Auth. Key Exchange
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Review: key exchange

Alice and Bank want to generate a secret key
* Saw key exchange secure against eavesdropping

>
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# eavesdropper ?? #

* This lecture: Authenticated Key Exchange (AKE)
key exchange secure against active adversaries




Active adversary

Adversary has complete control of the network:
 Can modify, inject and delete packets
e Example: man-in-the-middle

-

Moreover, some users are honest and others are corrupt

’

m

e Corrupt users are controlled by the adversary

— Key exchange with corrupt users should not “affect” other sessions
 Adversary may corrupt an honest user attime T

— We want sessions established at time t < T to remain “secure”
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Trusted Third Party (TTP)

All AKE protocols require a TTP to certify user identities.

Registration process:

m | am Alice, proof )é{ | am Bank.com, proof m
P~ >
Ska ice SKpank

Two types of TTP:

* Online TTP: actively participates in every key exchange (Kerberos)
Benefit: security using only symmetric crypto

e Offline TTP (CA): contacted only during registration (... not quite true)
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AKE:

k, Bank or L

Followed by Alice sending E(k, “data”) to Bank



AKE security (veryinformal)

Suppose Alice successfully completes an AKE to obtain (k, Bank)
If Bank is not corrupt then:

Authenticity for Alice: (similarly for Bank)

* If Alice’s key k is shared with anyone, it is only shared with Bank

Secrecy for Alice: (similarly for Bank)

* To the adversary, Alice’s key k is indistinguishable from random
(even if adversary sees keys from other instances of Alice or Bank)

Consistency: if Bank completes AKE then it obtains (k, Alice)




One-sided AKE

Skbank

cert, ...
VK

k, Bank | or L k,?? orl

Security: authenticity for Alice and secrecy for Alice

* Bank has no guarantees for identity of peer (no consistency)
e Commonly used on the Web (often followed by ID protocol)
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Things to remember ...

Do not design AKE protocol yourself ...

Just use latest version of TLS
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Building blocks

cert,.,: contains pk, .. Bankhas sk, -

E,..((m,r) = E(pky,.., (m,r)) where E is chosen-ciphertext secure

* Recall: fromE, ., ((m,r)) adv. cannot build E,_. . ((m,r’)) for r" #r

S.iice((Mm,r)) = S( sk, (M,r)) where S is a signing algorithm

R: some large set, e.g. {0,1}*°°



Protocol




Simple one-sided AKE protocol

r<— R, cert,,

C— Ebank((k' r))

decrypt(c),
check correct r

k, ??

k, Bank

“Thm”: this protocol is a secure one-sided AKE

Informally: if Alice and Bank are not corrupt then we have
(1) secrecy for Alice and (2) authenticity for Alice
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Insecure variant 1: r not encrypted

r<—R, cert,,

k — K BUAVIT=

| \

k, Bank nor

Skbank

ce rtbank

Problem: replay attack
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Replay attack

r<—R, cert .,

(k, “I'am Alice, pay Bob 305”)

C, < Esym

Later:

r'«<—R , cert,

c 3 k Skbank
an
> certbank

Cq




Protocol




Simple one-sided AKE with forward-secrecy

Skbank
pk , cert, . cert, .,
check sig. o 0 «— Sp.(Pk) (pk, sk) «— Gen
k K
- ¢ — E(pk, k) k — D(sk, c)
delete sk

k, Bank

(pk, sk) are ephemeral: sk is deleted when protocol completes

Compromise of Bank: past sessions are unaffected




Insecure variant: do not sign pk

pk , cert, ..

(pk, sk) «— Gen

k «— D(sk, c)
delete sk

k, Bank

Attack: complete key exposure



Attack: key exposure

pk , cert ..
(pk’, sk’) «—Gen | (pk, sk) «<— Gen

’

pk

, certbank

¢ < E(pk’, k)

Esym

(k, “data”)

—

L

Adv. gets
k and data

Bank



Two-sided AKE

For now: no forward secrecy



Two-sided AKE (mutual authentication)

re—R, certy n.

Skbank

C & Ebank((k' “alice”)) certpank

»

l O «— Salice((r' C, ”bank”)), c:ertalice decrypt(C),

check correct id,
k, Bank check sig. o

k, Alice
“Thm”: this protocol is a secure AKE

Informally: if Alice and Bank are not corrupt then we have
(1) secrecy and (2) authenticity for Alice and for Bank
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Insecure variant: encrypt r instead of “Alice”

Any change to protocol makes it insecure, sometime in subtle ways

Example:
r (_ ) Certbank
( Skbank
C — Epanillk, 1) CeMyan
l 0 Salice((r; C, ”bank”)) Certal'ce decrypt(c), ‘L’
check correct I,
k _ Bank check sig. o

k, Alice



Attack: identity misbinding

r<—R, cert,,

C & Ebank((kl r)) N
oS ((r,c, “bank”)), cert,..

C

o’ —S.,((r, ¢, “bank”)) , cert,,,

E....(k, “deposit this check into my account”) ‘

sym




Insecure variant: do not sigh ¢

r<— R, cert,,

Skbank
c — E, ., ((k, “alice”))

ce rtbank

»

l 0 < S,ice((, “bank”)), cert decrypt(c),

K check correct id,
k, Bank no ¢ check sig. o
k, Alice

Attack: key exposure



Attack: key exposure

r<—R, cert,,

c — E._((k, “Alice”)) ‘
0 < S,iicel(r, “bank”)), cert,jc.

¢’ — Ep.((k", “Alice”))

0] , certa“ce

E...(k', “data”)

sym

Adversary can read data




Many more AKE variants

Two-sided AKE with forward secrecy:

AKE with end-point privacy:
 Goal: certificates are not visible to adversary (TLS 1.3)

AKE based on a shared secret between Alice and Bank:
* High entropy shared secret: want forward secrecy
 Password: ensure no offline dictionary attack (PAKE)
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Auth. key exchange

TLS v1.2 key exchange




TLS session setup (handshake)

Client ClientHello gand extensions) ; Server

ServerHello (and ext.),
[Certificate],

secret
[ServerKeyExchange], key

[Certificate] CertificateRequest],
: ServerHelloDone

cert

ClientKeyExchange,

[ CertificateVerify]

ChangeCipherSpec

Finished ChangeCipherSpec
Finished

—

Application Data
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Brief overview of SSL/TLS

browser server
ClientHello (cipher-list)

cert

ServerHello (cipher) , ServerCert (PK)

Finished (key & params confirmation)

HTTP data encrypted with KDF(PreK)

L

In this diagram: one sided authentication (no client authentication)
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The need for negotiating ciphers

refer
= NIST ciphe

Us Browser

—

Prefer GOST
ciphers (Russian)

Web server

Russian browser in Russia

S not understand
ECDHE

old browser



Abstract TLS: RSA exchange (simplified)

Client ClientHello: r., SID, cipher-list Server
ServerHello: rc, SID, cipher, cert
. G >
pick random
46 byte PreK ClientkeyExchange: ¢ « E(pks, PreK)
decrypt c
MasterK <— PRF_(PreK, rcllr) to get PreK
SessionKeys «— PRF,.( MasterK, rcllr.)
Finished (FinishedData)
Finished (FinishedData)

Key Confirmation: FinishedData = PRF 4( MasterK, hash(HandshakeMessages) )
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I , [ ]
ro p e rt I e S (3 Bank of America Corporation [US]) https://www.bankof:

Bank of America Corporation
(www.bankofamerica.com)
The identity of Bank of America Corporation at Chicago,

f'c, Is: prevent replay of of old session

Certificate Information
[3 Your connection to www.bankofamerica.com is encrypted
with 128-bit encryption.

RSA k h ° f d The connection uses TLS 1.0.
ey exc a nge L n o o rwa r se c re cy The connection is enci rypted using RC4_128, with MD5 for
message authentication and RSA as the key exchange

mechanism.

— Compromise of server secret key
exposes old sessions

— Costly RSA decryption on server, easier RSA enc. on client

One sided identification:
* Browser identifies server using server-cert
* Server has no guarantees about client’s identity
* TLS has support for mutual auth. (client needs sk. and cert,)
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TLS key exchange with torward-secrecy (DHE)

(simplified) Fix prime p and g

sk¢: signing key

Client ClientHello(r,) Server

ServerHello(r,), Cert, ServerKeyExchange

verify cert. and o :
° D, 8 A—g° (p), 0<—sign(sK, (furyP,8,A)) | /andomainil.p

random bin 1..p

ClientKeyExchange: B«—gP (p)

ab PreK «— g2
AT & MasterK <— PRF_ (PreK, rcllr)

SessionKeys <— PRF,.( MasterK, rq | re)

_ Finished _
I Finished

-—eeee e
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www.google.com

The identity of this website has been verified by Thawte SGC
CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit
encryption.

The connection uses TLS 1.0.

AT >, 'hSHAlfOF
d ECDHE _RSA as the key

The connection is encrypte
message authentication a
exchange mechanism.

Elliptic curve

Prefer ECDHE over DHE Diffie-Hellman
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Performance: RSA vs. forward-secrecy

Cost of crypto operations on server per handshake:

 RSA key exchange: one RSA-2048 decryption (deprecated in TLS 1.3)

* ECDHE: Diffie-Hellman in group G with generatorg € G

1. One exp.tocompute A«—g® EG must be done
for every
2. One sig. on Diffie-Hellman parameters (G,g,A) handshake

3. One exp. to compute DH secret: PreK « g2 € G

Server support (2014): RSA (99.9%), DHE (60%), ECDHE(18%)



Session Resume

Goal: reduce # of full handshakes

Full handshake Session
= Store
L MasterK MasterK J
Few hours later (new TCP connection)
Abbreviated handshake /
— retrieve old

L reuse old MasterK

MasterK
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Session resume (simplified)

Client

MasterK(bank) ClientHello: r., SID Bank

SID=0: full handshake SIDg «— SID. if SID. € ST

SID. # 0: resume old session SID; «— random, otherwise Session

Store (ST)

ServerHello: rg, SIDg
—
If SID, = SID, ¢

then resume .
else full SessionKeys «— PRF,.( MasterK, rllr.) MasterK(Alice)

ChangeCiEherSEec
ChangeCipherSpec Finished
—

Finished
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THE END



