
Efficient Top-K Query Calculation in Distributed Networks

Pei Cao

cao@theory.stanford.edu

Zhe Wang

Department of Computer Science

Princeton University

Princeton, NJ 08540

zhewang@cs.princeton.edu

Abstract

This paper presents a new algorithm to answer top-k
queries (e.g. “find the k objects with the highest ag-
gregate values”) in a distributed network. Existing
algorithms such as the Threshold Algorithm [FLN01]
consume an excessive amount of bandwidth when the
number of nodes, m, is high. We propose a new
algorithm called “Three-Phase Uniform Threshold”
(TPUT). TPUT reduces network bandwidth con-
sumption by pruning away ineligible objects, and ter-
minates in three round-trips regardless of data input.

The paper presents two sets of results about
TPUT. First, trace-driven simulations show that, de-
pending on the size of the network, TPUT reduces
network traffic by one to two orders of magnitude
compared to existing algorithms. Second, TPUT is
proven to be instance-optimal on data series that sat-
isfy a lower bound on the slope of decreases in values.
In particular, analysis shows that by using a pruning
parameter α < 1, TPUT achieves a qualitative re-
duction in network traffic, for example, lowering the
optimality ratio from O(m ∗ m) to O(m ∗ √

m) for
data series following Zipf distribution.

1 Introduction

We investigate algorithms that answer “top-k”
queries efficiently in distributed networks. The per-
formance criteria are low latency and low bandwidth
consumption. Such algorithms are important in a
variety of systems; our particular interest is content
distribution networks for large enterprises.

Large enterprises have branch offices located
around the globe. The offices are usually connected
to the enterprise data center via WAN links in a star
topology. The number of branch offices ranges from
a few tens to a few thousands. Due to the diverse
geographical locations of branch offices, the links be-
tween the offices and the data center have low band-

width, typically 128Kb/s to 2Mb/s.

To enable Web and streaming media applications
at the branch offices, a Content Distribution Network
(CDN) is usually deployed. In the CDN, a “content
engine” is installed at each branch office. The device
acts as a Web cache, a streaming media cache, and a
server that serves pre-positioned Web and video con-
tents. The devices are managed by a central manage-
ment station located at the data center.

Successful operations of CDN rely on effective mon-
itoring of the activities on the network, which means
that the central management station is often asked
to answer “top-k” queries. For example, the admin-
istrator routinely asks for “list the top-k most pop-
ular URLs across the whole CDN”, or “list the ob-
jects whose total byte savings across all caches are
among the top k.” Naive methods for answering these
queries would have each cache send data about all
objects to the central manager. Since the number
of objects at each cache easily runs to millions, the
sheer amount of data can consume excessive WAN
bandwidth and defeat the bandwidth-saving purpose
of the CDN. Hence, more sophisticated algorithms
are needed.

In this paper, we present a new algorithm, Three-
Phase Uniform Threshold (TPUT), that answers the
“top-k” queries in large-scale networks efficiently.

1.1 Problem Definition

Assume that there are m data series, each data series
d is a list of 〈x, vd(x)〉 pairs, where x is an object
and vd(x) > 0 is the value of the object. The list
is sorted by object values, from the highest to the
lowest; thus we also call a data series a “sorted list”.
The sets of objects in each data series overlap but are
not identical. If an object y doesn’t appear in data
series d, we say that vd(y) = 0.

For each object x, one can calculate its aggregate
value across the m data series: V (x) = v1(x) +

1



v2(x) + . . . + vm(x). The query is to find k objects,
x1, x2, ..., xk, whose values V (x1), V (x2), ..., V (xk)
are the highest k values among all objects.

In a network of m nodes connected to a central
manager, each node is a data series. The goal of
the algorithm is to answer the query with minimum
amount of communication between the nodes and the
central manager.

As described, the problem is a generic one that can
be found in almost any monitoring network or collab-
orative distributed system. When the lists are short,
the simple method where each node sends its list to
the manager works fine. However, when the lists are
long, more sophisticated solutions are needed. Such
solutions are useful in many systems besides content
distribution networks, for example, sensor networks
and spam detection networks.

1.2 Review of the Threshold Algo-

rithm

Database communities have studied various methods
to evaluate top-k queries [NR99, Fag99, UBK00,
BGM02, FLN01, BO03]. The queries in the stud-
ies aggregate values over a few databases. The
arguably best algorithm is the Threshold Algo-
rithm (TA), discovered independently by multiple
groups [NR99, UBK00, FLN01] and examined thor-
oughly in [FLN01].

Briefly, TA goes down the sorted lists in parallel,
one position at a time, and calculates the sum of the
values at that position across all the lists. This sum is
called the “threshold” in [FLN01] and the “stopping
value” in this paper. Everytime a new object appears,
TA looks up in all lists to find its aggregate value. TA
stops when it finds k objects whose values are higher
than the stopping value. The algorithm is correct
because any object that it has not seen cannot have
a value higher than the stopping value.

As an example, look at the data series in Table 1.
Assume the query is to find the top 2 objects, i.e.
k = 2. TA first looks at the objects in position 1 of
all lists, which are O1, O2, and O3. It looks them up
in all lists and finds their aggregate values, V (O1) =
v1(O1)+v2(O1)+v3(O1) = 10+1+9 = 20, V (O2) =
v1(O2) + v2(O2) + v3(O2) = 7 + 10 + 1 = 18, and
V (O3) = v1(O3)+v2(O3)+v3(O3) = 8+2+10 = 20.
The stopping value at position 1 is 10+10+10 = 30.
Hence the algorithm cannot stop and must go onto
position 2. At position 2 the objects are O3, O4,
and O1. O4 is a new object so the algorithm finds
its aggregate value V (O4) = 5 + 9 + 5 = 19. The
stopping value at position 2 is 8 + 9 + 9 = 26 and the

Position Series 1 Series 2 Series 3
1 〈O1, 10〉 〈O2, 10〉 〈O3, 10〉
2 〈O3, 8〉 〈O4, 9〉 〈O1, 9〉
3 〈O5, 8〉 〈O6, 8〉 〈O7, 8〉
4 〈O6, 8〉 〈O8, 6〉 〈O9, 7〉
5 〈O2, 7〉 〈O7, 5〉 〈O6, 6〉
6 〈O4, 5〉 〈O3, 2〉 〈O4, 5〉
7 〈O9, 1〉 〈O1, 1〉 〈O2, 1〉

Table 1: An example data set with three data series.

algorithm must go on. The algorithm finally stops at
position 5 and concludes that the top 2 objects are
O6 with value 22 and O1 with value 20.

Adapted to running over a network, TA would go
through rounds, each round involving two round-trip
communications. In the first round-trip, the manager
asks nodes about data at a particular position in their
lists. In the second round-trip, the manager sends all
nodes a list of object IDs and the nodes respond with
values of those objects in their lists. To reduce the
number of rounds, nodes can send data from a block
of positions each time. The size of the block affects
the number of rounds before TA terminates, but does
not significantly affect the total amount of network
traffic. In this paper we assume the size of the block
is k, that is, each round goes k positions down the
lists.

TA works well when the number of nodes, m, is
small. However, when m is large, the network traffic
involved in the second round-trip can become exces-
sive. Unless each object’s positions in the sorted lists
are very similar (i.e. if an object appears in position
k in one list, then it appears in positions near k in
other lists), the number of unique objects reported
in the first round-trip is O(m). These objects are
then looked up in all m nodes, leading to overhead of
O(m2). Indeed, when m is large, the traffic incurred
by the central manager to send the list of objects to
all nodes can be high enough that the naive algorithm
would consume less bandwidth than TA. While one
can argue that the factor of O(m2) is unavoidable
in any algorithm’s worst-case performances (proved
in [FLN01]), TA’s worst-cases happen too often in
practice.

An additional problem is that the latency of TA is
unpredictable because the number of rounds varies by
data input. For distributed networks, it’s desirable to
have an algorithm that terminates in a fixed number
of round trips.

2



1.3 Our Algorithm: TPUT

We design the TPUT algorithm to terminate in a
fixed number of round trips regardless of input and
always give accurate answers. The algorithm exe-
cutes in three steps:

1. determine a lower-bound estimate for the k’th
value;

2. use the estimate to prune away ineligible objects
as much as possible;

3. look up the resulting set of objects in all nodes
to identify the top-k objects.

It draws its efficiency over the naive algorithm and
TA through its effective pruning mechanism.

We demonstrate the practical performance of
TPUT through trace-driven simulations. Using Web
access trace data, we show that the network band-
width consumption of TPUT can be one to two or-
ders of magnitude less than TA, depending on the
number of nodes.

We analyze the properties of TPUT following
the concept of “instance-optimality” as proposed
in [FLN01]. We consider the class of fixed round trip
algorithms, of which TPUT is a member. We show
that no fixed round-trip algorithm can be instance-
optimal when considering all possible data series.
However, if data series are limited to data distribu-
tions that have a reasonable “slope”, then TPUT is
instance optimal. Furthermore, by introducing a pa-
rameter α < 1 in the TPUT algorithm, the perfor-
mance of the algorithm is improved qualitatively. In
the case of Zipf distribution, the optimality ratio is
reduced from O(m ∗ m) to O(m ∗ √

m), where m is
the number of nodes in the network.

Finally, we discuss extensions of TPUT to hierar-
chical networks and peer-to-peer networks.

2 Three-Phase Uniform-

Threshold Algorithm

Before we describe the TPUT algorithm, we define a
few basic operations and notations.

2.1 Partial Sums and Upper Bounds

At any stage in the algorithm, the central manager
can calculate a partial sum of an object o, P (o) =
v′1(o) + v′2(o) + . . . + v′m(o), where v′i(o) = vi(o) if o
has been reported by node i, and v′i(o) = 0 otherwise.
Since all values are ≥ 0, an object’s partial sum is

always a lower bound of its aggregate value, P (o) ≤
V (o).

When the central manager receives all objects with
values above a certain threshold T from all nodes, it
can also calculate an upper bound for an object o,
U(o) = u′

1(o) + u′

2(o) + . . . + u′

m(o), where u′

i(o) =
vi(o) if o has been reported by node i, and u′

i(o) = T
otherwise. Clearly, U(o) ≥ V (o) for any object o.

Assume that the final answer to the top-k query
are objects O1, O2, . . . , Ok, where V (O1) ≥ V (O2) ≥
. . . ≥ V (Ok). We call this set the “true” top-k ob-
jects, and the value V (Ok) the “true bottom”, de-
noted by τ .

2.2 Basic Algorithm

TPUT consists of three phases, each taking one
round-trip to finish:

• Phase 1: establish a lower bound on the true
bottom. The central manager informs all nodes
that it would like to initiate calculations of a top-
k query. Each node d sends the top k items from
its lists.

After receiving the data from all nodes, the cen-
tral manager calculates the partial sums of the
objects. It then looks at the k highest partial
sums, and takes the k’th one as the lower bound.
We denote this lower bound as τ1, and call it
“phase-1 bottom”.

• Phase 2: prune away ineligible objects. The
manager now sets a threshold T = (τ1/m), and
sends it to all nodes. Each node then sends the
list of objects whose values are ≥ T to the central
manager.

At the end of this round-trip the manager has
seen objects in the true top-k set. In other words,
if an object is not reported by any node, then its
value are < T in all nodes, which means that its
aggregate value is < τ1, and hence it can’t be in
the top-k set.

The manager now performs two tasks. First, it
refines the lower bound estimate. It calculates a
new set of partial sums for the objects, and finds
the k highest partial sums. Let’s call the k’th
highest sum “phase-2 bottom”, and denote it by
τ2. Clearly, τ1 ≤ τ2 ≤ τ .

Then, it tries to prune away more objects. It cal-
culates upper bounds of the objects as described
in the previous section. Objects whose upper
bounds are less than τ2 are eliminated. The set
of the remaining objects is the candidate set S.

3



• Phase 3: identify the top-k objects. Now, the
manager sends the set S to all nodes, and each
node sends the manager the values of objects in
S. The manager can then calculate the exact
sum of objects in S, and select the top-k objects
from the set. Those objects are the true top-k
objects.

As an example, consider the lists in Table 1. In
phase 1, all nodes send the data at positions 1 and
2 to the central manager. The manager calculates
the partial sums: V ′(O1) = 19, V ′(O2) = 10,
V ′(O3) = 18, and V ′(O4) = 9. The two highest par-
tial sums are 19 and 18, and the phase-1 bottom τ1

is 18. Hence, the threshold T is set to 18/3 = 6. In
phase 2, node 1 sends data up to position 5 in its
list, node 2 sends data up to position 4, and node
3 sends data up to position 5. The central man-
ager now finds the phase-2 bottom τ2 = 19 because
V ′(O6) = 22 and V ′(O1) = 19 are now the top 2
sums. Furthermore, U(O8) = 18 and U(O9) = 19,
hence, O8 and O9 are eliminated from consideration
and S = O1, O2, . . . , O7. In phase 3, the central man-
ager now sends S to all nodes; the nodes respond and
the central manager concludes that the top 2 objects
are O6 and O1.
Theorem 2.1. The above algorithm correctly iden-
tifies the exact top-k objects for any data input.

Proof. As discussed above.

The above discussion omits two details. First, if a
node has sent a piece of data in previous round-trips
then it doesn’t send it again; the central manager
saves all history. Second, at each phase, TPUT al-
ways examines the available information and checks
if it can safely terminate. For example, in phase 2 if
there are k objects whose partial sums are true sums
and are higher than the upper bounds of all other
objects, TPUT can terminate.

In practice, to guard against the pathological case
where a node has a very long sequence of objects
with values above the threshold, the central manager
can put a limit on the maximum number of objects
that a node sends in phase 2. If a node cannot send
all objects above the threshold, it should inform the
manager. The manager needs to make two adjust-
ments. First, it adjusts the values used in the upper
bound calculations. Second, it calculates the sum of
the bottom values on the lists sent by the nodes; let’s
call it τ ′. If, at the end of phase 3, the manager
finds k objects whose values are > τ ′, then the al-
gorithm can terminate. Otherwise, it needs to rerun
phase 2 requesting nodes to send all objects above
the threshold. Since this mechanism is only needed

for pathological cases which are rare in practice, we
do not discuss this scheme further.

Finally, note that the algorithm is not limited to
sum, and can apply to any strict monotonic aggrega-
tion function f [FLN01] as long as there is a way to
determine the threshold value T based on the phase-1
bottom. For example, if the function is multiplica-

tion, then T would be τ
1/m
1 .

2.3 Enhancing the Pruning Power

We can lower the threshold T by setting it to be
(τ1/m) ∗ α, where 0 < α < 1. We call α the pruning
parameter. We choose α = 0.5 in our design.

Intuitively, with T = τ1/m∗0.5, many objects that
are reported by a few nodes but whose actual sums
are smaller than τ1 can be detected and eliminated.
It turns out that any value of α < 1 leads to a qual-
itative reduction in the size of candidate set S. We
analyze the choice and impact of α in later sections.

2.4 Compression via Hash Arrays

If names of objects are long (e.g. URLs), one can use
hash arrays to reduce the amount of traffic. Specifi-
cally, in phase 2, when a node sends all objects above
T to the manager, it sends in a hash array of coun-
ters instead of a list of 〈url, value〉 pairs. Each entry
in the hash array is either 0 if no object hashes into
the entry, or the value V , where V is the maximum
of values of objects hashed into the entry. The hash
function used and the size of the hash array are the
same across all nodes.

Partial sums and upper bounds are calculated on
array entries. The candidate set S also consists of
array entries. In phase 3, the manager represents S
as a bit array and sends it to all nodes, and all nodes
respond with lists of objects that hash into entries
whose bits are 1.

Due to hash collision, τ2 might not be a lower
bound of τ anymore. In this case, TPUT will not
be able to find k objects whose sum are ≥ τ2. If this
happens, the central manager recalculates the can-
didate set by using τ1 as the lower bound and the
algorithm will then terminate.

To determine the size of the hash array, each node j
sends the total number of objects in its sorted list, nj ,
in phase 1. The central manager then sets the size of
the array to be Σ(nj). This creates many empty en-
tries in individual nodes’ data, which are easily elim-
inated by compression. In essence, the hash arrays
make sure that each object’s name consumes at most
three or four bytes in transmission.

4



Theorem 2.2. The hash array compression does not
affect the correctness of the algorithm.

Proof. As discussed above.

3 Experimental Performance of

TPUT

We implemented TA, TPUT and TPUT with hash ar-
ray compression to compare their performance across
a range of data sets.

The performance metrics for the algorithms are
bandwidth consumption and the number of round
trips. For bandwidth consumption we calculate two
kinds of byte count:

• “uni-cast” bytes, which assumes that the central
manager communicates with each node via uni-
cast. In this case, the central manager constructs
individual messages for each node to avoid re-
questing duplicate information from a node.

• “broadcast” bytes, which assumes that there is
a broadcast media, e.g. satellite communication,
that the central manager can use to communi-
cate with all nodes. In this case, the central
manager constructs one message to broadcast to
all nodes, and the message is counted only once.

All information exchanges are compressed via gzip,
and the compressed sizes are used in the calculations.

3.1 Trace Data

Using web access logs, we simulate the scenario where
a central manager talks to a network of web proxies
or web servers to execute top-k queries.

• NLANR-10: a full-day (Oct 21, 2003) trace
log of the 10 caching proxies operated by
NLANR [IRC03], which are used by interna-
tional research communities for accesses to US
contents.

• NLANR-203: to simulate a higher number of
proxies, we split each NLANR proxy’s trace into
32 sub-traces, based on the hash of the class A
byte of the client IP address. Sub-traces that
have fewer than 1000 requested URLs are ig-
nored since they indicate that the correspond-
ing client population are not using the NLANR
proxy hierarchy regularly. We are then left with
data for a network of 203 proxies.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e 

(L
og

 s
ca

le
) 

0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e 

(L
og

 s
ca

le
) 

Top 10 unicast

Threshold

TPUT

TPUT+Hash

Figure 1: Uni-cast bytes of the algorithms for finding
the top 10 objects. Note that the y-axis is in log scale.

• WorldCup-30: a 2-hour access log from the 30
web servers hosting the web site for the 1998
World Cup Soccer on June 30, 1998.

• DEC-64: we take a one-day (Sep 16, 1996) trace
from the Digital Equipment Corporation’s Inter-
net gateway [Cor96] and split it 64-ways based on
client IP addresses. The resulting data simulate
the scenarios where the corporate employees are
spread among 64 branch offices, with each office
having its own gateway proxy.

• DEC-128: similar to the DEC-64 data set, we
take two days (Sep 16 and 17) worth of traces
and split it 128 ways, to simulate the scenario
where the number of branch offices is 128.

• UCB-512: to understand how the algorithms
perform over larger numbers of nodes, we use
the 18-day home IP traces gathered by Univ. of
California at Berkeley from Nov. 1, 1996 to Nov.
19, 1996. The traces capture 8399 clients’ activ-
ities, and we split the clients into 512 groups.
This simulates the scenario where a large corpo-
ration have many small branch offices, each with
only ten to twenty people.

The queries are either for top k most referenced
URLs, or for top k URLs whose responses have high-
est aggregate byte count (i.e. consume most band-
width). We choose two types of queries to vary the
value distributions in the input data. Values distri-
butions in the first type of queries tend to be Zipf-
like [BCF+99], while value distributions in the second
type of queries resemble stair-case functions.

Table 2 summarizes the trace characteristics and
lists the actual performance numbers for the naive
algorithm and TA.

5



Trace name m Gzip’ed Size Performance of TA (k=10) Performance of TA (k=100)
of Data Series unicast broadcast # of RTs unicast broadcast # of RTs

NLANR 10 26.6MB 56.3KB 25.9KB 4 318KB 132KB 4
WorldCup 30 426KB 31.0KB 22.2KB 4 96.3KB 80.0KB 4
DEC-64 64 7.38MB 1.69MB 160KB 12 4.61MB 359KB 4
DEC-128 128 14.9MB 7.19MB 419KB 14 24.6MB 1.18MB 6
NLANR-203 203 44.3MB 22.2MB 1.20MB 8 143MB 4.24MB 6
UCB-512 512 78.0MB 423MB 16.1MB 34 1.47GB 31.2MB 14

Table 2: Summary of data sets. The gzip’ed size of data series is also the byte count of the naive algorithm;
“# of RTs” stands for number of round trips. Note that in the cases of DEC-128, NLANR-203 and UCB-512,
TA consumes more bandwidth than the naive algorithm in terms of unicast bytes, since the central manager
sends a long list of object URLs to all nodes for lookup.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

Top 10 multicast

Threshold

TPUT

TPUT+Hash

Figure 2: Broadcast bytes of the algorithms for find-
ing the top 10 objects.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e 

(L
og

 s
ca

le
) 

0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e 

(L
og

 s
ca

le
) 

Top 100 unicast

Threshold

TPUT

TPUT+Hash

Figure 3: Uni-cast bytes of the algorithms for finding
the top 100 objects. Note that the y-axis is in log
scale.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

Top 100 multicast

Threshold

TPUT

TPUT+Hash

Figure 4: Broadcast bytes of the algorithms for find-
ing the top 100 objects.

3.2 Performance Results

Performance comparison of TA, TPUT, and TPUT
with hash compression are shown in Figures 1 to 4.
We present the results on k highest byte-count URLs
for DEC-64 and DEC-128 traces, and the results on
k most referenced URLs on other traces. Results of
other combinations are similar.

Figure 1 shows the uni-cast bytes of the algorithms
for selecting the top 10 objects (i.e. k = 10), while
Figure 2 shows the broadcast bytes. Figure 3 and Fig-
ure 4 are the corresponding results for selecting the
top 100 objects (i.e. k = 100). The results are nor-
malized against the algorithm with the highest cost.
The shaded region in each bar represents the number
of bytes sent by the nodes to the manager, while the
empty region represents the number of bytes sent by
the manager to the nodes.

As the number of nodes increases, the advantage
of TPUT over TA in the unicast case magnifies. The
main reason is that the number of objects looked up
in all nodes is much lower in TPUT than in TA. For
example, in the case of DEC-128 traces with k = 100,
TA looks up a total of 26680 URLs in the 128 nodes,
whereas TPUT only looks up a total of 250 URLs.
TPUT is clearly very effective at reducing the set S.

Though not shown here, we experimented with dif-
ferent α values. Larger α tends to increase the size of
candidate set S but reduces the number of items that
nodes send to the central manager, while smaller α
has the opposite effect. Optimal α varies by traces,
oscillating between 0.3 and 0.8. Overall, α = 0.5 ap-
pears to be a good default choice.

In the case of Worldcup-30 at k = 10, TA performs
slightly better than TPUT. The reason is that in the
WorldCup case, the web servers are very well load-
balanced, which means that object rankings among
all web servers are very similar, a perfect scenario for
TA.

6



The comparison of broadcast bytes is mostly de-
termined by how “far down the lists” TA and TPUT
stop at, since broadcast bytes are dominated by the
traffic from the nodes to the central manager. The
stopping value of TA is always strictly higher than
the stopping value of TPUT. However, depending
on whether the values at the same positions across
the lists are similar or very different, either TA or
TPUT might win in this case. The results show that
in many traces TPUT outperforms TA, but in a few
cases TA outperforms TPUT slightly. Considering
the fact that the number of round-trips of TA is un-
predictable, we would still recommend TPUT as the
top-k algorithm in the case where a broadcast mech-
anism is available.

The effect of hash array compression is not uniform
across the traces. On NLANR and UCB data sets it
reduces the bandwidth consumption by a factor of
2 to 4, but on the Worldcup traces it increases the
bandwidth consumption by about 25%. The main
reason is that TPUT already uses gzip compression,
and gzip can do a very good job at reducing the num-
ber of bytes needed to represent an object’s name,
making the hash array compression somewhat redun-
dant.

The results show clearly that TPUT should be
the default top-k algorithm for large-scale networks.
Hash array compression can be used when the object
names are too long.

4 Instance-Optimality of TPUT

As defined in [FLN01], instance optimality is a mea-
sure of how close an algorithm is to the optimal al-
gorithm in the worst case. Let A denote the class
of all deterministic algorithms, and let D denote the
class of data series that we are interested in. For
any algorithm a ∈ A, and any data series d ∈ D, we
use cost(a, d) to denote the cost of running a over d.
Then an algorithm R is instance optimal over A and
D if R ∈ A and there exist two constants C1 and C2

such that for every a ∈ A and d ∈ D:

cost(R, d) ≤ C1 ∗ cost(a, d) + C2

The constant C1 is called the optimality ratio of R.
Unfortunately, TPUT is not instance-optimal over

all possible data series. If a data series has N objects
with a fixed value that is just over T , TPUT will
send all N objects to the central manager, while a
more adaptive algorithm might avoid sending all N
objects. Since N can go to infinity, TPUT is not
instance optimal.

However, though TPUT is not instance optimal
over all data series, nor can any algorithm that ter-
minates in a fixed number of round trips regardless
of inputs. Hence, we need to incorporate some de-
scriptions of the data series in optimality ratio analy-
sis. Below, we first define a class of algorithms called
“fixed round-trip algorithms”, then introduce a con-
cept called “log-log slope function” to characterize
data series.

4.1 Fixed Round-Trip Algorithms

We study algorithms that calculate top-k queries in
the following fashion. The algorithm is a series of
round-trip communications between the central man-
ager and the nodes, at the conclusion of which the
central manager has the identities of the top-k ob-
jects and their values. At each step (i.e. a round-trip
communication), the central manager sends informa-
tion to each node, and each node uses a certain crite-
rion to select items on the list to sent to the central
manager. The selection criterion is one of the follow-
ing:

• by position: at node i, all items from positions 1
through hi (hi is specified by the manager) are
sent to the central manager;

• by name: if the name of an object falls in a set of
object names sent by the central manager, then
the object and its value are sent to the central
manager;

• by value: at node i, all objects with values higher
than ti (specified by the manager) are sent to the
central manager;

The cost of the algorithm is measured in bandwidth
consumption, which is modeled as “units of commu-
nication”, where each unit is either an 〈object, value〉
pair sent by a node to the manager, or an object name
in a list sent by the manager to the nodes.

We call these algorithms generic top-k algorithms
because they do not rely on any properties in the
names of objects or any properties in the value dis-
tributions of the list, and they do not require the
nodes to perform complicated operations when de-
ciding what to send to the central manager.

We say that a generic algorithm is a fixed round-
trip algorithm if it never incurs more than c number
of round trips where c is a constant independent of
k, the number of node m, and the data series. The
threshold algorithm is not a fixed round trip algo-
rithm, but the TPUT algorithm is.

Intuitively, if an algorithm is fixed round-trip, then
it must use the value criteria in at least one step,

7



otherwise it won’t be able to correctly find the top k
objects. This is because the “by name” step does not
let the central manager see any new object, and the
“by position” step does not show the manager objects
at lower positions that could be in the true top-k set.
The following theorem formalizes the argument.
Theorem 4.1. Any fixed round trip algorithm which
correctly finds the top-k object for all data series and
which does not require seeing all data in all nodes
must include a “by value” criterion in at least one of
its steps.

Proof. Please see appendix.

Unfortunately, use of the “by value” criteria means
that a fixed round-trip algorithm cannot be instance
optimal over all possible data series. It’s easy to see
why; a data series may have an arbitrarily large num-
ber of objects having a particular value V that satis-
fies the “by value” criterion. The following theorem
formalizes the argument.
Theorem 4.2. Let A be the class of all determin-
istic algorithms that correctly finds the top-k objects
in all data series. Let D be the class of all possible
data series. Then no fixed round-trip algorithm can
be instance optimal in A over D.

Proof. Details of the proof are in Appendix.

Hence, the general notion of instance optimality
ratio cannot be used to characterize fixed round-trip
algorithms. However, we can still analyze optimality
ratios of these algorithms by incorporating a charac-
terization of the data series themselves. The concept
that we introduce is called log-log slope function, de-
scribed in the next section.

4.2 Optimality Ratio of TPUT

We introduce the log-log slope function of a data se-
ries. In a sorted list, we call the value of the object
at the i’th position in the list “the value of the i’th
position”, denoted as w(i). Note that w(i) ≥ w(j) if
i ≤ j, since the list is reverse sorted.

We say that a data series has a log-log slope func-
tion C(n) if, for all i where i ≤ k, w(C(n) ∗ i) <
w(i)/n, and C(n) is the smallest value satisfying this
criteria (n is an integer here). In other words, in or-
der to achieve a factor of n reduction in the value,
one has to go down a factor of C(n) deeper down
the list. For example, data series that follow Zipf-like
distribution, that is, w(i) = O(1/iβ), has a log-log
slope function of C(n) = n1/β. Clearly, C(n) is a
non-decreasing function. The log-log slope function

bounds the occurrence of a long “plateau” in the val-
ues in the sorted list, and it only needs to apply to
the top k ranked object as far as the algorithm is
concerned.

TPUT is instance optimal over data series that sat-
isfy log-log slope function C(n). Put it differently,
the optimality ratio of TPUT can be characterized
by C(n) of the data series. Before we prove that, we
establish two properties of TPUT.
Lemma 4.3. Phase-1 bottom, τ1, is at least 1/m of
the true bottom τ .

Proof. After the central manager receives the top k
objects from every node, it calculates partial sums for
these objects. Let’s call the collection of these objects
S1. The central manager selects objects with the top
k partial sums, and sets τ1 to be the min of the top
k partial sums. Therefore, for an arbitrary subset of
k objects in S1, the min of their partial sums is ≤ τ1.
In other words, τ1 is no less than the bottom partial
sum of any subset of k objects in S1.

Now, let’s sort all the m ∗ k pairs of 〈object, value〉
received in Phase 1 by value. Then go down the
sorted list, and find the first value, t, that belongs
to the k’th object that has been seen in going down
the list. Clearly, the set of k objects that are seen
in going down the list has a bottom value that is at
least t. Hence, t ≤ τ1.

Now, for any object to have a value that is higher
than m ∗ t, it must have a value in a node that is
higher than t. Since the number of objects that have
values higher than t is at most k − 1, it follows that
one can’t find k objects whose values are higher than
m ∗ t, which is saying in another way that the true
bottom is at most m∗t. Since t ≤ τ1, the true bottom
is at most m ∗ τ1.

It’s easy to see that the above bound is tight by
constructing an example where all m ∗ k objects are
different.
Lemma 4.4. Phase-2 bottom, τ2, is at least τ ∗
m/(2m− 1), where τ is the true bottom.

Proof. In phase 2, the difference between the partial
sum of an object and its true sum is at most T ∗ (m−
1) = (τ1/m) ∗ (m − 1), since at whichever node that
has not reported the object, its value in that node is
at most T . Hence, the partial sums for the true top-k
set of objects are at least τ − τ1 ∗ ((m− 1)/m). Since
τ2 is at least the bottom partial sum of any set of k
objects, we have τ2 ≥ (τ − τ1 ∗ ((m − 1)/m).

Note also that τ2 ≥ τ1, since the partial sum of
any object in phase 2 is at least its partial sum in
phase 1. Hence, τ2 ≥ max(τ1, τ − τ1 ∗ (m − 1)/m) ≥
(τ ∗ m/(2m− 1)).

8



By similar argument we have the following corol-
lary.
Corollary 4.5. If a pruning parameter α < 1 is
used, i.e. T = (τ1/m) ∗ α, then τ2 > τ ∗ 1/(1 + α).

Lemma 4.4 shows that by the end of phase 2, the
central manager has a lower bound that is within a
factor of 2 of the true bottom. Thus, in the case
where the phase-1 bottom is too low and a lot of
objects are sent to the central manager, the phase-2
bottom is much closer to the true bottom and can
weed out many objects. Note that this property is
true because the threshold value used in all nodes is
the same, indicating the importance of using a uni-
form threshold.

Now, we are ready to prove the optimality ratio of
TPUT.
Theorem 4.6. Let D be the class of all data series
that have log-log slope function of C(n). Let A be
the class of all deterministic algorithms that correctly
finds the top k answers for every data series in D.
Then the basic TPUT algorithm (without pruning pa-
rameter α) is instance-optimal over A and D, with
optimality ratio: (m − 1) ∗ min(C(2m), C(m) ∗ k) +
min(C(m2), C(m) ∗ k).

Proof. Assume algorithm a ∈ A, and assume a set
of m data series d ∈ D. For each data series di ∈ d,
assume that a stops at position bi in di, that is, a sees
the top bi objects in di, but does not see the object
at position bi + 1. As a result the object at position
bi + 1 does not belong to the true top-k set. Then
at node i, the value of position bi, w(bi), satisfies
w(bi) ≤ τ , since otherwise the object at position bi+1
might have a value higher than τ and a cannot stop
at position bi.

Since the threshold T = τ1/m and τ1 ≥ τ/m as per
Lemma 4.3, T ≥ τ/m2. Therefore, T ≥ w(bi)/m2.
Based on the definition of the log-log slope function,
objects at positions later than C(m2)∗ bi have values
< w(bi)/m2. Hence, TPUT stops at no later than
C(m2) ∗ bi at data series di.

In addition, note that in node i, the value of the
k’th ranked object in that node is ≤ τ1. Since T =
τ1/m, TPUT will stop at no deeper than position
C(m) ∗ k in data series di.

Hence, the number of objects that TPUT sees in
phase 2 is at most min(C(m2) ∗ bi, C(m) ∗ k) which
is at most min(C(m2), C(m) ∗ k) ∗ bi since bi ≥ 1.

In phase 3, where the central manager asks for val-
ues of a set of objects, each object will have at most
m − 1 nodes sending the information to the central
manager. Only if an object has a value ≥ τ2/m in at

least one node can it belong to the set. Since at each
node di, the value at position bi (where algorithm a
stops) is at most the true bottom τ , and τ2 > τ/2
as per Lemma 4.4, we know that at most C(2m) ∗ bi

objects have values higher than τ2/m. Hence, the to-
tal number of objects sent by the central manager in
phase 2 is at most the total number of objects seen
by algorithm a times C(2m). This number is also at
most the number of objects seen by algorithm a times
C(m) ∗ k as per the analysis above. Therefore, the
amount of information received by the central man-
ager is at most (m−1)∗min(C(2m), C(m)∗k) times
the amount of information seen under algorithm a.

Combining the phase 2 and phase 3 analysis gives
us the optimality ratio.

Furthermore, the ratio is tight because one can con-
struct the following example that incurs the ratio. In
the example, k=1. Every node with the exception of
node 1 has a top object that has value 1 and does
not appear in any other node. Node 1’s top object
appears in other nodes at position 2 with value 1.
All other objects in the nodes do not appear in more
than one node. The optimal algorithm would just in-
cur 2m communication units to find the top object,
while the basic TPUT algorithm would fetch C(m)
objects from each node and look up m∗C(m) objects
in m − 1 nodes, leading to the optimality ratio.

How close is TPUT to an optimal fixed round-trip
algorithm? Below, we give a weak lower bound on the
optimality ratio of any fixed round-trip algorithm.

We define “unit data series” as the following class
of data series. Each node has a list of objects of
value 1, and the objects, except for the very last one,
do not appear in any other node. The last object
in all nodes’ list is the same and has value 1 in all
nodes. We say that a fixed round trip algorithm has
depth p for unit data series, if, before the “by value”
step, the shallowest position it has gone down in any
list is position p. The depth of any fixed round trip
algorithm on the unit data series is finite because the
algorithm can only run a fixed number of steps using
the “by position” criterion.
Theorem 4.7. Let A be the class of all deterministic
algorithms. Let D be the class of all data series that
have a log-log slope function of C. Then for any fixed
round trip algorithm B, its optimality ratio cannot be
lower than C(m) ∗ m/(p + 1 + 2m), where p is the
depth of B on the unit data series.

Proof. For any algorithm B, an adversary can con-
struct a data series that is a variation of the unit data
series. B’s cost on this data series is C(m) ∗ m, and

9



there exist an algorithm that would only incur cost
p + 1 + 2m. Details of the construction can be found
in the appendix.

If an algorithm uses only three round trips, its first
step must be a “by position” step and its depth on
the unit data series p is the minimum of the hi’s that
it uses on the nodes. Since the algorithm gathers all
hi objects from node i even if the top object is the
same on all nodes and is the top-1 object, the algo-
rithm has an optimality ratio of at least p. Hence,
all three round trip algorithms have optimality ra-
tios that are ≥ max(p, C(m) ∗ m/(p + 1 + 2m)) ≥
√

C(m) ∗ m + (m + 1/2)2 − (m + 1/2).
Corollary 4.8. Any three round trip al-
gorithm has an optimality ratio of at least
√

C(m) ∗ m + (m + 1/2)2 − (m + 1/2) on data
series that satisfy the log-log slope function C.

Though the above lower bound is quite weak, it
does show that the dependence on C(m) is inherent
to all fixed round-trip algorithms.

4.3 Effects of the Parameter α

The pruning parameter α < 1 has a surprising impact
on the size of the candidate set S. Without it, if
τ1 == τ2, then no objects can be pruned away. More
fundamentally, for any object in S, α introduces a
coupling between its value and the number of nodes
that reports it in phase 2. Intuitively, if an object
appears in a few nodes and still “makes the cut”, then
its value must be high in those nodes; if an object has
low values but “makes the cut”, then it must appear
in many nodes. Below, we formalize the argument,
and show the power of any α < 1 in the case of Zipf
distribution.

To analyze the size of S under a particular α, we
construct the following 2-D matrix. Each row in the
matrix is the name of an object in S. Each column
is a node. We set T ′ = (τ2/m) ∗ α (in the case of
τ2 = τ1, T ′ = T ). The entry 〈o, i〉 is 1 if object o
appears in the list sent by node i and vi(o) ≥ T ′,
and 0 otherwise. Note that each row has at least one
entry that is 1.

Clearly, the sum of all entries in column i is less
than or equal to the number of objects in node i with
values ≥ T ′. Since T ′ ≥ τ ∗ α/(m ∗ (1 + α)), by
analysis in the previous section, the sum of all entries
in column i is ≤ C(m ∗ (1 + α)/α) ∗ bi. Thus, if we
sum all the entries in this matrix by column, then the
sum is ≤ C(m ∗ (1 + α)/α) ∗ Σ(bi).

Let xl denote the number of objects in the matrix
that appears in exactly l columns. Then if we sum
all the entries by rows, the sum Σ(xl ∗ l) equals to the

sum of all entries by columns and hence Σ(xl ∗ l) ≤
C(m ∗ (1 + α)/α) ∗ Σ(bi).

Now, if an object p appears in less than l columns
and “makes the cut” (i.e. the upper bound of its true
sum is over τ2), its average value in those nodes, R,
must satisfy (R ∗ l)+ T ∗ (m− l) ≥ τ2 (note also that
R ≥ T ). Since T ≤ (τ2/m) ∗ α, (R ∗ l) ≥ τ2 ∗ (1 −
((m− l)/m ∗α)) ≥ τ2 ∗ (1−α). Since τ2 ≥ τ/(1+α),
R ≥ τ ∗ (1−α)/(1 + α) ∗ 1/l. Let node i be the node
where p’s value is higher than its average R, then it’s
clear that p must appear in node i’s sorted list at a
position no deeper than bi ∗ C(l ∗ (1 + α)/(1 − α)).
Let β = (1+α)/(1−α). If we count each such object
exactly once by choosing a node where the object’s
value is higher than or equal to its average value, then
we have x1 + x2 + . . . + xl ≤ C(l ∗ β) ∗ Σ(bi).

The number of objects in S is simply Σ(xl) where
l = 1, . . . , m. We have two constraints:

1. Σ(xl ∗ l) ≤ C(m ∗ (1 + α)/α) ∗ Σ(bi);

2. x1 + x2 + . . . + xl ≤ C(l ∗ β) ∗ Σ(bi) for each l;

where β = (1 + α)/(1 − α).
The maximum value of Σ(xl) occurs when these

exists a value l0 such that for each l ≤ l0, xl is the
maximum allowed under constraint 2, and for each
l > l0, xl = 0. In other words, x1 = C(β) ∗ Σ(bi),
x2 = (C(2∗β))−C(β))∗Σ(bi), x3 = (C(3∗β)−C(2∗
β)) ∗ Σ(bi), and in general xi = (C(i ∗ β) − C((i −
1) ∗ β)) ∗Σ(bi). The value l0 is simply the maximum
value such that l0 ∗C(l0∗β)−C((l0−1)∗β)−C((l0−
2)∗β)− . . .−C(β) ≤ C((1+α)∗m∗1/α). The size of
S (i.e. the total number of “random lookup” objects)
is C(l0 ∗ β) ∗ Σ(bi). l0 is determined by the log-log
slope function. Hence, we can refine the optimality
ratio below.
Theorem 4.9. If the TPUT algorithm uses the pa-
rameter α (0 < α ≤ 1) to improve the pruning power,
then the optimality ratio is at most (m − 1) ∗ C(l0 ∗
(1+α)/(1−α))+min(C(m2 ∗ 1/α), C(m ∗ 1/α) ∗ k),
where l0 is defined above.

The relationship between l0 and m depends on the
log-log slope function C. In the case of Zipf distribu-
tion, where C(l) = l, we have l20 + l0 ≤ m∗ (1−α)/α.
In other words, l0 is approximately

√

m ∗ (1 − α)/α.
Corollary 4.10. TPUT with pruning parameter α <
1 has an optimality ratio that is O(m∗√m)1 for Zipf
distribution, regardless of the value of α.

The analysis above shows the impact of α on the
size of S. The parameter α also has another effect,
that is, it reduces the threshold and increases the

1We suspect that this ratio is tight within a constant factor

for Zipf distribution, but we are yet to construct a detailed

example that exhibits this ratio.

10



number of objects that each node sends to the central
manager. This is reflected in the second additive term
in the optimality ratio in Theorem 4.9. Hence, the
optimal α that minimizes network traffic depends on
both the log-log slope function and the number of
nodes m. In our experience, we found that α = 0.5
appears to work well across a range of systems and
we use it as the default value.

5 Extending TPUT to Hierar-

chical and P2P Networks

TPUT can be easily extended to hierarchical and
peer-to-peer networks. The algorithm would still op-
erate in three phases, which are lower-bound estima-
tion, pruning, and final lookup, but the operations
in each phase vary according to the network topol-
ogy. Below, we discuss how TPUT might operate
in a two-level hierarchical network and the associate
design choices.

Assume that the network is a two-level tree hier-
archy, with the central manager talking to m inter-
mediate nodes, and each intermediate node i talking
to ni leaf nodes. For simplicity we assume that only
the leaf nodes have data. The top-k query is then
aggregating values over all leaf nodes.

For phase 1, there are numerous ways to obtain
a lower bound. One approach is for all leaf nodes
to send their top-k elements to the central manager.
The lower bound obtained this way could be a factor
of 1/Σni less than the true bottom. Another ap-
proach is for each of the intermediate node to initiate
its own top-k query over its children and then send
the results to the central manager. The lower bound
obtained this way would be no less than 1/m of the
true bottom, but more communications are initiated.
Yet a third approach would be for the central man-
ager to take whatever data it got and make a guess
on the lower bound. If it guesses too high it will find
out at end of Phase 3, and it can adjust the estimate
and re-run the algorithm.

For phase 2, the “by value” query from the central
manager is easily decomposable. The central man-
ager sets the threshold T = (τ1/m)∗α, and sends the
threshold to intermediate nodes. Each intermediate
node i then sets a next-level threshold T ′ = (T/ni)∗α′

and issues a new “by value” query to all its children.
After receiving all replies, the intermediate node can
either go through a round of phase 3 lookup of its
own to determine exactly the answers to send to the
central manager, or simply estimate the set through
upper bound calculations and send the estimated su-

perset to the central manager.
For phase 3, the “by name” query from the central

manager is propagated from the intermediate nodes
to the leaf nodes, except that some of the lookups
can be eliminated at the intermediate node. For each
object that is looked up, the central manager attaches
its current partial sum, upper bound on sums from all
other nodes, and τ2. If the intermediate node has the
value of the object or has an upper bound estimate
on the object such that the object’s value cannot be
higher than τ2, then the object can be eliminated
from the lookup.

TPUT running over multi-level hierarchies is a re-
cursive extension of the two-level hierarchy operation.
Due to space limitation we omit the details here.

To calculate top-k query over peer-to-peer net-
works, one can first establish a min-depth broadcast
tree over the network, then run the algorithm over the
broadcast tree. There are many ways to establish the
min-depth broadcast tree, including flooding in un-
structured peer-to-peer networks or utilizing the in-
herent network structures in structured peer-to-peer
networks. Detailed investigations of TPUT on P2P
networks are part of our future work.

6 Related Work

The database research community have long stud-
ied the issue of efficient processing of top-k queries
[NR99, Fag99, UBK00, BGM02, FLN01, BO03], since
they are prevalent in handling heterogeneous data
such as multimedia data. In particular, the threshold
algorithm was discovered independently by (at least)
three groups [NR99, UBK00, FLN01]. One big dif-
ference between our study and these studies is how
big m is. In the database systems, m is the number
of databases that the query is accessing, and often m
is small. In contrast, we are interested in large scale
networks and m is large.

Our work benefited greatly from the seminal paper
on this subject by Fagin, Lotem and Noar [FLN01].
In particular, the concept of instance optimality is
from that study. The pruning technique used in
TPUT is similar to the upper-bound/lower-bound
technique used in the Quick-Combine algorithm
in [UBK00] and the “Combined Algorithm” (CA)
in [Fag99]. However, those algorithms do not apply
in our environment as they require too many round
trip communications. Furthermore, the use of Uni-
form Threshold and the pruning parameter α < 1
are new in our algorithm.

The use of threshold in TPUT is somewhat simi-
lar to the use of range queries in the top-k selection

11



algorithm in [CG99], particularly the “no-restarts”
strategy in setting search score. However, [CG99]
does not consider the cost of “looking up” objects
in databases, hence has a different cost model from
ours. The algorithm in [CG99] uses histograms heav-
ily. We believe that per-node histograms would be of
very limited use in our environments, since the his-
togram distribution of values in one node says noth-
ing about an object’s values in other nodes. We do
note that efficient calculation of aggregate histogram
distribution would be an interesting research question
for distributed networks.

The distributed top-k monitoring study by Bob-
cock and Olston [BO03] looks at a network environ-
ment that is similar to ours. However, their study is
focused on monitoring whether the set of top k ob-
jects have changed after an initial answer has been
obtained, and they simply use the threshold algo-
rithm to obtain the initial answer. We are interested
in algorithms that can obtain the initial answer effi-
ciently. The reason is that in our target environments
the query is asked hourly or daily. The intervals be-
tween the queries are typically long enough that the
top-k objects have changed completely, and it’s more
efficient to serve the queries on demand.

Our use of hash array compression is similar to
techniques using hash array counters in the “ice-
berg” study [FSGM+98], the router traffic measure-
ment study [EV01] and the spectral bloom filter
study [CM03]. However, those studies are interested
in finding out the set of “iceberg” objects, i.e. ob-
jects whose values account for 90% of total value, in
a non-distributed environment. In contrast, in our
study the top-k objects might not be “icebergs” and
our algorithm runs in a distributed environment. As
a result, while hash array counters are essential in
those algorithm, they only provide a constant factor
speedup in our algorithm.

7 Conclusions and Future

Work

In this paper we study efficient top-k algorithms for
distributed networks and present the three-phase uni-
form threshold (TPUT) algorithm. TPUT takes only
three round trips over a star network, and signifi-
cantly out-performs existing algorithms such as the
Threshold Algorithm. It is instance-optimal over
common data distributions. Trace-driven studies
show that on large networks, the traffic of TPUT can
be two orders of magnitude less than those of existing
algorithms.

Our future work lies in three areas. First, we plan
to investigate the various design choices in top-k algo-
rithms for multi-level hierarchical networks and peer-
to-peer networks. Second, we plan to provide a li-
brary of top-k calculations for distributed comput-
ing infrastructures such as the PlanetLab. Lastly, we
plan to incorporate top-k query calculation mecha-
nisms in predictive replication systems in a content
distribution network.

References

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Gra-
ham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: Ev-
idence and implications. In INFOCOM
(1), pages 126–134, 1999.

[BGM02] Nicolas Bruno, Luis Gravano, and
Amelie Marian. Evaluating top-k
queries over web-accessible databases.
In ICDE, 2002.

[BO03] Brian Bobcock and Chris Olston. Dis-
tributed top-k monitoring. In SIGMOD,
2003.

[CG99] Surajit Chaudhuri and Luis Gravano.
Evaluating top-k selection queries. In
VLDB’99, pages 397–410, 1999.

[CM03] Saar Cohen and Yossi Matias. Spectral
bloom filters. In SIGMOD/PODS, 2003.

[Cor96] Digital Equipment Corpora-
tion. Anonymized web proxy
traces. Technical report,
http://ftp.digital.com/pub/Digital/traces/proxy/webtraces
1996.

[EV01] C. Estan and G. Varghese. New di-
rections in traffic measurement and ac-
counting, 2001.

[Fag99] R. Fagin. Combining fuzzy information
from multiple systems. In J. Comput.
System Sci., pages 58:83–99, 1999.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni
Naor. Optimal aggregation algorithms
for middleware. In Symposium on Prin-
ciples of Database Systems, 2001.

[FSGM+98] Min Fang, Narayanan Shivakumar, Hec-
tor Garcia-Molina, Rajeev Motwani,
and Jeffrey D. Ullman. Computing

12



iceberg queries efficiently. In Proc.
24th Int. Conf. Very Large Data Bases,
VLDB, pages 299–310, 24–27 1998.

[IRC03] IRCache. Traces from the ir-
cache system. Technical Report
http://www.ircache.net, National Lab-
oratory for Applied Network Research,
2003.

[NR99] S. Nepal and M. V. Ramakrishna. Query
processing issues in image (multimedia)
databases. In ICDE, pages 22–29, 1999.

[UBK00] U.Guntzer, W-T. Balke, and
W. Kiessling. Optimizing multi-
feature queries in image databases.
In Proc. 26th Very Large Databases
(VLDB) Conference, pages 419–428,
2000.

A Detailed Proofs

We give detailed proofs for several theorems in Sec-
tion 4.1 here.
Theorem A.1. Any fixed round trip algorithm which
correctly finds the top-k object for all data series and
which does not require seeing all data in all nodes
must include a “by value” criterion in at least one of
its steps.

Proof. For any algorithm that does not use the “by
value” criterion and yet finishes within a constant
number of round trips, an adversary can construct a
data series for which the algorithm cannot identify
the correct top-k objects.

The adversary operates as the following. As the
algorithm progresses, at each “by position” step, the
adversary creates objects whose values are 1 and
whose names do not appear in any other node, and at
each “by name” step, the adversary sets the object’s
value to be 0 unless the object is already appearing
in the node. When the algorithm ends, assume that
for each node i, it has seen objects up to position hi,
the adversary now constructs k objects that appear
at positions hi +1, . . . , hi + k at each node i, all with
value 1, and these k objects are the top-k objects, but
the central manager hasn’t seen them. Hence the al-
gorithm does not identify the correct answers.

Theorem A.2. Let A be the class of all deterministic
algorithms that correctly finds the top-k objects in all
data series. Let D be the class of all possible data
series. Then no fixed round trip algorithm can be
instance optimal in A over D.

Proof. Without lose of generality suppose k = 1.
Let B be a fixed round trip algorithm. An adver-

sary constructs the following data series based on the
action that B takes at each step. If the step is “by
position”, then the adversary returns a collection of
objects that do not appear in any other node and
that have values of 1. If the step is “by name”, then
the adversary set the values to be 0.

Now, if it’s “by value”, let’s say by values that are
≥ C, then pick a C′ such that 1 > C′ > C. Now,
after the bottom positions in all data series, put an
object o with value 1 at each node. Then put N
objects of value C′ in each data series. It’s clear that
an algorithm that takes the existing step and then
does one more look into the data series will find the
object o and terminate, but the algorithm B will fetch
all N ∗ m data pairs. Since N can go to infinite, B
cannot be instance optimal.

Theorem A.3. Let A be the class of all deterministic
algorithms. Let D be the class of all data series that
have a log-log slope function of C. Then for any fixed
round trip algorithm B, its optimality ratio cannot be
lower than C(m) ∗ m/(p + 1 + 2m), where p is the
depth of B on the unit data series.

Proof. Without loss of generality we assume k = 1.
The proof can be extended to k > 1.

For any algorithm B, an adversary constructs the
following variation on the unit data series. The data
series is a unit data series until the depth C(m), at
which point the values at the bottom position in each
list is 1/m. After that position the list is again an in-
finite list of non-overlapping objects with value 1/m2.

The adversary now changes the data series accord-
ing to how B operates. After B has gone through its
“by position” and “by name” steps and comes to its
first “by value” step, it must have stopped at position
p in one of the nodes, say node j. The adversaries
then change the objects at all C(m) positions in all
other nodes to be the same object as the object at po-
sition p + 1 in node j. Thus, B has not identified the
top-1 object and must continue onto the “by-value”
step.

However, an algorithm that goes down to position
p+1 in node j and position 1 in all other nodes, then
does a lookup of the object at position p + 1 in all
other nodes, will immediately identify the top object.
In other words, there exists an algorithm that sends
m+p+m 〈object, value〉 pairs to the central manager.

Now, B’s “by value” step will have a value bi <= 1
for each node i, at which point it will pick up all
C(m) ∗ m 〈object, value〉 pairs. Hence, B incurs at

13



least C(m) ∗ m units of communication. Since there
exists an algorithm that incurs p + 1 + 2m units of
communication on the data set, the optimality ratio
is at least C(m) ∗ m/(p + 1 + 2m).

14


