CS255: Cryptography and Computer Security Winter 2002

A Brief Guide to OpenSSL: Part 2

4 The OpenSSL Command Line Program

In addition to programming libraries, OpenSSL provides a command-line program for using various
functions of the OpenSSL crypto library from the shell. This program, invoked as openssl can be
used to manipulate most of the constructs and use most of the functionality of the crypto library,
but we will only discuss a few of those functions here. For a complete list of possible commands,
see the openssl man page.

4.1 General openssl Usage

Each function is invoked as an argument to the openssl command-line tool. For example, the
command to manipulate RSA keys would be openssl rsa. Each command has different options,
but most use the same syntax for dealing with input and output files. In general, you can specify
the input to a command with the -in option, and the output with -out. If you do not specify,
the program will try to read from standard input and write to standard output. If the input file is
encrypted, the program will automatically prompt for the password.

In many cases, you will not be interested in generating new output, but simply in looking at an
existing file. In this case, you can use -noout to suppress the output. Another useful option
supported by most of the commands is —text, which displays the input file’s contents in human-
readable form, instead of the encoded binary format normally used. For example, to examine the
parameters of an RSA public key in the file key.pem, you might use the following command:

openssl rsa -in key.pem -noout -text

4.2 RSA Data Management: rsa

The rsa command processes RSA keys. It can translate between various forms, but its main use
is to view the keys in human-readable form, or to add or remove encryption of the keys.

The filename specified in the -out argument will, by default, not be encrypted, so you can use
this command to remove the password from an RSA private key file if necessary. You can also add
-des, —des3 or -idea to prompt for a pass phrase and encrypt the output using DES, triple-DES
or IDEA, respectively.

You can also use the —check option to verify an RSA private key; it will make sure that all the
elements are consistent.



Normally, the rsa command works with RSA private keys. If you wish to input or output an
RSA public key, give the -pubin or -putout option, appropriately. For example, to input an RSA
private key from priv.key and place the public key in pub.key, you could use this command:

openssl rsa -in priv.key —pubout -out pub.key

4.3 X.509 Certificate Signing Request Management: req

X.509 is the standard format for storing certificates and certificate requests used by SSL. The req
program can generate and inspect X.509 certificate requests.

Its main function, other than viewing existing certificate requests, is to generate new ones. For
example, if you were setting up a new SSL server, you would generate a certificate request and send
it to the Certificate Authority (CA) to be signed.

To generate a new certificate request, you can use a command line the following;:
openssl req —new -out certreq.pem -keyout certkey.pem

This will prompt for all the necessary information to store in the certificate request, and store
the new certificate request in certreq.pem. The corresponding private key will be stored in
certkey.pem, encrypted using a pass phrase that the program will prompt for. The certificate
request can now be sent to the CA to be signed.

4.4 X.509 Certificate Data Management: x509

The x509 command is used to manage X.509 certificates. With this command, you can view
certificates and display their various information. In addition to the -text option, you can supply
other options to view individual pieces of information about the certificate, e.g., -serial to output
the serial number. See the £509 man page for a complete list.

The main other use for the x509 command is as a CA. It can be used to sign certificates and
requests. It will treat the input as an X.509 certificate request instead of a certificate when given
the -req option, and can output a signed certificate which can then be used for any application
that requires a certificate.

4.4.1 Self-Signing Certificates

Self-signing is signing a certificate with itself. This is generally done only for the root CA (who
has no one else to sign its certificate), or for test certificates. To do this, use the -signkey option
to supply a private key. For example, to self-sign the certificate request generated in the previous
section:

openssl x509 -in certreq.pem -req -out cert.pem -signkey certkey.pem -days 30

This will self-sign the certificate, with an expiration date 30 days in the future (the -days option
specifies the expiration). The new self-signed certificate will be available in cert.pem



4.4.2 Signing Using a CA

If you want to use the x609 command as a mini-CA, you need to give it the CA certificate and key
to use to sign the certificate. For example, if the CA certificate is stored in cacert.pem and the
CA key in cakey.pem, we could sign our certificate request using the CA key as follows:

openssl x509 —-in certreq.pem -req —out cert.pem -CA cacert.pem
-CAkey cakey.pem —-CAserial cacert.srl -CAcreateserial -days 365

This example introduces several new options: The -CA and -CAkey options specify the CA certificate
and public key files, respectively. The other options deal with serial numbers; every certificate issued
by a CA needs to have a serial number, and OpenSSL uses serial number files to keep track of the
current serial number for a given CA certificate. The -CAserial option identifies the file used to
store the next serial number in sequence, and the -CAcreateserial option tells OpenSSL to create
the file (with serial number 1) if it does not already exist.

Note that we did not require the private key corresponding to the request to sign it. The only
private key we needed was the one for the CA.

Although all our examples have shown signing a certificate request, we could also have signed
standard X.509 certificates as well by leaving out the -req option. Since certificates already have
a signature, signing them replaces the existing signature with the new one.

4.5 X.509 Certificate Verification: verify

Once an X.509 certificate has been signed, we can verify that the signature is valid. This is useful
when testing a CA, or to see if a certificate received from another party has been signed by a known
entity. The verify command can be used as follows:

openssl verify -CAfile cacert.pem cert.pem

This will try to verify that the certificate contained in cert.pem was signed by the certificate given
in cacert.pem. The result will be printed to standard output.

For more information about certificate verification, see the verify man page.

5 Public Key Cryptography

5.1 General Functionality

The OpenSSL cryptography library provides a number of functions that, while not directly related
to public key cryptography, are nonetheless extremely useful when dealing with them. A few of
these functions are discussed here.



5.1.1 PEM Functions

PEM is a format for encoding cryptographic objects. Short for Privacy Enhanced Mail, it was
originally designed for PGP, but it has become a standard format for storing binary cryptographic
data on disk. It is the standard format used for public and private keys, certificates, etc. .. Files
ending with a .pem extension are in PEM format.

OpenSSL provides functions for converting the most common objects from PEM to the OpenSSL
internal structures, and back again. For example, to read an RSA private key:

FILE *fp = fopen("privatekey.pem", "r");
RSA *rsa;

rsa = PEM_read_RSAPrivateKey(fp, NULL, NULL, NULL);

This will read and decode a PEM-formatted RSA private key from any open FILE pointer that
supports reading. If the file cannot be read or is in the wrong format, the function will return
NULL. The error code will be available using the standard OpenSSL error mechanism.

Note that in addition to the file pointer, we passed three NULL pointers. The second argument
allows you to specify storage space for the returned object. In our case, we want OpenSSL to
allocate its own storage, so we pass in NULL. The third and fourth arguments allow you to specify
a callback in case the PEM routines need a password to open an encrypted file. A NULL value for
these arguments specifies the default callback, which prompts for the password on the command
line. In general, this is the correct behavior for a command-line program, and you will not need
to change it. If you want to alter the prompt text, you can do this with the EVP_set_pw_prompt()
function, which takes a single C string argument.

The PEM library can also be used for writing an object to disk. For example, to write an X.509

certificate:

X509 *certificate = ... ; /* an allocated X509 structure */
FILE *fp = ... ; /* an open FILE pointer that supports writing */
int success;

success = PEM_write_X509(fp, certificate);

This function returns 1 if the object was successfully written, 0 if there was an error.

There are equivalent PEM read and write functions for most of the objects that can be read
or written from disk. They all work the same, and vary only in name and the type returned or
accepted. In addition to the above examples, PEM includes operations on X609_REQ, RSAPublicKey
and DSAPublicKey objects. For a complete list, see the pem.h header file.

5.1.2 ASN.1 Functions

ASN.1 (Abstract Syntax Notation 1) is a description format that OpenSSL uses to represent some
of the objects it represents. Many of the functions and structures are just wrappers around ASN.1

4



manipulations, and sometimes it is necessary to operate on the ASN.1 objects directly. The format
is fairly complex, but normally it is not necessary to deal with it directly, so only a few of the basic
data types are covered here.

ASN.1 Strings Strings are represented by pointers to an ASN1_STRING structure, which generally
will be returned by some other function. An ASN.1 string can contain arbitrary data, not just text.
To retrieve the data in an ASN1_STRING object, you can use the following functions:

ASN1_STRING *string = ... ;

/* Returns the length of the string */
int length = ASN1_STRING_length(string);

/* Returns a pointer to the string’s data */
unsigned char *data = ASN1_STRING_data(string);

You can also set new data to be contained in the string:

ASN1_STRING *string = ... ;

void *data = ... ;

int data_length = ... ; /* (in bytes) */
int success;

success = ASN1_STRING_set(string, data, data_length);

ASN.1 Integers Another common ASN.1 data type that needs to be manipulated directly is the
ASN1_TINTEGER data structure, which represents an integer. The ASN1_INTEGER structure is actually
the same as ASN1_STRING, and you can use the string operations on an integer, but there are more
convenient functions for doing integer manipulation directly.

This integer can be of arbitrary size, but covered here are only those functions for dealing with
integers in the scale of a C long integer. For larger numbers, the OpenSSL BN (big number)
functions must be used, which are not covered in this guide. See the bn man page for more details.

To retrieve the value from an ASN1_INTEGER, we can use the ASNI_INTEGER_get() function, as
follows:

ASN1_INTEGER *integer = ... ;
long value;

value = ASN1_INTEGER_get(integer);
Likewise, we can use the ASNI_INTEGER_set() function to change the value:

ASN1_INTEGER *integer = ... ;
long newvalue = ... ;



int success;

success = ASN1_INTEGER_set(integer, newvalue);

ASN.1 Times The third type of ASN.1 object you may encounter is the ASN1_TIME type, used
to represent a date and time. This type is also actually just ASN1_STRING, but OpenSSL provides
special functions to set (but not retrieve) the time in this structure. For example, create an
ASN1_TIME object and set it to the current time:

ASN1_TIME *time;
time_t now;

time = ASN1_TIME_set (NULL, now);

5.2 Public Key Ciphers

In addition to the symmetric ciphers covered earlier, the OpenSSL crypto library provides com-
prehensive support for public key encryption using RSA and public key signatures using RSA or
DSA.

5.2.1 Keys

OpenSSL uses two types of key structures for public key ciphers. First, it uses specific structures
to store keys for a specific algorithm, such as RSA or DSA. Second, it can use the more general
EVP_PKEY structure to store keys for any algorithm. We will use the algorithm-specific structures
when generating new keys or loading them from disk (see the PEM routines above), and the EVP
structure when doing actual public key operations.

In both cases, OpenSSL does not use separate structures for private keys and public keys, but uses
a single structure to store all the known information about a key pair. If all that is available is the
public key, then the private key elements of that structure will be left blank, and functions that
rely on the private key will fail.

RSA Keys An RSA public or private key is stored in the RSA structure. There is an example
above of loading an RSA private key from disk. We can also create a new, empty, RSA key using
the RSA_new() function. More useful is generating a new random RSA key. For example, we could
use the following code to generate a new 1024-bit RSA private key:

RSA *private_key;
private_key = RSA_generate_key(1024, 65535, NULL, NULL);

The first argument (1024), specifies the number of bits in the modulus, and the second argument the
public exponent. 65535 is a generally accepted good value here. The third and fourth parameters,
if non-NULL provide a callback function that will be used to display feedback about the progress
of key generation, which can be slow. For more information, see the RSA_generate_key man page.



DSA Keys A DSA public or private key is stored in the DSA structure. Like RSA keys, a DSA
key can be read from disk, or generated randomly. Here is some code to generate a DSA private
key:

DSA *private
int success

key;
0;

private_key = DSA_generate_parameters(1024, NULL, O, NULL, NULL, NULL, NULL);
success = (private_key != NULL);

if (success) {
success = DSA_generate_key(private_key)

}

As is evident, DSA key generation is a bit more complex than RSA key generation. Here, we
generated a random key with 1024-bit primes. The other arguments to DSA_generate_parameters(),
if non-NULL, can be used to get more information about the generated parameters, specify a seed
for the randomly-generated primes, or specify a callback to provide feedback. For more information,
see the DSA_generate_parameters man page.

EVP Keys The EVP library has its own structure, EVP_PKEY for storing keys for public key
algorithms. These structures are generated using EVP_new(), but their values are usually set from
an algorithm-specific key. For example, to create a new EVP key from an RSA key:

RSA *rsa_key = ... ;
EVP_PKEY *pkey;
int success = 0;

pkey = EVP_PKEY_new();
if (pkey != NULL) {

success = EVP_PKEY_assign_RSA(pkey, rsa_key);
}

There is a similar function, EVP_PKEY _assign_DSA(), that can be used for DSA keys.

There are a number of functions that can be used to get general information from the EVP_PKEY
structure. For example, EVP_PKEY bits() will return the size of the private key, in bits. The
EVP_PKEY size() returns the number of bytes that a public key operation will output (e.g., for
RSA this is equal to the size of the modulus).

Once the EVP key has been used for the last time, the structure can be deallocated using the
EVP_PKEY free() function. This will also deallocate the algorithm-specific key stored within.

5.2.2 Encrypting (Sealing)

Public key encryption is done using the EVP library, very similar to how it was done for symmetric
key encryption. EVP uses the same data type as before, EVP_CIPHER CTX, to keep track of the



current encryption state between calls.

Initialization Since public key encryption is slow, the EVP libraries actually do encryption using
a symmetric cipher, and use the public key algorithm only to encrypt the symmetric cipher key.
So the initialization function EVP_Seallnit() takes a symmetric cipher type as well as the public
key structure (which contains information on the public key algorithm). In fact, EVP supports
encrypting a message with more than one public key, so that the holder of any of the corresponding
private keys can read the message.

Here is an example of how to initialize the EVP_CIPHER _CTX for encrypting a single public key:

EVP_PKEY *public_key = ... ; /* RSA public key */
char encrypted_key[128];

int encrypted_key_len;

char iv[8] = ... ; /* random IV */
EVP_CIPHER_CTX ctx;

int success;

success = EVP_Seallnit(&ctx, EVP_des_cbc(), &encrypted_key,
&encrypted_key_length, iv, &public_key, 1);

Since EVP will be using symmetric encryption for the message, we need to provide a cipher type
(here, DES in CBC mode) and IV, although no secret key. Unlike EVP_EncryptInit(), public key
initialization requires a buffer. This buffer stores the encrypted symmetric key. It must have room
for a value encrypted with the given key; this size can be obtained using EVP_PKEY size(). The
actual number of bytes used is stored in the encrypted key_length variable.

Once the cipher has been initialized, the actual encryption of the data works exactly as it does
in the symmetric case, except for the use of EVP_SealUpdate() and EVP_SealFinal() instead of
EVP_EncryptUpdate() and EVP_EncryptFinal(). The functions have the exact same properties
and calling conventions.

5.2.3 Decryption (Opening)

Decryption works similarly to encryption, except that only one (private) key is required to decrypt.
We might initialize an EVP_CIPHER CTX structure for decrypting the message encoded above as
follows:

EVP_PKEY xprivate_key = ... ; /* RSA private key */
char *encrypted_key = ... ; /* from encryption */
int encrypted_key_length;

char iv[8] = ... ;

EVP_CIPHER_CTX ctx;
int success;

success = EVP_OpenInit(&ctx, EVP_des_cbc(), encrypted_key,
encrypted_key_length, iv, private_key) ;



Once the context has been initialized and the encrypted key decrypted, the message can be de-
crypted using EVP_OpenUpdate() and EVP_OpenFinal(). These functions behave exactly like
EVP_DecryptUpdate() and EVP_DecryptFinal().

5.2.4 Signing

EVP also provides routines for using RSA or DSA private keys to sign a message. These routines
are very similar to the EVP routines for generating digest functions, since what is actually signed
is a hash of the message, not the message itself. We will use the EVP_MD_CTX context, as we did for
the hash functions.

Here is a complete example for hashing a message:

char *message = ... ;
int message_length = ... ;
EVP_PKEY *private_key = ... ; /% RSA private key */

char signature[128];
int signature_length;
EVP_MD_CTX ctx;

int success;

EVP_SignInit(&ctx, EVP_shal());
EVP_SignUpdate (&ctx, message, message_length);
success = EVP_SignFinal(&ctx, signature, &signature_length, private_key);

It is evident that initialization and updating work exactly as they do for digests. The arguments
to EVP_SignFinal() include the private key to be used for signing, as well as a buffer to output
the signature. This buffer must be large enough to store a signature generated by the private key;
this value is obtained by calling EVP_PKEY _size(). The actual length of the returned signature is
stored in signature_length.

Note that the message digest algorithm provided to EVP_SignInit() is associated directly with a
signature algorithm. For example, if we are using RSA keys, we can use EVP_shal() as our digest
algorithm, but if we are using DSA keys, we must use EVP_dss1() instead (this is actually the same
algorithm, but a different implementation). See the EVP_DigestInit man page for a complete list
of hash functions and associated signature algorithms.

5.2.5 Verification

Verifying a signature using EVP is almost identical to generating one; it computes the hash of
a message and then verify the signature. Instead of generating a signature, it takes one as an
argument, and instead of a private key, it needs only a public key. We could verify the signature
generated above as follows:

EVP_PKEY *public_key;



EVP_VerifyInit(&ctx, EVP_shal());
EVP_VerifyUpdate (&ctx, message, message_length) ;
success = EVP_VerifyFinal(&ctx, signature, signature_length, public_key);

If the signature is correct, EVP_VerifyFinal() will return 1. If the signature failed, it will return 0,
or -1 if some other error occurred.

5.3 X.509 Certificates

An X.509 certificate is represented in OpenSSL with the X509 structure. It is most commonly read
from disk or retrieved from the SSL library, but can also be generated anew with the X509_new()
function.

The rest of this section describes how to retrieve and modify information stored in an X.509
certificate.

5.3.1 Public Key

The major function of an X.509 certificate is to store a public key. It can be retrieved using the
X509_get_pubkey() function, as follows:

X509 *certificate = ... ;
EVP_PKEY *pubkey;

pubkey = X509_get_pubkey(certificate);
A new public key can be installed in the certificate using the X509_set_pubkey() function:

int success = X509_set_pubkey(certificate, pubkey);

5.3.2 X.509 Names

An X.509 certificate contains two “names”. An X.509 name is a set of textual data designed to
uniquely represent the holder of a certificate. It is important that these names actually be unique,
especially for CA certificates, since most SSL implementations will use names to look up certificates
in their certificate store. If two certificates have the same name, it is likely the wrong one will be
found and SSL will fail.

An X.509 name is represented in OpenSSL by the X609 NAME type. New names can be created with
the X509_NAME new() function call, or they can be extracted from existing certificates, described
below.

Names contain various kinds of information. Each type is identified by a unique NID (a type of
ASN.1 identifier). The NIDs that are commonly used in certificates, and their OpenSSL names,
are as follows:

10



NID_countryName The two-letter code for the country the named entity is located in, e.g., “US”.
NID_stateOrProvinceName e.g., “California”

NID_localityName Usually the city, e.g., “Stanford”

NID organizationName e.g., “Stanford University”

NID organizationalUnitName Optional, specifies a group or department within the organization.

NID_commonName The common name is the name by which the entity named is known to the world.
For a client certificate, this might be the username or real name of the user. For an SSL
server certificate, this must be the DNS hostname of the server; SSL clients will check this
name against the server hostname to make sure they are connecting to the right host.

NID pkcs7_emailAddress An optional field that specifies an email contact address for the named
entity.

Where possible, you should add information fields in the above order, since that is how it will be
expected. In general, it is always better to replace the name rather to try and modify it, since
OpenSSL cannot remove information from a name, but only add to it.

Getting Data From A Name To retrieve from an X.509 name the string associated with a
particular field, use the X509_NAME_get_text_by_NID() function. This copies the text into a C
string buffer. For example, to get the common name from a certificate:

X509_NAME *name = ... ;
char commonName [256] ;
int success;

success = X609_NAME_get_text_by_NID(name, NID_commonName, commonName, 256);

This copies the text corresponding to the NID, if it exists, to the buffer provided.

Setting Data In A Name To set data in an X.509 name from a C string, you can use the
X509-NAME_add_entry_by_NID() function. For example, to create a new name with only a country:

X509_NAME *name;
char *countryName = "US";
int success = 0;

name = X509_NAME_new();
if (name != NULL) {
success = X509_NAME_add_entry_by_NID(name, NID_countryName,
V_ASN1_APP_CHOOSE, (unsigned char *)countryName,
strlen(countryName), -1, 0);

11



There are a number of parameters to this function that have to do with specifics of the ASN.1
encoding. You will probably want to use the same values (V_ASN1_APP_CHOOSE, -1, 0) as this
example.

Names In A Certificate An X.509 certificate contains the “subject” name, which identifies the
current certificate, and the “issuer” name, which identifies the signer of the current certificate. The
signature on an X.509 certificate should always match the public key in the certificate for the issuer
name.

The subject name can be retrieved using the X509_get_subject_-name() function and set using
X509_set_subject_name(). The issuer name can be retrieved and set using X509_get_issuer_name()
and X509_set_issuer_name().

For example, before signing a certificate, you might set the issuer name as follows:

X509 *certificate = ... ;
X509 *ca_certificate = ... ;
X509_NAME *ca_name;

int success = 0;

ca_name = X509_get_subject_name(ca_certificate);
if (ca_name != NULL) {
success = X509_set_issuer_name(certificate, ca_name);

}

5.3.3 Serial Numbers

Every certificate, except for self-signed certificates, must have a serial number. This number should
uniquely identify the certificate for the CA that issued it. That is, the issuer and serial number
should be unique world-wide. When signing a certificate, be sure and set the serial number appro-
priately. !

The serial number is stored as an ASN.1 integer type, ASN1_INTEGER. You can retrieve the serial
number with the X509_get_serialNumber() function. There is no equivalent setter function needed,
since the returned integer is directly mutable. For example, to set the serial number on a certificate
to a particular value:

X509 *certificate = ... ;
ASN1_TINTEGER *serial_number;
long new_serial_number = 255;
int success = 0;

serial_number = X509_get_serialNumber (certificate);
if (serial_number != NULL) {
success = ASN1_INTEGER_set(serial_number, new_serial_number) ;

}

!Netscape Navigator will actually crash if a client certificate does not have a valid serial number.

12



Note that since the serial numbers need to be unique, it is easiest to keep a sequence number and
increment it each time it is used. If you are implementing a CA, it is especially important not to re-
use serial numbers, so you should store the current serial number to disk. If you are also using your
CA key to sign certificates with the openssl command-line tool, as well as programatically, you
should use the same file (which stores the next serial number to be generated), to avoid duplicating
serial numbers. Although the format of the .srl file is generated using ASN.1, it is actually fairly
simple so long as the serial numbers do not climb above 23!. You can convert it to a C long int
using the scanf() format "%1x" and generate it with printf() format "%.81X\n".

5.4 Issue and Expiration Times

A certificate contains two times: An issue time, when the certificate first becomes valid, and an
expiration time, when the certificate ceases to be valid. These are both stored in the X509 structure
as ASN1_TIME elements.

OpenSSL does not provide accessor functions for these times, so you will have to access them
directly from the X.509 structure:

X509 *certificate = ... ;
ASN1_TIME *issue_time = certificate->cert_info->validity->notBefore;
ASN1_TIME *expire_time = certificate->cert_info->validity->notAfter;

There are, however, functions for setting the certificate valid times, X509_set_notBefore() and
X509_set_notAfter().

OpenSSL does provide functions for generating times appropriate for X.509 certificates. For exam-
ple:

X509 *certificate;
ASN1_TIME *time;
int success = 0;

time = X509_gmtime_adj (NULL, 3600);
if (time != NULL) {
success = X509_set_notAfter(certificate, time);

}

This sets the certificate to expire one hour (3600 seconds) after the current time.

There are also functions to compare an ASN1 TIME with other. times. For example, the function
X509_cmp_current_time() takes an ASN1_TIME pointer as an argument, and returns a value less than
0 if the passed-in time is earlier than the current time, or a value greater than 0 if it is later. This
function can be used to check a certificate for validity.

5.4.1 Signing Certificates

All X.509 certificates have signatures, however, you may find it necessary to re-sign them. Particu-
larly, if you change the contents of a certificate, the signature will become invalid. Thus you should

13



always sign an X.509 certificate after modifying it.
You sign a certificate using the X509_sign() function. For example:
X509 *certificate = ... ;

EVP_PKEY *private_key = ... ;
int success;

success = X609_sign(certificate, private_key, EVP_md5());

Note that this function takes a digest function. This digest must be compatible with the private key
algorithm (see the section on EVP signatures). For SSL, you should use RSA with MD5 digests,
as that is most supported among SSL clients.

5.4.2 Verifying Certificates
You can verify if an X.509 certificate has a valid signature with the X509_verify() function:

X509 *certificate = ... ;
EVP_PKEY *public_key = ... ;
int success;

success = X509_verify(certificate, public_key);

This function returns 1 only if the signature on the certificate matches the given public key.

5.5 X.509 Certificate Requests

In addition to complete X.509 certificates, OpenSSL supports X.590 certificate requests. A certifi-
cate request is not a full certificate, and does not have a signature, or validity dates. OpenSSL
represents X.509 certificates using the X509 _REQ type.

You can perform some of the same operations on an X.509 request as on a certificate itself, such as
viewing or modifying the public key or subject name. However, usually what one wants to do with
a certificate request is to sign it. To do this in OpenSSL, convert the request into a full-fledges
X.509 certificate using the X509_-REQ_to_X509() function:

X509_REQ *request = ... ;
EVP_PKEY *ca_private_key = ... ;
X509 *certificate;

certificate = X509_REQ_to_X509(request, 30, ca_private_key);

This converts the request to a certificate, valid from the current time until 30 days in the future,
and signed with ca private key. A signature key is required, since all X.509 certificates must be
signed.

14



However, since you will almost want to modify the resulting X509 structure to add a serial number,
issuer name, and probably change the subject name (most certificate requests have an empty or
useless subject), you will want to call X509_sign() again to re-sign the certificate after making the
changes.

6 Using the SSL Library

In addition to the cryptography library (1ibcrypto), OpenSSL contains an SSL library, 1ibssl,
which provides an implementation of the SSL and TLS protocols for secure socket communication.

This section of the guide provides a brief overview of some of the features of the SSL library. The
description is not complete, and is skewed somewhat towards running an SSL server, since that it
what the CS 255 project implements, although OpenSSL supports both well. For more information
on the SSL library, start at the ssl man page; the SSL library is much better documented than the
crypto library.

6.1 SSL Contexts

An SSL context, of type SSL_CTX defines the framework in which an SSL client or server operates.
It is generally used to set default options and properties, which are inherited by individual SSL
connections.

Most functions that set options for SSL_CTX structures also have an equivalent function that operates
on individual SSL connection structures. However, it is usually desirable to set the options once at
application initialization, rather than having to set them for each connection.

6.1.1 Initializing an SSL Context

An SSL context is created by the SSL_CTX new() function, which takes as an argument the type
of service to provide. For example:

SSL_CTX *ssl_ctx;

ssl_ctx = SSL_CTX_new(SSLv23_server_method());

This establishes a context for a server application that will understand the SSLv2, SSLv3 and
TLSv1 protocols. (For the CS 255 project, you do not need to create your own SSL context, it has
been done for you.)

Once the context has been created, you should assign it a session ID. This is optional if you will
not be using peer certificates. A session ID is simply a string used to identify your program in
saved SSL session files. Even if you do not plan to use SSL session files, you still need to set the
session ID:

char *session_id = "My session ID";

15



int success;

success = SSL_CTX_set_session_id_context(ssl_ctx, session_id,
strlen(session_id);

6.1.2 Local Certificates

If your SSL connections will be authenticated with certificates (almost always the case for servers,
sometimes for clients), you will need to tell OpenSSL which certificate to use, and give it access to
the corresponding private key.

The easiest way to do this is to tell OpenSSL which files these are stored in, and let it load them

internally:

int success;

success =
SSL_CTX_use_certificate_file(ssl_ctx, "cert.pem", SSL_FILETYPE_PEM)
&& SSL_CTX_use_PrivateKey_file(ssl_ctx, "key.pem", SSL_FILETYPE_PEM);

This will load the certificate and RSA private key from the named files (which should be in PEM
format). If the key is encrypted, the pass phrase will be prompted for.

Alternately, the certificate and key can be loaded directly from X509 and EVP_PKEY pointers using
SSL_CTX use_certificate() and SSL_CTX _use_PrivateKey().

After loading the certificate, it is useful to check its validity against the private key using the
function SSL_CTX check_private_key():

int success = SSL_CTX_check_private_key(ssl_ctx);

If this returns false, it means that the certificate does not match the private key.

6.1.3 Peer Certificates

SSL allows both parties in a connection to present a certificate. Normally, the server always sends
a certificate to the client, but not vice versa. If the SSL context is for a server application, the
SSL_CTX set_verify() function can be used to have OpenSSL request that the client also send a
certificate. This is needed to use client authentication. For example:

SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, NULL);

This tells OpenSSL to request a peer certificate, and use the default verification function. There
are two modes, of which SSL_VERIFY PEER is one. The other, SSL_VERIFY _NONE, is the default, and
requests no peer certificate.

16



Note that SSL_VERIFY_PEER does not require the peer to send a certificate; it could still elect not
to. If you want to enforce this, use SSL_VERIFY PEER | SSL_VERIFY FAIL IF NO _PEER_CERT as the
mode. This will cause OpenSSL to reject the connection if the peer does not send a certificate.

The third argument to SSL_CTX set_verify() is a callback to a verification function. If you pass
NULL, OpenSSL will use its internal verification function to try and see if the certificate is valid,
by ensuring it is signed by a known CA (see below) and is not expired. If you wish to install your
own verification function, see the SSL_CTX_set_verify man page for an example.

Client CAs If you are using an SSL server, and have set the SSL context to require peer (client)
certificates, you also need to tell OpenSSL which certificates you will accept. Do this by calling
SSL_CTX add_client_CA() with the CA certificate:

X509 *ca_certificate;
int success;

success = SSL_CTX_add_client_CA(ssl_ctx, ca_certificate).

OpenSSL will send the list of client CAs that have been added to the client during the SSL
handshake, and the client can use this list to choose the appropriate client certificate to use.

Verification Certifications If you are using the default verification callback, OpenSSL will need
to know the CA certificates that the client certificates could be signed with, so it can verify them.
You can install these verification certificates using SSL_CTX load_verify locations(), e.g.:

int success;
success = SSL_CTX_load_verify_locations(ssl_ctx, "cacert.pem", NULL);

Note that you are providing a filename rather than an actual certificate. The third argument
(unused and NULL here) can point to a directory with multiple CA certificates, if desired.

Note that installing a CA certificate to send to the client and for verification are distinct operations,
and both should be done to properly use client certificates.

6.2 SSL Connections

Once the SSL context has been set up, individual SSL connections can be created. An SSL con-
nection is represented by the SSL type, and is associated with a particular network connection and
peer.

6.2.1 Creating and Using Connections

SSL connections can be established using SSL_new(), and associated with a network socket using
SSL_accept() or SSL_connect(). Data can be written or read with SSL_write() and SSL_read(), and
the connection closed with SSL_shutdown(). The SSL connection is deallocated using SSL_free().

17



For more information about these functions, see the appropriate man page. In the CS 255 project,
you do not need to make any of these calls.

6.2.2 Getting Connection Information

Once an SSL connection has been established and the SSL handshake completed, you cannot change
very many of the options. You can, however, retrieve information about the connection.

Current Cipher The SSL_get_current_cipher() function will return a pointer to an SSL_CIPHER
type. This contains information about the security of the SSL connection. For example, to retrieve
the number of secret bits in the currently-used encryption method:

SSL. *ssl_connection = ... ;
SSL_CIPHER *cipher;
int bits = 0;

cipher = SSL_get_current_cipher(ssl_connection);
if (cipher != NULL) {

bits = SSL_CIPHER_get_bits(cipher);
}

Peer Certificate If the peer (e.g., client) has sent a valid certificate, you can retrieve it using
the SSL_get_peer_certificate() function:

SSL *ssl_connection = ... ;
X509 *certificate;

certificate = SSL_get_peer_certificate(ssl_connection) ;

This function will return NULL if the peer did not send a certificate. Since client certificates are
usually not required or sent, always check for NULL unless the SSL context has been set to fail if
they are not present.

18



