Assignment \#1

Due: Monday, Nov. 1st, 2004.

Problem 1: a. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be an efficiently computable one-to-one function. Show that if f has a (t, ϵ) hard core bit then f is $(t, 2 \epsilon)$ one-way.
b. Show that if $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is a (t, ϵ) PRNG then G is also ($t^{\prime}, \epsilon^{\prime}$) one-way for some ($t^{\prime}, \epsilon^{\prime}$) close to (t, ϵ). Give the best bounds you can.
c. Show that if $F:\{0,1\}^{n} \times\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ is a (t, ϵ, q) PRF then

$$
G(s)=F(1, s)\|F(2, s)\| \cdots \| F(q, s)
$$

is a $(t-q, \epsilon)$ PRNG. We are assuming that evaluating F takes unit time.
Problem 2: Hybrid arguments (in part (a)).
a. Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a (t, ϵ) PRNG. Define the distributions P_{1} and P_{2} as:

$$
\begin{aligned}
& P_{1}=\left\{G\left(x_{1}\right), \ldots, G\left(x_{q}\right) \in\{0,1\}^{m}: x_{1}, \ldots, x_{q} \leftarrow\{0,1\}^{n}\right\} \\
& P_{2}=\left\{y_{1}, \ldots, y_{q} \leftarrow\{0,1\}^{m}\right\}
\end{aligned}
$$

Show that P_{1} and P_{2} are $(t-c q, q \epsilon)$ indistinguishable for some constant $c>0$.
b. Let H be a group of prime order q and $g \in H$ a fixed public generator. Consider the following PRNG, $G: \mathbb{Z}_{q}^{2} \rightarrow H^{3}$, defined by $G(a, b)=\left[g^{a}, g^{b}, g^{a b}\right]$. As above, define the two distributions:

$$
\begin{aligned}
& P_{1}=\left\{G\left(a_{1}, b_{1}\right), \ldots, G\left(a_{q}, b_{q}\right) \in H^{3}: a_{1}, b_{1} \ldots, a_{q}, b_{q} \leftarrow \mathbb{Z}_{q}\right\} \\
& P_{2}=\left\{h_{1}, \ldots, h_{3 q} \leftarrow H\right\}
\end{aligned}
$$

Show that if the (t, ϵ)-DDH assumption holds in H then P_{1} and P_{2} are $(t-c q, \epsilon)$ indistinguishable for some constant $c>0$ (assuming exponentiation in H takes constant time). Hence, for DDH PRNG we get a more efficient reduction than for general PRNG's.

Problem 3: Let $F:\{0,1\}^{n} \times\{0,1\}^{s} \rightarrow\{0,1\}^{t}$ be a (t, ϵ, q) unpredictable function (UF). For vectors $x, y \in\{0,1\}^{t}$ define $x \cdot y$ to be the inner product of x and y modulo 2, i.e. $x \cdot y=$ $\sum_{i=1}^{n} x_{i} y_{i} \bmod 2$. Define the function $F^{\prime}:\{0,1\}^{n} \times\{0,1\}^{s+t} \rightarrow\{0,1\}$ by

$$
F_{k, r}^{\prime}(x)=F^{\prime}(x,(k, r)) \stackrel{\text { def }}{=} F_{k}(x) \cdot r \in\{0,1\}
$$

Prove using the Goldreich-Levin algorithm that F^{\prime} is a $\left(t^{\prime}, \epsilon^{\prime}, q^{\prime}\right)$-PRF for some $t^{\prime}, \epsilon^{\prime}, q^{\prime}$. Give the best parameters $t^{\prime}, \epsilon^{\prime}, q^{\prime}$ you can.
As a simple application for this result, note that your proof suggests one way for converting any determinstic MAC into a symmetric encryption scheme.

Problem 4: Let $H=\left\{h_{k}:\{0,1\}^{N} \rightarrow\{0,1\}^{n}\right\}$ be a family of hash functions such that

$$
\forall x \neq y \in\{0,1\}^{N}: \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)]<\epsilon^{\prime} .
$$

Let $F:\{0,1\}^{n} \times\{0,1\}^{s} \rightarrow\{0,1\}^{t}$ be a (t, ϵ, q)-PRF.
Prove that $H F_{k 1, k 2}(M)=F_{k 1}\left(h_{k 2}(M)\right)$ is a $\left(t, \epsilon+\epsilon^{\prime}, q\right)$ unpredictable function (UF).
This gives a simple construction for a MAC on large inputs from a PRF and a Universal Hash Function (UHF).

Problem 5: Let $\pi:\{0,1\}^{n} \times\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ be a (t, ϵ, q) PRP. Given k, both $\pi_{k}(x)$ and $\pi_{k}^{-1}(x)$ can be efficiently computed. Show how to construct an SPRP out of π. Prove that your construction is a ($t^{\prime}, \epsilon^{\prime}, q$) SPRP. Give the best values of $t^{\prime}, \epsilon^{\prime}$ you can. Your solution suggests a way of converting any block cipher that is resistant to chosen PT attacks into a block cipher that resists both chosen PT and chosen CT attacks.

Problem 6: Let p be a prime and let $g \in \mathbb{Z}_{p}^{*}$ generate a subgroup of order q for some $q \equiv 3 \bmod 4$. Define $\operatorname{lsb}_{2}(x)=0$ if $x \bmod 4$ is 0 or 1 and $\operatorname{lsb}_{2}(x)=1$ otherwise. Let $f:\{0,1, \ldots, q-1\} \rightarrow \mathbb{Z}_{p}^{*}$ be the function $f(x)=g^{x} \bmod p$. Show that if $\operatorname{lsb}(x)$ is a (t, ϵ) hard core bit of f then so is $l^{l} b_{2}(x)$.

