Auth. Key Exchange

VWAl
W' ‘

Review: key exchange

Alice and Bank want to generate a secret key
* Saw key exchange secure against eavesdropping

>
<)
<€

eavesdropper ??

* This lecture: Authenticated Key Exchange (AKE)
key exchange secure against active adversaries

Active adversary

Adversary has complete control of the network:
 Can modify, inject and delete packets
e Example: man-in-the-middle

-

Moreover, some users are honest and others are corrupt

’

m

e Corrupt users are controlled by the adversary

— Key exchange with corrupt users should not “affect” other sessions
 Adversary may corrupt an honest user attime T

— We want sessions established at time t < T to remain “secure”

Dan Boneh

Trusted Third Party (TTP)

All AKE protocols require a TTP to certify user identities.

Registration process:

m | am Alice, proof)é{ | am Bank.com, proof m
P~ >
Ska ice SKpank

Two types of TTP:

* Online TTP: actively participates in every key exchange (Kerberos)
Benefit: security using only symmetric crypto

e Offline TTP (CA): contacted only during registration (... not quite true)

Dan Boneh

AKE:

k, Bank or L

Followed by Alice sending E(k, “data”) to Bank

AKE security (veryinformal)

Suppose Alice successfully completes an AKE to obtain (k, Bank)
If Bank is not corrupt then:

Authenticity for Alice: (similarly for Bank)

* If Alice’s key k is shared with anyone, it is only shared with Bank

Secrecy for Alice: (similarly for Bank)

* To the adversary, Alice’s key k is indistinguishable from random
(even if adversary sees keys from other instances of Alice or Bank)

Consistency: if Bank completes AKE then it obtains (k, Alice)

One-sided AKE

Skbank

cert, ...
VK

k, Bank | or L k,?? orl

Security: authenticity for Alice and secrecy for Alice

* Bank has no guarantees for identity of peer (no consistency)
e Commonly used on the Web (often followed by ID protocol)

Dan Boneh

Things to remember ...

Do not design AKE protocol yourself ...

Just use latest version of TLS

nnnnnnnn

Building blocks

cert,.,: contains pk, .. Bankhas sk, -

E,..((m,r) = E(pky,.., (m,r)) where E is chosen-ciphertext secure

* Recall: fromE, ., ((m,r)) adv. cannot build E,_. . ((m,r’)) for r" #r

S.iice((Mm,r)) = S(sk, (M,r)) where S is a signing algorithm

R: some large set, e.g. {0,1}*°°

Protocol

Simple one-sided AKE protocol

r<— R, cert,,

C— Ebank((k' r))

decrypt(c),
check correct r

k, ??

k, Bank

“Thm”: this protocol is a secure one-sided AKE

Informally: if Alice and Bank are not corrupt then we have
(1) secrecy for Alice and (2) authenticity for Alice

Dan Boneh

Insecure variant 1: r not encrypted

r<—R, cert,,

k — K BUAVIT=

| \

k, Bank nor

Skbank

ce rtbank

Problem: replay attack

nnnnnnnn

Replay attack

r<—R, cert .,

(k, “I'am Alice, pay Bob 305”)

C, < Esym

Later:

r'«<—R , cert,

c 3 k Skbank
an
> certbank

Cq

Protocol

Simple one-sided AKE with forward-secrecy

Skbank
pk , cert, . cert, .,
check sig. o 0 «— Sp.(Pk) (pk, sk) «— Gen
k K
- ¢ — E(pk, k) k — D(sk, c)
delete sk

k, Bank

(pk, sk) are ephemeral: sk is deleted when protocol completes

Compromise of Bank: past sessions are unaffected

Insecure variant: do not sign pk

pk , cert, ..

(pk, sk) «— Gen

k «— D(sk, c)
delete sk

k, Bank

Attack: complete key exposure

Attack: key exposure

pk , cert ..
(pk’, sk’) «—Gen | (pk, sk) «<— Gen

’

pk

, certbank

¢ < E(pk’, k)

Esym

(k, “data”)

—

L

Adv. gets
k and data

Bank

Two-sided AKE

For now: no forward secrecy

Two-sided AKE (mutual authentication)

re—R, certy n.

Skbank

C & Ebank((k' “alice”)) certpank

»

l O «— Salice((r' C, ”bank”)), c:ertalice decrypt(C),

check correct id,
k, Bank check sig. o

k, Alice
“Thm”: this protocol is a secure AKE

Informally: if Alice and Bank are not corrupt then we have
(1) secrecy and (2) authenticity for Alice and for Bank

Dan Boneh

Insecure variant: encrypt r instead of “Alice”

Any change to protocol makes it insecure, sometime in subtle ways

Example:
r (_) Certbank
(Skbank
C — Epanillk, 1) CeMyan
l 0 Salice((r; C, ”bank”)) Certal'ce decrypt(c), ‘L’
check correct I,
k _ Bank check sig. o

k, Alice

Attack: identity misbinding

r<—R, cert,,

C & Ebank((kl r)) N
oS ((r,c, “bank”)), cert,..

C

o’ —S.,((r, ¢, “bank”)) , cert,,,

E....(k, “deposit this check into my account”) ‘

sym

Insecure variant: do not sigh ¢

r<— R, cert,,

Skbank
c — E, ., ((k, “alice”))

ce rtbank

»

l 0 < S,ice((, “bank”)), cert decrypt(c),

K check correct id,
k, Bank no ¢ check sig. o
k, Alice

Attack: key exposure

Attack: key exposure

r<—R, cert,,

c — E._((k, “Alice”)) ‘
0 < S,iicel(r, “bank”)), cert,jc.

¢’ — Ep.((k", “Alice”))

0] , certa“ce

E...(k', “data”)

sym

Adversary can read data

Many more AKE variants

Two-sided AKE with forward secrecy:

AKE with end-point privacy:
 Goal: certificates are not visible to adversary (TLS 1.3)

AKE based on a shared secret between Alice and Bank:
* High entropy shared secret: want forward secrecy
 Password: ensure no offline dictionary attack (PAKE)

Online Cryptography Course Dan Boneh

Auth. key exchange

TLS v1.2 key exchange

TLS session setup (handshake)

Client ClientHello gand extensions) ; Server

ServerHello (and ext.),
[Certificate],

secret
[ServerKeyExchange], key

[Certificate] CertificateRequest],
: ServerHelloDone

cert

ClientKeyExchange,

[CertificateVerify]

ChangeCipherSpec

Finished ChangeCipherSpec
Finished

—

Application Data

Dan Boneh

Brief overview of SSL/TLS

browser server
ClientHello (cipher-list)

cert

ServerHello (cipher) , ServerCert (PK)

Finished (key & params confirmation)

HTTP data encrypted with KDF(PreK)

L

In this diagram: one sided authentication (no client authentication)

Dan Boneh

The need for negotiating ciphers

refer
= NIST ciphe

Us Browser

—

Prefer GOST
ciphers (Russian)

Web server

Russian browser in Russia

S not understand
ECDHE

old browser

Abstract TLS: RSA exchange (simplified)

Client ClientHello: r., SID, cipher-list Server
ServerHello: rc, SID, cipher, cert
. G >
pick random
46 byte PreK ClientkeyExchange: ¢ « E(pks, PreK)
decrypt c
MasterK <— PRF_(PreK, rcllr) to get PreK
SessionKeys «— PRF,.(MasterK, rcllr.)
Finished (FinishedData)
Finished (FinishedData)

Key Confirmation: FinishedData = PRF 4(MasterK, hash(HandshakeMessages))

Dan Boneh

I , []
ro p e rt I e S (3 Bank of America Corporation [US]) https://www.bankof:

Bank of America Corporation
(www.bankofamerica.com)
The identity of Bank of America Corporation at Chicago,

f'c, Is: prevent replay of of old session

Certificate Information
[3 Your connection to www.bankofamerica.com is encrypted
with 128-bit encryption.

RSA k h ° f d The connection uses TLS 1.0.
ey exc a nge L n o o rwa r se c re cy The connection is enci rypted using RC4_128, with MD5 for
message authentication and RSA as the key exchange

mechanism.

— Compromise of server secret key
exposes old sessions

— Costly RSA decryption on server, easier RSA enc. on client

One sided identification:
* Browser identifies server using server-cert
* Server has no guarantees about client’s identity
* TLS has support for mutual auth. (client needs sk. and cert,)

Dan Boneh

TLS key exchange with torward-secrecy (DHE)

(simplified) Fix prime p and g

sk¢: signing key

Client ClientHello(r,) Server

ServerHello(r,), Cert, ServerKeyExchange

verify cert. and o :
° D, 8 A—g° (p), 0<—sign(sK, (furyP,8,A)) | /andomainil.p

random bin 1..p

ClientKeyExchange: B«—gP (p)

ab PreK «— g2
AT & MasterK <— PRF_ (PreK, rcllr)

SessionKeys <— PRF,.(MasterK, rq | re)

_ Finished _
I Finished

-—eeee e

Dan Boneh

www.google.com

The identity of this website has been verified by Thawte SGC
CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit
encryption.

The connection uses TLS 1.0.

AT >, 'hSHAlfOF
d ECDHE _RSA as the key

The connection is encrypte
message authentication a
exchange mechanism.

Elliptic curve

Prefer ECDHE over DHE Diffie-Hellman

Dan Boneh

Performance: RSA vs. forward-secrecy

Cost of crypto operations on server per handshake:

 RSA key exchange: one RSA-2048 decryption (deprecated in TLS 1.3)

* ECDHE: Diffie-Hellman in group G with generatorg € G

1. One exp.tocompute A«—g® EG must be done
for every
2. One sig. on Diffie-Hellman parameters (G,g,A) handshake

3. One exp. to compute DH secret: PreK « g2 € G

Server support (2014): RSA (99.9%), DHE (60%), ECDHE(18%)

Session Resume

Goal: reduce # of full handshakes

Full handshake Session
= Store
L MasterK MasterK J
Few hours later (new TCP connection)
Abbreviated handshake /
— retrieve old

L reuse old MasterK

MasterK

Dan Boneh

Session resume (simplified)

Client

MasterK(bank) ClientHello: r., SID Bank

SID=0: full handshake SIDg «— SID. if SID. € ST

SID. # 0: resume old session SID; «— random, otherwise Session

Store (ST)

ServerHello: rg, SIDg
—
If SID, = SID, ¢

then resume .
else full SessionKeys «— PRF,.(MasterK, rllr.) MasterK(Alice)

ChangeCiEherSEec
ChangeCipherSpec Finished
—

Finished

Dan Boneh

THE END

