CS255: Dan Boneh

ldentification Protocols

Authenticating users

The Setup

sk~

Alg. G

~

no key exchange

vk either public
or secret

Applications

— Physical locks: (friend-or-foe)
* Wireless car entry system (e.g. Keeloq)
* Opening an office door or a garage door

— Login at a bank ATM or a desktop computer

— Login to a remote web site once key-exchange with one-
sided authentication completes (e.g. SSL)

ID Protocols: how not to use

* ID protocol do not establish a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attacks

anon. key exchange

ID protocol

Dan Boneh

ID Protocols: how not to use

* |D protocol do not set up a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attack

key exch. - key exch.

proxy ID protocol

@

sk

ID Protocols: Security Models

1. Direct Attacker: impersonates prover with no additional
information (other than vk)

— Door lock

2. Eavesdropping attacker: impersonates prover after eavesdropping

on a few conversations between prover and verifier
— Wireless car entry system

3. Active attacker: interrogates prover and then attempts to
impersonate prover
— Fake ATM in shopping mall

ldentification Protocols

Security against
direct attacks

(password systems)

BaSiC PaSSWOrd PrOtOCOI (incorrect version)

e PWD: finite set of passwords

e Algorithm G (setup):
e choose pw < PWD. output sk=vk=pw.

sk

Y | yes
>
iff sk=vk

BaSiC Password PrOtOCOI (incorrect version)

 Problem: VK mustbe kept secret
 Compromise of server exposes all passwords
* Never store passwords in the clear!

password file on server

Alice pwW

alice

Bob PWpop

Dan Boneh

A (small) sample of server-side password breaches

2012: Linked-in: 6 million passwords (hashed, unsalted)

2013:
e Twitter: 250,000 passwords (hashed, salted)

* LivingSocial: 50 million records
Names, emails, DOB, passwords (hashed, salted)

* Evernote: 50 million records
usernames, emails, hashed passwords
e Adobe: 38 million records (http://xkcd.com/1286/)
email addrs., password hints, and encrypted passwords

Basic Password Protocol: version 1

H: one-way hash function from PWD to X
e “Given H(x) itis difficult to find y such that H(y)=H(x)”

example: SHA-256, PBKDF2

sk password file on server
Alice H(pw,)
Bob H(pwg)

ves iff H(sk)=vk

Weak password choice

Users frequently choose weak passwords: (adobe list, 2013)

123456 | 123456785 A pry— 250567

Fraction
of users:

5% 1.1% 0.9% 0.5% 0.5% 0.5% 0.3%

Total: 8.8%
A common occurrence

 Example: the Rockyou password list, 2009 (6 most common pwds)
123456, 12345, Password, iloveyou, princess, abc123

Dictionary of 360,000,000 words covers about 25% of user passwords

Dan Boneh

Offline Dictionary Attacks

Suppose attacker obtains a single vk =H(pw) from server

 Offline attack: hash all words in Dict until a word w is found
such that H(w) = vk

e Time O(|Dict|) per password

Off the shelf tools (e.g. John the ripper):
* Scan through all 7-letter passwords in a few minutes
e Scan through 360,000,000 guesses in few seconds

= will recover 23% of passwords

Batch Offline Dictionary Attacks

Suppose attacker steals entire pwd file F

Alice H(pw,)

* Obtains hashed pwds for all users
Bob H(pw,)

e Example (2012): Linkedin (6M: SHA1(pwd))

Batch dict. attack:
 Foreachw & Dict: testif H(w) appearsinF (using fast look-up)

Total time: O(|Dict| + |F|) [Linkedin: 6 days, 90% of pwds. recovered]

Much better than a dictionary attack on each password !

Preventing Batch Dictionary Attacks

Public salt:

* When setting password,
pick a random n-bit salt S

 When verifying pw for A,
testif H(pw,S,)=h,

Recommended salt length, n =64 bits
* Attacker must re-hash dictionary for each user

password database

Alice S, H(pw, , S,)

Bob Se H(pwg , Sg)

id salt hash
(PBKDF2)

Batch attack timeis now: O |Dict| x |F|)

Further Slowing Down Dictionary Attacks

Slow hash function H: (say 0.1 sec. to hash pw)

Secret salts:

Example: H(pw) =SHA1(SHAL(... SHA1(pw, S,) ...))

Unnoticeable to user, but makes offline dictionary attack harder

Use PBKDF2: tunable # iterations

Alice

Sa

H(pWA) SA; rA)

Bob

Sg

H(pwg , Sg, 1g)

When setting pwd choose
short random r (8 bits)

When verifying pw for A,

try all values of r,. 128 times slow down on average.

256 times slow down for attacker

Strengthening User Authentication

One option: biometrics: | |
Adjust Your Grip

Keep going to capture the edges of

* Fingerprints, retina, facial recognition, ...
* Benefit: hard to forget

Problems:

* Biometrics are not generally secret

* Cannot be changed, unlike passwords note: CCC’13

=> Should primarily be used as a second factor authentication

The Common Password Problem

Users tend to use the same password at many sites

Password at a high security site can be exposed by a break-in
at a low security site

Standard defense: (PwdHash)

Client side software that converts a common password pw
into a unique site password

pw’ < H(pw, user-id, server-id)

pw’ is sent to server

ldentification Protocols

Security against
eavesdropping attacks

(one-time password systems)

Eavesdropping Security Model

/Adversa ry is given:

~

 Server’s vk, and

e the transcript of several interactions between
honest prover and verifier. (example: remote car unlock)

_adv. goal is to impersonate prover to verifier -

A protocol is “secure against eavesdropping” if no efficient
adversary can win this game

The password protocol is clearly insecure |

2Md factor OTP authentication secret v stateful

Setup (algorithm G):
* Choose random key k

e Output sk=(k0) ; vk=(k,0) >43>02

Identification:
fo =~ F(k,O) Yes iff S
r, < F(k,1) = F(k0)

L—6 digits

often, time-based updates: r < F(k, time) [stateless]

Dan Boneh

Google authenticator

e 6-digit timed one-time passwords (TOTP) based on [RFC 6238]
 Wide web-site adoption:

— Evernote, Dropbox, WordPress, outlook.com, ...

To enable TOTP for a user: web site presents QR code with

embedded data: otpauth://totp/Example:alice@dropbox.com?
secret=JBSWY3DPEHPK3PXP & issuer=Example

(Subsequent user logins require user to present TOTP)

Danger: password reset upon user lockout

| Enable two-step verification

An authenticator app lets you generate security codes on your phone without needing to
receive text messages. If you don't already have one, we support any of these apps.
To configure your authenticator app:

» Add a new time-based token.

» Use your app to scan the barcode below, or enter your secret key manually.

Dan Boneh

Server compromise exposes secrets

March 2011:
 RSA announced servers attacked, secret keys stolen
= enabled SecurlID user impersonation

Is there an ID protocol where server key VK is not-secret?

The S/Key system (puiicvk, statefu

Notation: H™(x) = lH(H(...H(X)---))}

n tirYnes
Algorithm G: (setup)

* Choose random key k <— K
e Qutput sk=(kn) ; vk= H("+1)(k)

ldentification:
k H(k) H™ k) H"™YK) H™(k) H™ (k)
® V" G [39 39 9 >®
4 4 0 4 vk
pwd #4 pwd #3 pwd #2 pwd #1

The S/Key system (puiicvk, statefu

/ldentification (in detail): N

+ Prover (sk=(k,i): send t<— H" (k) ; set sk < (k,i-1)

 Verifier(vk=H")(k)): if H(t)=vk then vk<t, output “yes”

.

Notes: vk can be made public;
but need to generate new sk after n logins (n = 10°)

“Thm”: S/Key, is secure against eavesdropping (public vk)
provided H is one-way on n-iterates

TOTP vs. S/Key
5/Key:

* publicvk, limited number of authentications

* Long one-time passwords (128 bits)

TOTP:
* secret vk, unlimited number of authentications

e Short one-time passwords (6 digits, i.e. 20 bits)

ldentification Protocols

Security against
active attacks

(challenge-response protocols)

Active Attacks

vk
probe #1 >

probe #q >M

&
~

Impersonate

 Offline fake ATM: interacts with user; later tries to
impersonate to legit. ATM

e Offline phishing: phishing site interacts with user;
later authenticates to real site

Protocols so far are vulnerable

Dan Boneh

MAC-based Challenge Response (secret vk)

sk = k k<K vk = k

random m < M

t < Syacltk, m)

Vyaclk, m, t)

“Thm”: protocol is secure against active attacks (secret vk),
provided (Syac, Vmac) 1S @ secure MAC

MAC-based Challenge Response

Problems:
* vk must be kept secret on server
e dictionary attack when k is a human pwd:

Given [m , Syac(pw, m)] eavesdropper can
try all pw € Dict to recover pw

Main benefit:
e Both m and t can be short

CRYPTOCard

 CryptoCard: 8 chars each

Sig-based Challenge Response (pusiic v

Replace MAC with a digital signature:

sk

(sk, vk) <= G¢q

random m < M

vk

,P@ <

t < Sign(k, m)

Verify(k, m, t)

“Thm”: Protocol is secure against active attacks (public vk),
provided (G, ,Sign,Verify) is a secure digital sig.

butt islong (=20 bytes)

Summary

ID protocols: useful in settings where adversary cannot interact
with prover during impersonation attempt

Three security models:

 Direct: passwords (properly salted and hashed)

 Eavesdropping attacks: One time passwords
— SecurlID: secret vk, unbounded logins
— S/Key: publicvk, bounded logins

* Active attacks: challenge-response

THE END

