ID protocols

VWAl
w! ’

Overview

The Setup

b

Al

g. G

~

no key exchange

vk either public
or secret

Applications: physical world

— Physical locks: (friend-or-foe)
* Wireless car entry system
* Opening an office door

— Login at a bank ATM or a desktop computer

Applications: Internet

Login to a remote web site after a key-exchange
with one-sided authentication (e.g. HTTPS)

sk o

one-sided auth. key exchange

ID protocol

ID Protocols: how not to use

* |ID protocol do not establish a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attacks

sk o ° vk

o

anon. key exchange

ID protocol

ID Protocols: how not to use

e |ID protocol do not set up a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attack

proxy ID protocol
&

ID Protocols: Security Models

Direct Attacker: impersonates prover with no additional
information (other than vk)

— Door lock

Eavesdropping attacker: impersonates prover after eavesdropping

. Active attacker: interrogates prover and then attempts to
impersonate prover

— Fake ATM in shopping mall

on a few conversations between prover and verifier
— Wireless car entry system

Dan Boneh

ID protocols

Direct attacks

Basic Password Protocol (ncorrect version

* PWD: finite set of passwords

e Algorithm G (KeyGen):
e choose pw <« PWD. output sk=vk=pw.

sk

(A yes
iff sk=vk

»

Basic Password Protocol (ncorrect version

Problem: vk must be kept secret

 Compromise of server exposes all passwords

* Never store passwords in the clear!

password file on server

Alice PW,jice

Bob PWyoh

Basic Password Protocol: version 1

H: one-way hash function from PWD to X
* “Given H(x) itis difficult to find y such that H(y)=H(x)”

sk password file on server
= Alice H(pw,)
’ Bob H(pwg)

yes iff H(sk)=vk

Problem: Weak Password Choice

Users frequently choose weak passwords:
(SplashData, 2018, from more than 5 million passwords leaked on the Internet)

1. 123456 6. 111111
2. password 7. 1234567
3. 123456789 8. sunshine
4. 12345678 9. gqwerty
5. 12345 10. iloveyou

Dictionary of 360,000,000 words covers about 25% of user passwords

Dan Boneh

The 25 top passwords on the list cover more than 10% of users

Nearly 3% of people use the worst password, 123456.

Online dictionary attack: attacker has a list of usernames.
For each username the attacker tries the password ‘123456’

e Success after 33 tries on average (!)

Can be mitigated by e.g., IP-based rate limiting

Offline Dictionary Attacks

Suppose attacker obtains a single vk =H(pw) from server

e Offline attack: hash all words in Dict until a word w is found
such that H(w) = vk

e Time O(|Dict|) per password

Off the shelf tools (e.g. John the ripper):
* Scan through all 7-letter passwords in a few minutes
* Scan through 360,000,000 guesses in few seconds

= will recover 23% of passwords

Batch Offtline Dictionary Attacks

Suppose attacker steals entire pwd file F

* Obtains hashed pwds for all users Alice H(pwa)

e Example (2012): Linkedin (6M: SHA1(pwd)) Bob H(pws)

Batch dict. attack:

* For eachw e Dict: testif H(w) appearsin F (using fast look-up)

Total time: O(|Dict| + |[F|) [Linkedin: 6 days, 90% of pwds. recovered]

Much better than attacking each password individually !

Preventing Batch Dictionary Attacks

Public salt: id S h
« When setting password, Alice | Sy | H(pwa, Sp)
pick a random n-bit salt S Bob Sg H(pwyg , Sg)

 When verifying pw for A,

testif H(pw, S,) = h,

Recommended salt length, n =64 bits
* Attacker must re-hash dictionary for each user

Batch attack time is now: O(|Dict| x |F]|)

How to hash a password?

Linked-in: SHA1 hashed (unsalted) passwords

= 6 days, 90% of passwords recovered by exhaustive search

The problem: SHA1 is too fast ...
attacker can try all words in a large dictionary

To hash passwords:
* Use a keyed hash function (e.g., HMAC) where key stored in HSM

* |n addition: use a slow, space-hard function

How to hash?

PBKDF2, bcrypt: slow hash functions

* Slowness by “iterating” a crypto hash function like SHA256
Example: H(pw) = SHA256(SHA256(... SHA256(PW, S,) ...))

* Number of iterations: set for 1000 evals/sec

* Unnoticeable to user, but makes offline dictionary attack harder
Problem: custom hardware (ASIC) can evaluate
hash function 50,000x faster than a commodity CPU

= attacker can do dictionary attack much faster
than 1000 evals/sec.

How to hash: a better approach

Scrypt: a slow hash function AND need lots of memory to evaluate
= custom hardware not much faster than commodity CPU

Problem: memory access pattern depends on input password
= local attacker can learn memory access pattern
for a given password

= eliminates need for memory in an offline dictionary attack

Is there a space-hard function where time is independent of pwd?
e Password hashing competition (2015): Argon2i (also Balloon)

ID protocols

Security against
eavesdropping attacks

(one-time password systems)

Eavesdropping Security Model

/Adversary is given: O
* Server’s vk, and 0
e the transcript of several interactions between

honest prover and verifier. (example: remote car unlock)

_adv. goal is to impersonate prover to verifier

/

A protocol is “secure against eavesdropping” if no efficient
adversary can win this game

The password protocol is clearly insecure !

One-time passwords (secretv, stateful

Setup (algorithm G):
* Choose random key k
e Output sk=(k,0) ; vk=(k,0) 543502

Identification:

ro < F(k,0)
r, < F(k,1)

L—G digits

often, time-based updates: r <« F(k, time) [stateless]

Yes iff
r = F(k,0)

Dan Boneh

Th e SEC U rl D SySte m (secret vk, stateful)

“Thm”: if Fis a secure PRF then protocol
is secure against eavesdropping

RSA SecurlD uses AES-128:

128 bit key 1 6 digit output
32 bitctr —

Google Authenticator

Enter this verification code if

prompted during account sign-in:

Advancing state: sk « (k, i+1)

* Time based: every 60 seconds

e User action: every button press

Both systems allow for skew in the counter value

543502

Dan Boneh

Google authenticator

e 6-digit timed one-time passwords (TOTP) based on [RFC 6238]
 Wide web-site adoption:

— Evernote, Dropbox, WordPress, outlook.com, ...

To enable TOTP for a user: web site presents QR code with

embedded data: otpauth://totp/Example:alice@dropbox.com?
secret=JBSWY3DPEHPK3PXP & issuer=Example

(Subsequent user logins require user to present TOTP)

Danger: password reset upon user lockout

Server compromise exposes secrets

March 2011:
 RSA announced servers attacked, secret keys stolen
= enabled SecurlD user impersonation

Is there an ID protocol where server key vk is public?

The S/Key system (pubiicvk, statefu

Notation: H™M(x) = \H(H(.--H(X)---))}

n times
Algorithm G: (setup)

* Choose random key k « K
e Qutput sk=(kn) ; vk= H("+1)(k)

Identification:

k H(k) H™(k) H™P(k) B H™(K)
® ¥ G R RN [39 30 e >®
1 1 1 1 vk
pwd #4 pwd #3 pwd #2 pwd #1

The S/Key system (pubiicvk, statefu

/Identification (in detail): I

- Prover (sk=(k,i)): send t< HY (k) ; set sk« (k,i-1)

 Verifier(vk=H(*1)(k)): if H(t)=vk then vk«t, output “yes”

- /

Notes: vk can be made public;
but need to generate new sk after n logins (n = 10°)

“Thm”: S/Key, is secure against eavesdropping (public vk)
provided H is one-way on n-iterates

SecurlD vs. S/Key
5/Key:

* publicvk, limited number of authentications

* Long authenticator t (e.g., 80 bits)

SecurlD:

 secret vk, unlimited number of authentications

e Short authenticator (6 digits)

Online Cryptography Course Dan Boneh

ID protocols

Security against
active attacks

(challenge-response protocols)

Active Attacks

vk

@

o Offline fake ATM: interacts with user; later tries to
impersonate user to real ATM

probe #1

probe #q

»

Impersonate

» Offline phishing: phishing site interacts with user;
later authenticates to real site

All protocols so far are vulnerable

Dan Boneh

MAC-based Challenge Response (secret vk)

k < K

sk =k vk =k

random m <« M

Vyaclk, m, t)

“Thm”: protocol is secure against active attacks (secret vk),
provided (Syac, Vmac) 1S a secure MAC

MAC-based Challenge Response

Problems:

* vk must be kept secret on server

dictionary attack when k is a human pwd:

Given [m , Syac(pw, m)] eavesdropper can

try all pw € Dict to recover pw

Main benefit:

Both m and t can be short
CryptoCard: 8 chars each

CRYPTOCard

Sig-based Challenge Response (pubiicw

Replace MAC with a digital signature:

sk

(Sk, Vk) < GSIG

random m<« M

vk

t « Sign(k, m)

Verify(k, m, t)

“Thm”: Protocol is secure against active attacks (public vk),
provided (G ,Sign,Verify) is a secure digital sig.

but t is long (=20 bytes)

Signature-based Challenge Response
in the real world

The Universal Second Factor (U2F) Standard

Goals:

Browser malware cannot steal user credentials
U2F should not enable tracking users across sites
U2F uses counters to defend against token cloning

U2F token browser service (github.com)

The U2F protocol: two parts (simplified)

Device registration:

ID, challenge
@b
i '

1 kaDl SI8 D, handle

- ID, challenge

(/X (Pkip,

g\ pkip, sigp, handle

browser

handle)

service
(github.com)

Authentication:

o ID, chall., handle
i

skip

S|g|D, ctr

ID, chall., handle verify
- =¥
=’ si8
s sigip, ctr = with PK,
browser service

Dan Boneh

The U2F protocol: two parts (simplified)

Device registration:

~ ID, challenge ID, challenge (/\
o) d [=
1

1] kaDl Singl handle ' JEEEEEARRERE RN pk|D, Sig|D, handle handle)
sk Ibrowser | service
Mgithub.com)
‘ 4
Authentication: Unlinkable pk,p per site
- ID, chall., ha prevents user tracking across sites (/\ verify
’ —(Ec=) .
' \) B0 sig
“ O sigp, ctr [EE==\ Sigi, Ctr E—— with PK

skip browser service

Dan Boneh

Summary

ID protocols: useful in settings where adversary cannot interact
with prover during impersonation attempt

Three security models:

 Direct: passwords (properly salted and hashed)

* Eavesdropping attacks: One time passwords
— SecurID: secret vk, unbounded logins
— S/Key: public vk, bounded logins

* Active attacks: challenge-response

THE END

