakland, CA,
May 1996.

[Bib75] K. J. Biba. Integrity considerations for se-
cure computer systems. Technical Report

13

MTR 3153, Mitre Corporation, Bedford,
MA, June 1975.

[BK85] W. E. Boebert and R. Y. Kain. A practi-
cal alternative to hierarchical integrity poli-
cies. In Proceedings 8th DoD/NBS Com-
puter Security Initiative Conference, pages
18–27, Gaithersburg, MD, September 1985.

[BL76] D. Elliot Bell and Leonard J. LaPadula. Se-
cure computer system: Unified exposition
and Multics interpretation. Technical Re-
port MTR-2997 Rev. 1, MITRE Corpora-
tion, March 1976.

[BN89] David F. C. Brewer and Michael J. Nash.
The Chinese wall security policy. In Proceed-
ings of the 1989 IEEE Symposium on Secu-
rity and Privacy, pages 206–214, 1989.

[BSS+95] Lee Badger, Daniel F. Sterne, David L. Sher-
man, Kenneth M. Walker, and Sheila A.
Haghighat. Practical domain and type en-
forcement for UNIX. In Proceedings of the
1995 IEEE Symposium on Security and Pri-
vacy, pages 66–77, 1995.

[CPG+04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin
Christopher, and Mendel Rosenblum. Un-
derstanding data lifetime via whole sys-
tem simulation. In Proceedings of the 13th
USENIX Security Symposium, pages 321–
336, San Diego, CA, August 2004.

[CW87] David D. Clark and David R. Wilson. A
comparison of commercial and military com-
puter security poli cies. In Proceedings of the
IEEE Symposium on Security and Privacy,
pages 184–194, Oakland, CA, April 1987.

[HIP] HIPAAps Inc. Hipaa privacy & security: Ex-
amples of privacy violations. http://www.
hipaaps.com/main/examples.html.

[KEF+05] Maxwell Krohn, Petros Efstathopoulos, Cliff
Frey, Frans Kaashoek, Michelle Osborne,
Steve VanDeBogart, and David Ziegler.
Make least privilege a right (not a privilege).
In Proceedings of the 10th Workshop of Hot
Topics in Operating Systems, June 2005.

[LS01] Peter Loscocco and Stephen Smalley. In-
tegrating flexible support for security poli-
cies into the linux operating system. In
Proceedings of the FREENIX Track of the

2001 USENIX Annual Technical Confer-
ence, 2001. http://www.nsa.gov/selinux/
papers/freenix01-abs.cfm.

[Nie] D. C. Niemi. Unixbench 4.1.0. http://www.
tux.org/pub/tux/niemi/unixbench.

[Ols] Stefanie Olsen. Top web sites com-
promise consumer privacy. Decem-
ber 17, 1999, http://news.com.com/
2100-1017-234631.html.

[Ope] Open Source Community. Linux security
modules. http://lsm.immunix.org/.

[Org] Organisation for Economic Co-operation
and Development. Oecd guidelines on the
protection of privacy and transborder flows
of personal data. http://www.oecd.org/
document/18/0,2340,en_2649_201185_
1815186_1_1_1_1,0%0.html.

[SFV] Stephen Smalley, Timothy Fraser,
and Chris Vance. Linux security
moduels: General security hooks for
linux. http://lsm.immunix.org/docs/
overview/linuxsecuritymodule.html.

[Sta66] Heinrich Von Staden. In a pure and holy
way: Personal and professional conduct in
the Hippocratic oath. In Journal of the His-
tory of Medicine and Applied Sciences, vol-
ume 51, pages 406–408, 1966.

[Suna] Sun Microsystems, Inc. Trusted solaris 2.5.1
answer book. http://docs.sun.com/app/
docs/coll/175.2.

[Sunb] Sun Microsystems, Inc. Trusted so-
laris 2.5.1 answer book: Label guide-
lines. http://docs.sun.com/app/docs/
doc/805-8031/6j7i5o2fm?a=view.

[Wee01] Stephen Weeks. Understanding trust man-
agement systems. In Proceedings of the 15th
IEEE Symposium on Security and Privacy,
pages 94–105, Oakland, CA, May 2001.

14

