
Secure Indexes*

Eu-Jin Goh
Stanford University

15 March 2004

* Generalizes an early version of my paper
“How to search on encrypted data”

on ePrint Cryptology Archive on 7 October 2003

Secure Indexes
Data Structures that —
• Index words (w1 , … , wn) in a doc
• Allow users with trapdoor for word w

to search only for w in O(1) time
• Contents hidden without trapdoor
• Index preserves semantic security of

encrypted documents
§ Do not hide public info about doc

(e.g. encrypted file size)

Applications

1. Searching on Encrypted Data
[SWP00, G03, BDOP03, CM04]

2. Encrypted Searchable Audit Logs
[WBDS04]

3. Private Database Queries [BC04]

4. Accumulated Hashing
5. Private Set Membership Test

Talk Overview

1. Security model
• IND-CKA — almost always sufficient
• IND2-CKA — stronger (by [CM04])

2. Efficient Construction (Z-IDX)
• Variants secure in both models

Secure Index Scheme

Consists of 4 algorithms —
1. Keygen
2. Trapdoor
3. BuildIndex
4. SearchIndex

IND-CKA Intuition
Goal — Semantic Security

Α cannot deduce doc contents from index

IND-CKA Intuition

Captured using standard IND Game —
1. Α chooses 2 equal size docs V0 , V1 and

is given index I for either V0 or V1

2. V0 and V1 (possibly) unequal # words
3. Α guesses which doc is indexed by I

Goal — Semantic Security
Α cannot deduce doc contents from index

IND-CKA Intuition
Goal — Semantic Security

Α cannot deduce doc contents from index

Chosen Keyword Attack (CKA) — Α given
1. plain text access to all docs + indexes
2. queries for any trapdoor of its choice

(restricted after challenge)

Captured using standard IND Game —
1. Α chooses 2 equal size docs V0 , V1 and

is given index I for either V0 or V1

2. V0 and V1 (possibly) unequal # words
3. Α guesses which doc is indexed by I

IND2-CKA Intuition

Captured using standard IND2 Game —
1. Α chooses 2 docs V0 , V1 and is given

index I for either V0 or V1

2. V0 ,V1 (possibly) unequal size + # words
3. Α guesses which doc is indexed by I

Goal — Semantic Security
Α cannot deduce doc contents from index

Chosen Keyword Attack (CKA) — Α given
1. plain text access to all docs + indexes
2. queries for any trapdoor of its choice

(restricted after challenge)

IND-CKA vs. IND2-CKA
IND-CKA
§ Equal size docs have indexes that appear to

contain same # of words/tokens
IND2-CKA [CM04]
§ Unequal size docs have indexes that appear

to contain same # of words/tokens
§ But can already distinguish indexes for

unequal size docs from doc size

IND-CKA vs. IND2-CKA
IND-CKA
§ Equal size docs have indexes that appear to

contain same # of words/tokens
IND2-CKA [CM04]
§ Unequal size docs have indexes that appear

to contain same # of words/tokens
§ But can already distinguish indexes for

unequal size docs from doc size

IND2-CKA model appears too strong
§ IND-CKA probably strong enough + gives

more efficient constructions

Construction Z-IDX

Z-IDX built using
1. Bloom filters (BF) —
§ Efficiently test set membership
§ O(1) insert/test algorithms

2. Pseudo-random functions (PRF)
§ emulate “random functions”

IND-CKA
Z-IDX

Keygen (s): PRF f: {0,1}n × {0,1}s → {0,1}s

Output Kpriv = (k1 , … , kr) {0,1}srR

Keygen (s): PRF f: {0,1}n × {0,1}s → {0,1}s

Output Kpriv = (k1 , … , kr) {0,1}sr

Trapdoor (Kpriv, w):
Output Tw = (f(w , k1) , … , f(w , kr)) ∈ {0,1}sr

R

IND-CKA
Z-IDX

Keygen (s): PRF f: {0,1}n × {0,1}s → {0,1}s

Output Kpriv = (k1 , … , kr) {0,1}sr

Trapdoor (Kpriv, w):
Output Tw = (f(w , k1) , … , f(w , kr)) ∈ {0,1}sr

BuildIndex (D, Kpriv): Let D = (Did , w0 , …, wn),
u = upper bound on # words for doc of size |D|
1) For w0, …, wn, do

a) Compute Twi
= (x1 = f(wi , k1) , … , xr = f(wi , kr))

b) Compute + insert (f(Did , x1) , … , f(Did , xr)) in BF
2) Insert (u – n)·r of 1’s uniformly at random in BF
3) Output ID = (Did , BF)

R

IND-CKA
Z-IDX

Keygen (s): PRF f: {0,1}n × {0,1}s → {0,1}s

Output Kpriv = (k1 , … , kr) {0,1}sr

Trapdoor (Kpriv, w):
Output Tw = (f(w , k1) , … , f(w , kr)) ∈ {0,1}sr

BuildIndex (D, Kpriv): Let D = (Did , w0 , …, wn),
u = upper bound on # words for doc of size |D|
1) For w0, …, wn, do

a) Compute Twi
= (x1 = f(wi , k1) , … , xr = f(wi , kr))

b) Compute + insert (f(Did , x1) , … , f(Did , xr)) in BF
2) Insert (u – n)·r of 1’s uniformly at random in BF
3) Output ID = (Did , BF)

SearchIndex (Tw, ID): Let Tw = (x1, … , xr), ID = (Did , BF)
1) Compute (y1 = f(Did , x1) , … , yr = f(Did , xr))
2) Test if BF contains 1’s in all y1, … , yr locations

R

IND-CKA
Z-IDX

Keygen (s): PRF f: {0,1}n × {0,1}s → {0,1}s

Output Kpriv = (k1 , … , kr) {0,1}sr

Trapdoor (Kpriv, w):
Output Tw = (f(w , k1) , … , f(w , kr)) ∈ {0,1}sr

BuildIndex (D, Kpriv): Let D = (Did , w0 , …, wn),
u = global upper bound on # words for single doc
1) For w0, …, wn, do

a) Compute Twi
= (x1 = f(wi , k1) , … , xr = f(wi , kr))

b) Compute + insert (f(Did , x1) , … , f(Did , xr)) in BF
2) Insert (u – n)·r of 1’s uniformly at random in BF
3) Output ID = (Did , BF)

SearchIndex (Tw, ID): Let Tw = (x1, … , xr), ID = (Did , BF)
1) Compute (y1 = f(Did , x1) , … , yr = f(Did , xr))
2) Test if BF contains 1’s in all y1, … , yr locations

R

IND2-CKA
Z-IDX

Z-IDX Properties

1. Handle arbitrary updates
2. Compressible Indexes

• Space efficient for small and medium size docs

3. Short Trapdoors
4. Computationally very efficient
5. Occurrence Search
6. Efficient Boolean + Limited Regex Queries
7. Simple Key Management

Chang-Mitzenmacher (Feb 2004)
§ Based on similar techniques as Z-IDX
§ IND2-CKA secure
§ Use pre-built dictionaries

Chang-Mitzenmacher (Feb 2004)
§ Based on similar techniques as Z-IDX
§ IND2-CKA secure
§ Use pre-built dictionaries

Advantages
§ More space efficient than IND2-CKA secure Z-IDX
§ No false positives (negligible in Z-IDX with proper

choice of BF params)

Chang-Mitzenmacher (Feb 2004)
§ Based on similar techniques as Z-IDX
§ IND2-CKA secure
§ Use pre-built dictionaries

Disadvantages
§ Cannot handle arbitrary updates
§ Much less comp. efficient than both Z-IDX’s
§ Large fixed size indexes — not compressible

⇒ less space efficient than IND-CKA Z-IDX for
small and medium size docs

Advantages
§ More space efficient than IND2-CKA secure Z-IDX
§ No false positives (negligible in Z-IDX with proper

choice of BF params)

