
User Authentication: ID protocolsUser Authentication: ID protocols

D. Boneh

The Setup

Alg. G

User P Server V

sk vk

vk either public

or secret

2

User P

(prover)
Server V

(verifier)

yes/no
no key exchange

Applications

• Physical locks: (friend-or-foe)

• Wireless car entry system (e.g. KeeLoq)

• Opening an office door or a garage door

• Login at a bank ATM or a desktop computer• Login at a bank ATM or a desktop computer

• Login to a remote web site once key-exchange with

one-sided authentication completes (e.g. SSL)

3

ID Protocols: how not to use

ID protocol do not establish a secure session

between Alice and Bob !!

• Not even when combined with anonymous key exch.

• Vulnerable to man in to the middle attacks

sk vk

Prover Verifier

4

anon. key exchange

k k

sk vk

ID protocol

Alice

Insecure!

ID Protocols: how not to use

ID protocol do not set up a secure session

between Alice and Bob !!

• Not even when combined with anonymous key exch.

• Vulnerable to man in to the middle attack

sk vk

Prover Verifier

5

key exch.

ka kb

sk vk

key exch.

ka kb

proxy ID protocol

Alice

ID Protocols: Security Models

1. Direct Attacker: impersonates prover with no

additional information (other than vk)

• Door lock

2. Eavesdropping attacker: impersonates prover

after eavesdropping on a few conversations

between prover and verifier

• Wireless car entry system

3. Active attacker: interrogates prover and then

attempts to impersonate prover

• Fake ATM in shopping mall

6

ID protocols secure against direct attacksID protocols secure against direct attacks

a.k.a Password Systems

Basic Password Protocol (incorrect version)

PWD: finite set of passwords

Algorithm G (KeyGen):

• choose pw ← PWD. output sk = vk = pw.

8

User P

(prover)
Server V

(verifier)

sk

sk vk
yes

iff sk=vk

Basic Password Protocol (incorrect version)

Problem: VK must be kept secret

• Compromise of server exposes all passwords

• Never store passwords in the clear!

password file on server

9

Alice pwalice

Bob pwbob

… …

password file on server

Basic Password Protocol: version 1

H: one-way hash function from PWD to X

• “Given H(x) it is difficult to find y such that H(y)=H(x)”

password file on serverUser P Server Vsk

1

Alice H(pwA)

Bob H(pwB)

… …

password file on serverUser P

(prover)
Server V

(verifier)

sk

sk vk = H(sk)

yes iff H(sk)=vk

Weak Passwords and Dictionary Attacks

People often choose passwords from a small set:

• The 6 most common passwords (sample of 32×106 pwds):

123456, 12345, Password, iloveyou, princess, abc123

(‘123456’ appeared 0.90% of the time)

• 23% of users choose passwords in a dictionary

of size 360,000,000

Online dictionary attacks:

• Defeated by doubling response time after every failure

• Harder to block when attacker commands a bot-net

1

Offline Dictionary Attacks

Suppose attacker obtains vk = H(pw) from server

• Offline attack: hash all words in Dict until a word w

is found such that H(w) = vk

• Time O(|Dict|) per password

Off the shelf tools

• 2,000,000 guesses/sec

• Scan through 360,000,000 guesses in few minutes

• Will recover 23% of passwords

1

Password Crackers

Many tools for this

Algorithm Speed/sec

DES 2 383 000

MD5 4 905 000

LanMan 12 114 000
Many tools for this

• John the ripper

• Cain and Abel

• Passware(Commercial)

13

Batch Offline Dictionary Attacks

Suppose attacker steals pwd file F

• Obtains hashed pwds for all users

Alice H(pwA)

Bob H(pwB)

… …

Batch dict. attack:

• Build list L containing (w, H(w)) for all w ∈ Dict

• Find intersection of L and F

Total time: O(|Dict| + |F|)

Much better than a dictionary attack on each password

1

Preventing Batch Dictionary Attacks

Public salt:

• When setting password,

pick a random n-bit salt S

• When verifying pw for A,

Alice SA H(pwA , SA)

Bob SB H(pwB , SB)

hSid

• When verifying pw for A,

test if H(pw, SA) = hA

Recommended salt length, n = 64 bits

• Pre-hashing dictionary does not help

Batch attack time is now: O(|Dict| ×××× |F|)

1

… … …

Further Defenses

Slow hash function H: (0.1 sec to hash pw)

• Example: H(pw) = SHA1(SHA1(… SHA1(pw) …))

• Unnoticeable to user, but makes offline

dictionary attack harder

Alice S H(pw , S , r)

Secret salts:

• When setting pwd choose

short random r (8 bits)

• When verifying pw for A,

try all values of rA: 128 times slow down on average

• 256 times slow down for attacker

1

Alice SA H(pwA , SA , rA)

Bob SB H(pwB , SB , rB)

… … …

Case study: UNIX and Windows

UNIX: 12-bit public salt

• Hash function H:

• Convert pw and salt and a DES key k

• Iterate DES (or DES’) 25 times:

0 h

Windows: NT and later use MD4

• Outputs a 16 byte hash

• No public or secret salts

1

DES
0

DES DES
h

k k k

Biometrics

Examples:

• Fingerprints, retina, facial recognition, …

• Benefit: hard to forget

Problems:

• Biometrics are not generally secret

• Cannot be changed, unlike passwords

⇒ Primarily used as a second factor authentication

1

The Common Password Problem

Users tend to use the same password at many sites

• Password at a high security site can be exposed by

a break-in at a low security site

Standard solution:

• Client side software that converts a common

password pw into a unique site password

pw’ ← H(pw, user-id, server-id)

pw’ is sent to server

1

ID protocols secure against ID protocols secure against

eavesdropping attacks

a.k.a One-time Password Systems

Eavesdropping Security Model

Adversary is given:

• vk, and

• the transcript of several interactions between

honest prover and verifier.

adv. goal is to then impersonate prover to verifieradv. goal is to then impersonate prover to verifier

A protocol is “secure against eavesdropping” if no

efficient adversary can win this game

The password protocol is clearly insecure

• We discuss two secure stateful protocols (one-time pwd), and

• one stateless protocol (challenge-response)

2

The SecurID system (secret vk, stateful)

Algorithm G: (setup)

• Choose random key k ← K

• Output sk = (k,0) ; vk = (k,0)

Identification:Identification:

2

prover verifier
r0 ← F(k,0)

sk = (k,0) vk = (k,0) Yes iff

r = F(k,0)

r1 ← F(k,1)

vasco

sk = (k,1) vk = (k,1)

The SecurID system (secret vk, stateful)

“Thm”: if F is a secure PRF then protocol

is secure against eavesdropping

RSA SecurID uses a custom PRF:

F
64 bit key

6 digit output

Advancing state: sk ← (k, i+1)

• Time based: every 60 seconds

• User action: every button press

Both systems allow for skew in the counter value

2

vascoF
64 bit key

24 bit ctr
6 digit output

The S/Key system (public vk, stateful)

Notation: H
(n)

(x) = H(H(…H(x)…))

Algorithm G: (setup)

• Choose random key k ← K

• Output sk = (k,n) ; vk = H
(n+1)

(k)

n times

• Output sk = (k,n) ; vk = H
(n+1)

(k)

Identification:

2

H
(n+1)

(k)H
(n)

(k)H
(n-1)

(k)H
(n-2)

(k)k H(k)

vk
pwd #1pwd #2pwd #3pwd #4

The S/Key system (public vk, stateful)

Identification (in detail):

• Prover (sk=(k,i)): send t ←←←← H(i) (k) ; set sk ←←←← (k,i-1)

• Verifier(vk=H(i+1)(k)): if H(t)=vk then vk←←←←t, output “yes”

Notes: vk can be made public;

but need to generate new sk after n logins (n ≈ 106)

“Thm”: S/Keyn is secure against eavesdropping (public vk)

provided H is one-way on n-iterates

2

SecurID vs. S/Key

S/Key:

• public vk, limited number of auths

• often implemented using pencil and paper

SecurID:

• secret vk, unlimited number of auths

• often implemented using secure token

2

ID protocols secure against active attacksID protocols secure against active attacks

a.k.a Challenge-Response Protocols

Active Attacks

vk

User P

(prover)

sk

probe #1

probe #q

Server V

(verifier)

vkimpersonate

Offline fake ATM: interacts with user; later tries to

impersonate to legit. ATM

Offline phishing: phishing site interacts with user;

later authenticates to real site

Protocols so far are vulnerable

2

MAC-based Challenge Response (secret vk)

User P

(prover)

sk

Server V

(verifier)

vk

k ← K
sk = k vk = k

m ← M

t ← S (k, m)

“Thm”:

Protocol is secure against active attacks (secret vk),

provided (SMAC , VMAC) is a secure MAC

2

sk vkt ← SMAC(k, m)

VMAC(k, m, t)

MAC-based Challenge Response

Problems:

• vk must be kept secret on server

• dictionary attack when k is a human pwd:

• Given [m , SMAC (pw, m)] eavesdropper can

try all pw ∈ Dict to recover pwtry all pw ∈ Dict to recover pw

Main benefit:

• Both m and t can be short

• CryptoCard: 8 chars each

3

Sig-based Challenge Response (public vk)

User P

(prover)
Server V

(verifier)

(sk, vk) ← GSIG
sk

vk

m ← M

Replace MAC with a digital signature:

“Thm”:

Protocol is secure against active attacks (public vk),
provided (GSIG ,Sign,Verify) is a secure digital sig.

but t is long (≥20 bytes)

3

sk vk

m ← M

t ← Sign(k, m)

Verify(k, m, t)

Summary

• ID protocols: useful in settings where adversary cannot

interact with prover during impersonation attempt

• Three security models:

• Direct: passwords (properly salted and hashed)

• Eavesdropping attacks: One time passwords

• SecurID: secret vk, unbounded logins

• S/Key: public vk, bounded logins

• Active attacks: challenge-response

3

THE ENDTHE END

