Publications

Where Genetic Algorithms excel

Authors: E. Baum, D. Boneh, and C. Garrett

Abstract:
We analyze the performance of a Genetic Algorithm (GA) we call Culling and a variety of other algorithms on a problem we refer to as Additive Search Problem (ASP). ASP is closely related to several previously well studied problems, such as the game of Mastermind and additive fitness functions. We show that the problem of learning the Ising perceptron is reducible to a noisy version of ASP. Culling is efficient on ASP, highly noise tolerant, and the best known approach in some regimes. Noisy ASP is the first problem we are aware of where a Genetic Type Algorithm bests all known competitors. Standard GA's, by contrast, perform much more poorly on ASP than hillclimbing and other approaches even though the Schema theorem holds for ASP. We generalize ASP to k-ASP to study whether GA's will achieve `implicit parallelism' in a problem with many more schemata. GA's fail to achieve this implicit parallelism, but we describe an algorithm we call Explicitly Parallel Search that succeeds. We also compute the optimal culling point for selective breeding, which turns out to be independent of the fitness function or the population distribution. We also analyze a Mean Field Theoretic algorithm performing similarly to Culling on many problems. These results provide insight into when and how GA's can beat competing methods.

Reference:
Evolutionary Computation, MIT Press, Vol. 9, No. 1, pp. 93--124, 2001
Extended abstract in proceedings of COLT 1995

Full paper: html