
Encryption Schemes from Bilinear Maps

Eu-Jin Goh

September 8, 2007

Dedication

This thesis is dedicated to my parents, Goh Ah Hock and Tan Chor Ngan, my aunt Tan Chor
Koon, my sister Goh Yen-Li, and my wife Serene Koh. It is also dedicated to the memory of my
late grandmother Tan Poh Tee.

Acknowledgements

This thesis would have been impossible without the unstinting support and mentoring of my advisor,
Dan Boneh, and also the members of both the Applied Crypto and the Security Group at Stanford;
in particular, Hovav Shacham, Nagendra Modadugu, Stanis law Jarecki, Philippe Golle, and John
Mitchell.

1

Abstract

Encryption schemes are designed to provide data confidentiality and are a fundamental crypto-
graphic primitive with many applications in higher-level protocols. Groups with a bilinear map
allow us to build public key encryption schemes with new properties that are otherwise difficult to
obtain using groups without a bilinear map. We support our thesis by presenting two encryption
schemes based on bilinear groups; the first is a partial solution to the open problem on doubly
homomorphic encryption proposed by Rivest et al. in 1978, and the second is the most efficient
hierarchical identity based encryption scheme to date.

Our main result deals with homomorphic encryption. Using bilinear groups, we developed
a homomorphic encryption scheme based on the subgroup decision complexity assumption; this
encryption scheme is additively homomorphic and also possesses an additional limited (single)
multiplicative homomorphism. Even with such limitations, our encryption scheme allows us to
evaluate on encrypted inputs useful formulas such as polynomials of total degree at most two and dot
products. Our encryption scheme also lends itself naturally to a secure function evaluation protocol
for computing 2-DNFs, which can be used to improve private information retrieval protocols.

Our second result deals with hierarchical identity based encryption (HIBE), a generalization of
identity based encryption. In previous constructions for HIBE, the length of ciphertexts, as well as
the time needed for decryption, grows linearly with the depth of the hierarchy. Our HIBE system has
ciphertext size, as well as decryption cost, that is independent of the hierarchy depth. The principal
applications for HIBE are forward secure encryption and public key broadcast encryption. Using
our HIBE system instead of existing HIBE systems in these two applications results in substantial
reductions in the ciphertext size of both these applications.

2

Contents

1 Introduction 5

2 Mathematical Background 7
2.1 Bilinear groups . 7
2.2 Constructing bilinear groups of a given order n . 7
2.3 The subgroup decision problem . 8
2.4 The linear problem . 8
2.5 Bilinear Diffie-Hellman Inversion Assumption . 9
2.6 Diffie-Hellman Problems in Generic Bilinear Groups 10

2.6.1 General Diffie-Hellman Exponent Problem . 11
2.6.2 Complexity Lower Bound in Generic Bilinear Groups 11
2.6.3 The Case of the Strong Diffie-Hellman Assumption 15

3 Homomorphic Encryption 16
3.1 Two homomorphic public-key systems . 18

3.1.1 Homomorphic system based on the subgroup decision problem 18
3.1.2 Homomorphic system based on the linear problem 21
3.1.3 Comparison . 23

3.2 Two party efficient SFE for 2-DNF . 24
3.2.1 The basic protocol . 24
3.2.2 Example application – private information retrieval 26
3.2.3 Security of the 2-DNF protocol against a malicious Bob. 27

3.3 An efficient election protocol without random oracles 31
3.3.1 Election scheme 1 . 32
3.3.2 Election scheme 2 . 33

3.4 Universally Verifiable Computation . 34
3.4.1 A protocol for verifying C(a) . 34

3.5 Summary and open problems . 35

4 Hierarchical Identity Based Encryption 37
4.1 A HIBE System with Constant Size Ciphertext . 38

4.1.1 Security . 39
4.1.2 Full HIBE Security . 43

4.2 Extensions . 44
4.2.1 Limited Delegation . 44

3

4.2.2 HIBE with Short Private Keys . 44
4.2.3 Asymmetric Bilinear Groups and MNT Curves. 50

4.3 Applications . 50
4.3.1 Forward Secure Encryption . 50
4.3.2 Forward Secure HIBE . 51
4.3.3 Public Key NNL Broadcast Encryption . 51
4.3.4 Encrypting to the Future . 51

4.4 Summary and Open Problems . 52

Bibliography 53

4

Chapter 1

Introduction

Encryption schemes are designed to provide data confidentiality, and are a fundamental crypto-
graphic primitive with many applications in higher-level protocols. Humans have been interested
in encryption schemes since the Spartans who used simple transposition ciphers in 400 BC [1].
Modern encryption schemes have fortunately progressed greatly since the Spartans.

Modern encryption schemes are classified in two broad categories — 1) symmetric key encryp-
tion, and 2) public key encryption. In symmetric key encryption, the same secret key is used to both
encrypt and decrypt; an example of a symmetric key cryptosystem is the block cipher AES [25].
In public key encryption, anyone can use the public key to encrypt data, but only the holder of
the corresponding private key can decrypt ciphertexts; an example of a public key cryptosystem is
the RSA encryption scheme [61]. By preventing the decryption of ciphertexts without knowledge
of the secret key, encryption schemes thus provide data confidentiality. In this thesis, we focus on
public key encryption.

Traditional public key encryption schemes, such as RSA and ElGamal [29] for example, are
based on finite groups of prime or composite order. Our thesis deals with encryption schemes
based on bilinear groups; bilinear groups are finite groups on certain elliptic curves that possess a
bilinear map.

Our Thesis. Groups with a bilinear map allow us to build public key encryption schemes with
new properties that are otherwise difficult to obtain using groups without a bilinear map.

Evidence. We support our thesis by presenting two encryption schemes based on bilinear groups;
the first is a partial solution to the open problem on doubly homomorphic encryption proposed by
Rivest et al. [60] in 1978, and the second is the most efficient hierarchical identity based encryption
scheme to date.

Our main result deals with homomorphic encryption. An encryption scheme is additively (resp.
multiplicatively) homomorphic if given the encryption of a message A and the encryption of B,
anyone can compute the encryption of A + B (resp. A × B). An encryption scheme that is both
additively and multiplicatively homomorphic is called doubly homomorphic. Known homomorphic
encryption schemes that do not expand the ciphertext are either only additively or multiplicatively
homomorphic, but not both. Developing a doubly homomorphic scheme is important because any
logical function can be computed on ciphertext created using a doubly homomorphic encryption

5

scheme, which in turn gives an efficient solution to two party secure function evaluation in the
honest but curious setting.

Using bilinear groups, we developed a encryption scheme based on the subgroup decision com-
plexity assumption; this encryption scheme is additively homomorphic and also possesses an addi-
tional limited (single) multiplicative homomorphism. Even with such limitations, our encryption
scheme allows us to evaluate on encrypted inputs useful formulas such as polynomials of total de-
gree at most two and dot products. Our encryption scheme also lends itself naturally to a secure
function evaluation protocol for computing 2-DNFs, which can be used to improve private infor-
mation retrieval protocols. In fact, our schemes were used in 2006 to develop the first statistical
non-interactive zero-knowledge argument for all NP languages [41], solving a 20 year old open
problem.

Our second result deals with identity based encryption (IBE). An IBE system [65, 9] is a public
key system where the public key can be an arbitrary string such as an email address. A central
authority uses a master key to issue private keys to identities that request them. Hierarchical IBE
(HIBE) [43, 34] is a natural extension of IBE that mirrors an organizational hierarchy. An identity
at level k of the hierarchy tree can issue private keys to its descendant identities, but cannot decrypt
messages intended for other identities.

In existing constructions for HIBE [43, 34, 5], the length of ciphertexts, as well as the time
needed for decryption, grows linearly with the depth of the hierarchy. On the other hand, our
HIBE system has ciphertext size, as well as decryption cost, that is independent of the hierarchy
depth. The principal applications for HIBE are forward secure encryption [19] and public key
broadcast encryption [54, 27]. Using our HIBE system instead of existing HIBE systems in these
two applications results in substantial reductions in the ciphertext size of both these applications.

Previous Publications. The homomorphic encryption scheme of Chapter 3 based on the sub-
group decision complexity assumption originally appeared in “Evaluating 2-DNF formulas on ci-
phertext,” joint work with Dan Boneh and Kobbi Nissim, of which an extended abstract was
presented at the Theory of Cryptography Conference in 2005 [12].

The hierarchical identity based encryption scheme of Chapter 4 originally appeared in “Hierar-
chical Identity Based Encryption with Constant Size Ciphertext,” joint work with Dan Boneh and
Xavier Boyen, of which an extended abstract was presented at Eurocrypt 2005 [7].

6

Chapter 2

Mathematical Background

We give a brief treatment of the bilinear groups underlying our encryption schemes, and also
state the complexity assumptions used in our thesis. To gain more confidence in our complexity
assumptions, we prove computational lower bounds in the generic group model on the difficulty of
breaking a general assumption that encompasses two of our assumptions.

2.1 Bilinear groups

We use the following notation:

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G × G → G1. In other words, for all u, v ∈ G and a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab. We also require that e(g, g) is a generator of G1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists both a group G1 and an efficiently computable bilinear map e : G×G→ G1 as above.

2.2 Constructing bilinear groups of a given order n

One of our homomorphic constructions makes use of certain finite groups of composite order that
support a bilinear map, and we now show how to construct such groups. Let n > 3 be a given
square-free integer that is not divisible by 3. We construct a bilinear group G of order n as follows:

1. Find the smallest positive integer ` ∈ Z such that p = `n− 1 is prime and p = 2 mod 3.

2. Consider the group of points on the (super-singular) elliptic curve y2 = x3 + 1 defined over
Fp. Since p = 2 mod 3 the curve has p + 1 = `n points in Fp. Therefore the group of points
on the curve has a subgroup of order n which we denote by G.

3. Let G1 be the subgroup of F∗p2 of order n. The modified Weil pairing on the curve [49, 45,
10, 50] gives a bilinear map e : G×G→ G1 with the required properties.

7

2.3 The subgroup decision problem

We define an algorithm G that given a security parameter τ ∈ Z+ as input, outputs a tuple
(q1, q2,G,G1, e) where G,G1 are groups of order n = q1q2 and e : G × G → G1 is a bilinear map.
On input τ , algorithm G works as follows:

1. Generate two random τ -bit primes q1, q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described at the end of Section 2.1. Let g be a

generator of G and e : G×G→ G1 be the bilinear map.
3. Output (q1, q2,G,G1, e).

We note that the group action in G,G1 as well as the bilinear map can be computed in polynomial
time in τ .

Let τ ∈ Z+ and let (q1, q2,G,G1, e) be a tuple produced by G(τ) where n = q1q2. Consider the
following problem: given (n,G,G1, e) and an element x ∈ G, output ‘1’ if the order of x is q1 and
output ‘0’ otherwise; that is, without knowing the factorization of the group order n, decide if an
element x is in a subgroup of G. We refer to this problem as the subgroup decision problem. For
an algorithm A, we define the advantage of A in solving the subgroup decision problem as:

SD-AdvA(τ) =
∣∣∣∣Pr

[
A(n,G,G1, e, x) = 1 :

(q1, q2,G,G1, e)← G(τ),

n = q1q2, x
R← G

]

− Pr

[
A(n,G,G1, e, x

q2) = 1 :
(q1, q2,G,G1, e)← G(τ),

n = q1q2, x
R← G

] ∣∣∣∣
where the probability is over the random choice of x in G.

Definition 2.3.1. We say that G satisfies the subgroup decision assumption if for any polynomial
time algorithm A we have that SD-AdvA(τ) is a negligible function in τ .

Informally, the assumption states that the uniform distribution on G is indistinguishable from
the uniform distribution on a subgroup of G. Recall that the factorization of the order of G is
hidden so that the order of subgroups of G remains unknown to a polynomial time adversary.

2.4 The linear problem

We define an algorithm G that given a security parameter τ ∈ Z+ as input, outputs a tuple
(p,G,G1, e) where p is prime, G,G1 are groups of order p and e : G × G → G1 is a bilinear map.
On input τ , algorithm G works as follows:

1. Generate a random τ -bit prime p
2. Generate a bilinear group G of order p. Let e : G×G→ G1 be the bilinear map.
3. Output (p,G,G1, e).

We note that the group action in G,G1 as well as the bilinear map can be computed in polynomial
time in τ .

8

Let τ ∈ Z+ and let (p,G,G1, e) be a tuple produced by G(τ). If g1, g2, and g3 are arbitrary
generators of G, then the linear problem is defined as: given g1, g2, g3, ga

1 , g
b
2, g

c
3 ∈ G as input, output

1 if a+ b = c and 0 otherwise. The advantage of an algorithm A in deciding the linear problem is

Linear-AdvA(τ) =∣∣∣∣Pr

[
A(p,G,G1, e, g1, g2, g3, g

a
1 , g

b
2, g

a+b
3) = 1 :

(p,G,G1, e)← G(τ),

g1, g2, g3
R← G, a, b R← Zp

]

− Pr

[
A(p,G,G1, e, g1, g2, g3, g

a
1 , g

b
2, g

c
3) = 1 :

(p,G,G1, e)← G(τ),

g1, g2, g3
R← G, a, b, c R← Zp

] ∣∣∣∣
where the probability is over the random choices of g1, g2, g3 in G and a, b, c in Zp.

Definition 2.4.1. We say that G satifies the linear decision assumption if for any polynomial time
algorithm A, we have that Linear-AdvA(τ) is a negligible function in τ .

The linear problem is well-defined in any group where DDH is also well-defined; it is usually
used in bilinear groups.

2.5 Bilinear Diffie-Hellman Inversion Assumption

Let G be a bilinear group of order p. Let w ∈ G be a generator and β ∈ Z∗
p. The `-th Bilinear

Diffie-Hellman Inversion problem [5, 51], denoted `-BDHI, is as follows:

`-BDHI : given w,wβ, w(β2), . . . , w(β`) compute e(w,w)1/β (2.1)

Loosely speaking, the `-BDHI assumption in G says that no efficient algorithm can solve `-BDHI
in G with non-negligible probability.

Weak BDHI Assumption. Our security theorems can be shown under a slightly weaker as-
sumption, which we call Weak BDHI, and denote `-wBDHI. This assumption is weaker in the sense
that the `-wBDHI assumption holds in any group where `-BDHI holds, though the converse is not
known to be true. To state the strongest results, we will use Weak BDHI throughout the paper.

Let g and h be two random generators of G. Let α be a random number in Z∗
p. We define the

(equivalent) `-wBDHI and `-wBDHI* problems as follows:

`-wBDHI : given g, h, gα, g(α2), . . . , g(α`) compute e(g, h)1/α (2.2)

`-wBDHI*: given g, h, gα, g(α2), . . . , g(α`) compute e(g, h)(α
`+1) (2.3)

These two problems are equivalent under a linear time reduction. The wBDHI problem (2.2) is seen
to be more naturally related to the BDHI problem (2.1), but we will, for notational convenience,
base our proofs on the wBDHI* problem (2.3).

It is easy to see that an algorithm for `-wBDHI or `-wBDHI* in G gives an algorithm for
`-BDHI with a tight reduction. Indeed, given a `-BDHI problem instance (w,w1, . . . , w`), define
the `-wBDHI* instance (w`, h, w`−1, . . . , w1, w) where h = wr

` for some random exponent r ∈ Z∗
p.

Let T ′ be the solution to this `-wBDHI* problem instance, then T = (T ′)1/r is the solution to the
original `-BDHI instance.

9

We now define precisely the computational and decisional `-wBDHI assumptions. For conve-
nience, we define them in reference to the `-wBDHI* problem. As shorthand, let yi = g(αi) ∈ G∗.
An algorithm A has advantage ε in solving the `-wBDHI* problem in G if

Pr
[
A
(
g, h, y1, . . . , y`

)
= e(g, h)(α

`+1)
]
≥ ε,

where the probability is over the random choice of generators g in G∗, ,h in G, the random choice
of α in Z∗

p, and the random bits used by A. The decisional version of the `-wBDHI* problem in G
is defined in the usual manner, as follows. Let ~yg,α,` = (y1, . . . , y`). An algorithm B that outputs
b ∈ {0, 1} has advantage ε in solving Decision `-wBDHI* in G if∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`, e(g, h)(α

`+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g in G∗,h in G, the random choice
of α in Z∗

p, the random choice of T ∈ G∗
1, and the random bits consumed by B. We refer to the

distribution on the left as PwBDHI∗ and the distribution on the right as RwBDHI∗ .
Asymptotically speaking, we say that G satisfies the wBDHI∗ assumption if any polynomial

time algorithm’s advantage in solving the `-wBDHI∗ problem in G is negligible for any polynomial
`. For the rest of this paper, however, we will use the following concrete definition of the wBDHI
assumption.

Definition 2.5.1. We say that the (Decision) (t, ε, `)-wBDHI∗ assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (Decision) `-wBDHI* problem in G.

For conciseness we occasionally drop the t and ε and simply refer to the (Decision) `-wBDHI
assumption in G. As mentioned above, the computational and decisional `-BDHI assumptions in G
respectively imply the computational and decisional `-wBDHI assumptions in G. In Section 2.6.1
and 2.6.2, we show that a broad class of assumptions, including the `-wBDHI assumption, hold in
generic bilinear groups [66].

2.6 Diffie-Hellman Problems in Generic Bilinear Groups

A number of Diffie-Hellman-type complexity assumptions in bilinear groups have been used to con-
struct efficient cryptosystems. These assumptions include the Bilinear DH assumption (BDH) [9],
the Bilinear DH Inversion assumption (BDHI) [5], the Linear DH assumption [8], and the BDHE
assumption used in [11], and others. To gain some confidence in these assumptions, including the
BDHI assumption that is used in this thesis, one can prove computational lower bounds on the dif-
ficulty of breaking them in a generic bilinear group model [66]. Rather than prove a separate lower
bound for each assumption, we give a general lower bound that encompasses all the assumptions
listed above. This “master” generic-group lower bound can be used to qualify other assumptions
that may come up in future constructions. We emphasize, however, that lower bounds in generic
groups do not imply a lower bound in any specific group.

The Strong Diffie-Hellman (SDH) assumption [6] stands out from the list above and is not
covered by the “master” argument. We briefly mention the reasons for this in Section 2.6.3.

10

2.6.1 General Diffie-Hellman Exponent Problem

Let p be an integer prime and let s, n be positive integers. Let P,Q ∈ Fp[X1, . . . , Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . , Xn]. Thus, P and Q are just
two ordered sets containing s multi-variate polynomials each. We write P = (p1, p2, . . . , ps) and
Q = (q1, q2, . . . , qs). We require that the first components of P,Q satisfy p1 = q1 = 1; that is, the
constant polynomials 1. For a set Ω, a function h : Fp → Ω, and a vector x1, . . . , xn ∈ Fp, we write

h(P (x1, . . . , xn)) =
(
h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))

)
∈ Ωs.

We use similar notation for the s-tuple Q. Let G0,G1 be groups of order p and let e : G0×G0 → G1

be a non-degenerate bilinear map. Let g ∈ G0 be a generator of G0 and set g1 = e(g, g) ∈ G1.

We define the (P,Q, f)-Diffie-Hellman Problem in G as follows: Given the vector

H(x1, . . . , xn) =
(
gP (x1,...,xn), g

Q(x1,...,xn)
1

)
∈ Gs

0 ×Gs
1,

compute gf(x1,...,xn)
1 ∈ G1.

To obtain the most general result, we study the decisional version of this problem. We say that
an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision (P,Q, f)-Diffie-
Hellman problem in G0 if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generator g ∈ G0, the random choice of x1, . . . , xn

in Fp, the random choice of T ∈ G1, and the random bits consumed by B.
Before we can state the lower bound on the decision problem above, we need the following

natural definition.

Definition 2.6.1. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp.
Write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) where p1 = q1 = 1. We say that a polynomial
f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q) if there exist s2+s constants {ai,j}si,j=1, {bk}sk=1

such that

f =
s∑

i,j=1

ai,jpipj +
s∑

k=1

bkqk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . , Xn]s, we let df denote the total degree of f . For a set
P ⊆ Fp[X1, . . . , Xn]s we let dP = max{df | f ∈ P}.

2.6.2 Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic group model [66]. We consider
two random encodings ξ0, ξ1 of the additive group Z+

p , i.e. injective maps ξ0, ξ1 : Z+
p → {0, 1}m. For

i = 0, 1 we write Gi = {ξi(x) | x ∈ Z+
p }. We are given oracles to compute the induced group action

on G0,G1, and an oracle to compute a non-degenerate bilinear map e : G0×G0 → G1. We refer to
G0 as a generic bilinear group. The following theorem gives a lower bound on the advantage of a
generic algorithm in solving the decision (P,Q, f)-Diffie-Hellman problem. We emphasize, however,
that a lower bound in generic groups does not imply a lower bound in any specific group.

11

Theorem 2.6.1. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). Let ξ0, ξ1 and G0,G1 be defined as above. If
f is independent of (P,Q) then for any A that makes a total of at most q queries to the oracles
computing the group operation in G0,G1 and the bilinear pairing e : G0 ×G0 → G1 we have:

∣∣∣∣Pr

A
 p, ξ0(P (x1, . . . , xn)),

ξ1(Q(x1, . . . , xn)),
ξ1(t0), ξ1(t1)

 = b :

x1, . . . , xn, y
R← Fp,

b
R← {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

 − 1
2

∣∣∣∣ ≤ (q + 2s+ 2)2 · d
2p

Proof. Consider an algorithm B that plays the following game with A. Algorithm B maintains two
lists of pairs,

L0 = {(pi, ξ0,i) : i = 1, . . . , τ0} , L1 = {(qi, ξ1,i) : i = 1, . . . , τ1} ,

under the invariant that at step τ in the game, τ0 + τ1 = τ + 2s+ 2. Here, pi ∈ Fp[X1, . . . , Xn] and
qi ∈ Fp[X1, . . . , Xn, Y0, Y1] are multi-variate polynomials. The ξ?,? are strings in {0, 1}m.

The lists are initialized at step τ = 0 by initializing τ0 = s and τ1 = s + 2. We set p1, . . . , ps

in L0 to be the polynomials in P and we set q1, . . . , qs in L1 to be the polynomials in Q. We also
set qs+1 = Y0 and qs+2 = Y1. Algorithm B complete the preparation of the lists L0, L1 by setting
the ξ-strings associated with distinct polynomials to random strings in {0, 1}m. Overall, initially
L0 contains s entries and L1 contains s+ 2 entries.

We can assume that A makes oracle queries only on strings obtained from B, since B can make
the strings in G0,G1 arbitrarily hard to guess by increasing m. We note that B can easily determine
the index i of any given string ξj,i in Lj (ties are broken arbitrarily). B starts the game by providing
A with the value of p and a tuple of strings

{ξ0,i}si=1, {ξ1,i}s+2
i=1 ,

meant to encode some tuple ∈ Gs
0 ×Gs+2

1 . Algorithm B responds to A’s oracle queries as follows.

Group operation in G0,G1. A query in G0 consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0
and a selection bit indicating whether to multiply or divide the group elements. To answer,
let τ ′0 ← τ0 + 1. Perform the polynomial addition or subtraction pτ ′0

← pi ± pj depending on
whether multiplication or division is requested. If the result pτ ′0

= pl for some l ≤ τ0, then
set ξ0,τ ′0

← ξ0,l; otherwise, set ξ0,τ ′0
to a new random string in {0, 1}m \{ξ0,1, . . . , ξ0,τ0}. Insert

the pair (pτ ′0
, ξ0,τ ′0

) into the list L0 and update the counter τ0 ← τ ′0. Algorithm B replies to
A with the string ξ0,τ ′0

.

G1 queries are handled analogously, this time by working with the list L1 and the counter τ1.

Bilinear pairing. A query of this type consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0. To
respond, B sets τ ′1 ← τ1 + 1, and performs the polynomial multiplication rτ ′1 ← pi · pj . If
the result qτ ′1 = ql for some l ≤ τ1, it assigns ξ1,τ ′1

← ξ1,l; otherwise, it sets ξ1,τ ′1
to a fresh

random string in {0, 1}m\{ξ1,1, . . . , ξ1,τ1−1}. Finally, it adds (qτ ′1 , ξ1,τ ′1
) to the list L1, updates

τ1 ← τ ′1, and outputs ξ1,τ ′1
as answer to the query.

After at most q queries, A terminates and returns a guess b′ ∈ {0, 1}. At this point B chooses
random x1, . . . , xn, y

R← Fp and b
R← {0, 1}. Let yb = f(x1, . . . , xn) and y1−b = y.

12

For i = 1, . . . , n, we set Xi = xi, Y0 = y0, and Y1 = y1. It follows that the simulation provided
by B is perfect unless the chosen random values for the variables X1, . . . , Xn, Y0, Y1 result in an
equality relation between intermediate values that is not an equality of polynomials. In other words,
the simulation is perfect unless for some i, j one of the following holds:

1. pi(x1, . . . , xn)− pj(x1, . . . , xn) = 0, yet the polynomials pi and pj are not equal.

2. qi(x1, . . . , xn, y0, y1)− qj(x1, . . . , xn, y0, y1) = 0, yet the polynomials qi and qj are not equal.

Let fail be the event that one of these two conditions holds. When event fail occurs, then B’s
responses to A’s queries deviate from the real oracles’ responses when the input tuple is derived
from the vector (x1, . . . , xn, y0, y1) ∈ Fn+2

p .
We first bound the probability that event fail occurs. We bound the probability in two steps.

First, consider setting Yb = f(X1, . . . , Xn). We claim that this symbolic substitution does not
create any new equalities between polynomials qi, qj . In other words, if qi− qj 6= 0 for all i, j before
the substitution, then qi−qj 6= 0 also holds after we set Yb = f(X1, . . . , Xn). This statement follows
because f is independent of (P,Q). Indeed, qi − qj is a polynomial of the form

s∑
k=1

s∑
l=1

ak,l pk pl +
s∑

u=1

bu qu + c Y0 + d Y1

for some constants ak,l, bu, c, d ∈ Fp. If this polynomial is non-zero but setting Yb = f(X1, . . . , Xn)
causes this polynomial to vanish, then f must be dependent on (P,Q).

We are now left with polynomials in X1, . . . , Xn, Y1−b. We need to bound the probability that for
some i, j we get (pi− pj)(x1, . . . , xn) = 0 even though pi− pj 6= 0, or that (qi− qj)(x1, . . . , x,y) = 0
even though qi − qj 6= 0. By construction, the maximum total degree of these polynomials is
d = max(2dP , dQ, df). Therefore, for a given i, j the probability that a random assignment to

X1, . . . , Xn, Y1−b
R← Fp is a root of qi − qj is at most d/p. The same holds for pi − pj . Since there

are no more than 2
(
q+2s+2

2

)
such pairs (pi, pj) and (qi, qj) in total, we have that

Pr[fail] ≤
(
q + 2s+ 2

2

)
2d
p
≤ (q + 2s+ 2)2d/p

If event fail does not occur, then B’s simulation is perfect. Furthermore, in this case b is
independent from algorithm A’s view. Indeed b is only chosen after the simulation ends. Hence,
Pr[b = b′|¬fail] = 1/2. It now follows that

Pr[b = b′] ≤ Pr[b = b′|¬fail](1− Pr[fail]) + Pr[fail] = 1
2 + Pr[fail]/2

Pr[b = b′] ≥ Pr[b = b′|¬fail](1− Pr[fail]) = 1
2 − Pr[fail]/2

and hence |Pr[b = b′]− 1
2 | ≤ Pr[fail]/2 ≤ (q + 2s+ 2)2d/2p as required

Corollary 2.6.2. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). If f is independent of (P,Q) then any A that
has advantage 1/2 in solving the decision (P,Q, f)-Diffie-Hellman Problem in a generic bilinear
group G must take time at least Ω(

√
p/d − s).

13

Using Corollary 2.6.2. We briefly show that many standard (decisional) assumptions follow
from Corollary 2.6.2.

• DDH in G1: set P = (1), Q = (1, x, y), f = xy.

• BDH in G0: set P = (1, x, y, z), Q = (1), f = xyz.

• `-BDHI in G0: set P = (1, x, x2, . . . , x`), Q = (1), f = x2`+1.

• `-BDHE in G0: set P = (1, y, x, x2, . . . , x`−1, x`+1, . . . , x2`), Q = (1), f = x`y.

Extensions. To take advantage of certain families of elliptic curves, such as the so-called MNT
curves [52], one often uses a more general bilinear map e : G0×G1 → G2 where the groups G0 and
G1 are not necessarily the same. To accurately model the algebraic structure of these groups, we
let ψ : G1 → G0 be an efficiently computable isomorphism (on MNT curves, such an isomorphism
is given by the trace map). We briefly state a similar result for these more general maps. We first
generalize the definition of independence.

Definition 2.6.2. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over
Fp. Write P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs), and R = (r1, r2, . . . , rs) where p1 = q1 = r1 = 1.
We say that a polynomial f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q,R) if there exist 2s2+s
constants {ai,j}si,j=1, {bi,j}si,j=1, {ck}sk=1 such that

f =
s∑

i=1

s∑
j=1

ai,j pi qj +
s∑

i=1

s∑
j=1

bi,jqi qj +
s∑

k=1

ck rk

We say that f is independent of (P,Q,R) if f is not dependent on (P,Q,R).

Given P,Q,R ∈ Fp[X1, . . . , Xn]s, and generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, we define the
vector

H(x1, . . . , xn) =
(
g

P (x1,...,xn)
0 , g

Q(x1,...,xn)
1 , g

R(x1,...,xn)
2

)
∈ Gs

0 ×Gs
1 ×Gs

2

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision
(P,Q,R, f)-Diffie-Hellman problem in (G0,G1) if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the random bits consumed
by B. An identical proof to that of Theorem 2.6.1 gives the following theorem.

Theorem 2.6.3. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over Fp

and let f ∈ Fp[X1, . . . , Xn]. Let d = max(dP + dQ, 2dQ, dR, df). If f is independent of (P,Q,R)
then any A that has advantage 1/2 in solving the decision (P,Q,R, f)-Diffie-Hellman Problem in
a generic bilinear group (G0,G1) must take time at least Ω(

√
p/d − s).

14

2.6.3 The Case of the Strong Diffie-Hellman Assumption

As mentioned previously, the Strong Diffie-Hellman (SDH) assumption [6] is not covered by the
General Diffie-Hellman Exponent framework. A slightly simplified version of the `-SDH problem
can be stated as follows:

Given elements g, gα, . . . , g(α`) in G, find a pair (c, g1/(α+c)) such that c 6= 0 mod p.

A closely related problem is to find g1/(α+c) for some given value of c 6= 0. The two cases differ as
follows:

– When c is fixed, the task is equivalent to the DHI problem [5, 28, 51], and is thus covered
by the results of the previous section. We note that any hardness result on the bilinear DHI
assumption immediately implies the hardness of the DHI assumption when the adversary no
longer has access to the bilinear map oracle.

– When c is allowed to vary, as in the SDH problem [6], the General Diffie-Hellman Exponent
framework no longer applies because the problem now admits a large number of valid, distinct
solutions (one for each c). In this respect, the SDH assumption is fundamentally different
from DHI. We note that Boneh and Boyen [6] give a direct proof of hardness of SDH in the
generic group model.

15

Chapter 3

Homomorphic Encryption

Secure computation allows several parties to compute a function of their joint inputs without
revealing more than what is implied by their own inputs and the function outcome. Any polynomial
time functionality can be computed by a secure protocol that requires polynomial resources [70, 37].
These seminal results are obtained by a generic transformation that converts an insecure computa-
tion of a functionality to a secure version (often referred to as the ‘garbled circuit’ transformation).

Secure protocols generated from the garbled circuit transformation typically have poor efficiency.
In particular, the communication complexity of the resulting protocols is proportional to the size
of a circuit evaluating the functionality, and hence precludes sub-linear communication protocols.
The result is that unless circuits are very small, the garbled circuit transformation is seldom used
in protocols.

To avoid using the garbled circuit transformation, researchers have sought tools that give more
efficient protocols for specific functionalities. Homomorphic encryption enables “computing with
encrypted data” and is hence a useful tool for secure protocols. Current homomorphic public key
systems [38, 29, 56] have limited homomorphic properties: given two ciphertexts Encrypt(PK, x)
and Encrypt(PK, y), anyone can compute either the sum Encrypt(PK, x + y), or the product
Encrypt(PK, xy), but not both.1 The problem of constructing ‘doubly homomorphic’ encryption
schemes where one may both ‘add and multiply’ is a long standing open question already mentioned
by Rivest et al. [60].

Homomorphic encryption schemes have many applications, such as protocols for electronic vot-
ing schemes [22, 3, 23, 24], computational private information retrieval (PIR) schemes [46], and
private matching [32]. Systems with more general homomorphisms (such as both addition and
multiplication) will benefit all such problems.

Our contribution. We developed a homomorphic encryption scheme that is additively homo-
morphic and that is also capable of performing a single multiplication on encryption values. Our
public key encryption scheme is based on finite groups of composite order that support a bilinear
map. Using a construction along the lines of Paillier [56], we obtain a system with an additive
homomorphism. In addition, the bilinear map allows for one multiplication on encrypted values.
The security of this scheme is based on a new hardness assumption that we put forward – the

1An exception is the scheme by Sander et al. [63] that is doubly homomorphic over a semigroup. On the other
hand, the homomorphism comes with the cost of a constant factor expansion per semigroup operation. See also its
comparison with our results in Section 3 below.

16

subgroup decision problem. Namely, given an element of a group of composite order n = q1q2,
it is infeasible to decide whether it belongs to a subgroup of order q1. As a result, our system
supports arbitrary additions and one multiplication (followed by arbitrary additions) on encrypted
data. This property in turn allows the evaluation of multi-variate polynomials of total degree 2 on
encrypted values. Our applications follow from this new capability.

We also present the homomorphic public key encryption scheme based on the linear assumption
introduced by Boneh, Boyen, and Shacham [8]. Boneh, Boyen, and Shacham observed that their
linear encryption scheme was additively homomorphic. Based on a comment by Brent Waters, we
show here that the bilinear map allows for one multiplication on encrypted values.

Applications. As a direct application of our new homomorphic encryption schemes, we can now
evaluate quadratic multi-variate polynomials on ciphertexts provided the resulting value falls within
a small set; in particular, we can compute dot products on ciphertexts. We use this property to
create a gadget that enables the verification that an encrypted value is one of two ‘good’ values. We
use this gadget to construct an efficient election protocol where voters do not need to provide proofs
of vote validity. Finally, we generalize the election protocol to a protocol of universally verifiable
computation.

In addition, we also construct a protocol for obliviously evaluating 2-DNFs. Our protocol gives
a quadratic improvement in communication complexity over garbled circuits. We show how to get
a private information retrieval scheme (PIR) as a variant of the 2-DNF protocol. Our PIR scheme
is based on that of Kushilevitz-Ostrovsky [46] and improves the total communication in the basic
step of their PIR protocol from

√
n to 3

√
n for a database of size n.

In fact, using our homomorphic encryption schemes, Groth, Ostrovsky, and Sahai developed the
first statistical non-interactive zero-knowledge argument for all NP languages [41], solving a long
standing open problem in zero-knowledge. Our schemes were also used to create non-interactive
Zaps for all NP languages [40].

Comparison to other public-key homomorphic systems. Most homomorphic systems pro-
vide only one homomorphism, either addition, multiplication, or xor. One exception is the system
of Sander et al. [63] that provides the ability to evaluate NC1 circuits on encrypted values. Clearly
their construction also applies to 2-DNF formula. Unfortunately, the ciphertext length in their
system grows exponentially in the depth of the 2-DNF formula when written using constant fan-in
gates. In our system, the ciphertext size is independent of the formula size or depth; this property
is essential for improving the communication complexity basic step of the Kushilevitz-Ostrovsky
PIR protocol.

Furthermore, our schemes have the advantage of being able to directly evaluate on ciphertexts
multi-variable quadratic polynomials of total degree two, unlike the Sanders et al. scheme where
it is necessary to first convert the polynomial into a circuit.

Organization. The rest of this chapter is organized as follows. Section 3.1 details the construction
of the two semantically secure public key encryption schemes, their security and homomorphic
properties. The basic application to 2-DNF evaluation is presented in Section 3.2, followed by
the election and universally verifiable computation protocols in sections 3.3 and 3.4. Section 3.5
summarizes our results and poses some open problems.

17

3.1 Two homomorphic public-key systems

We describe the subgroup decision scheme followed by the linear scheme.

3.1.1 Homomorphic system based on the subgroup decision problem

Our next system resembles the Paillier [56] and the Okamoto-Uchiyama [55] encryption schemes.
We describe the three algorithms making up the system:

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple (q1, q2,G,G1, e). Let
n = q1q2 where q1.q2 are two τ bit primes. Pick two random generators g, u R← G and set
h = uq2 ∈ G. Then h is a random generator of the subgroup of G of order q1. If g = 1 or
h = 1, pick another two generators and repeat the steps until g, h 6= 1. The public key is
PK = (n,G,G1, e, g, h). The private key is SK = q1.

Encrypt(PK,M): We assume the message space consists of integers in the set {0, 1, . . . , T} with
T < q2. We encrypt bits in our main application, in which case T = 1. To encrypt a message
m using public key PK, pick a random r

R← [0, n− 1] and compute

CT = gmhr ∈ G.

Output CT as the ciphertext.

Decrypt(SK,CT): To decrypt a ciphertext CT using the private key SK = q1, observe that

(CT)q1 = (gmhr)q1 = (gq1)m ∈ G

Let ĝ = gq1 . To recover m, it suffices to compute the discrete log of (CT)q1 base ĝ. Since
0 ≤ m ≤ T this takes expected time Õ(

√
T) using Pollard’s lambda method [48, p.128].

Note that decryption in this system takes polynomial time in the size of the message space T .
Therefore, the system as described above can only be used to encrypt short messages. Clearly one
can use the system to encrypt longer messages, such as session keys, using any mode of operation
that converts a cipher on a short block into a cipher on an arbitrary long block. We note that
one can speed-up decryption by precomputing a (polynomial-size) table of powers of ĝ so that
decryption can occur in constant time.

Homomorphic properties

The system is clearly additively homomorphic. Let (n,G,G1, e, g, h) be a public key. Given encryp-
tions CT1,CT2 ∈ G1 of messages m1,m2 ∈ {0, 1, . . . , T} respectively, anyone can create a uniformly
distributed encryption of m1 + m2 mod n by computing the product CT = (CT1)(CT2)hr for a
random r ∈ [0, n− 1].

More importantly, anyone can multiply two encrypted messages once using the bilinear map.
Set g1 = e(g, g) ∈ G1 and h1 = e(g, h) ∈ G1. Then g1 is of order n and h1 is of order q1. Also, write
h = gαq2 ∈ G for some (unknown) α ∈ Z. Suppose we are given two ciphertexts CT1 = gm1hr1 ∈ G

18

and CT2 = gm2hr2 ∈ G. To build an encryption of the product m1 ·m2 mod n given only CT1 and
CT2, do: 1) pick a random r ∈ [0, n− 1], and 2) set CT = e(CT1,CT2)hr

1 ∈ G1. Then

CT = e(CT1,CT2)hr
1 = e(gm1hr1 , gm2hr2)hr

1 = gm1m2
1 hm1r2+r2m1+αq2r1r2+r

1

= gm1m2
1 hr̃

1 ∈ G1

where r̃ = m1r2 + r2m1 + αq2r1r2 + r is distributed uniformly in Z∗
n as required. Thus, CT is a

uniformly distributed encryption of m1m2 mod n, but in the group G1 rather than G (this is why
we allow for just one multiplication). Note that the system is still additively homomorphic in G1.

Note. In some applications we avoid blinding with hr, making the homomorphic computation
deterministic.

Quadratic polynomials. Let F (x1, . . . , xu) be a u-variate polynomial of total degree 2. The
discussion above shows that given the encryptions C1, . . . , Cu of values x1, . . . , xu, anyone can
compute the encryption of C = F (x1, . . . , xu). On the other hand, to decrypt C, the decryptor
must already know that the result F (x1, . . . , xu) lies in a certain polynomial size interval.

Additional Algorithms

We now describe five additional useful algorithms that will be used in the 2-DNF protocols. We
only describe the algorithms for ciphertexts belonging to G but the first two algorithms can be
extended to G1 in a similar fashion.

Rerandomize(PK,CT): Re-randomizes the input ciphertext. Given a ciphertext CT, pick a random
r

R← [0, n− 1] and output CT · hr.

Blind(PK,CT, r): Blinds the message encrypted in the ciphertext with message r. Given a cipher-
text CT and a blinding factor r ∈ [0, T], output Rerandomize(PK,CTr).

BlindBit(PK,CT): If the ciphertext contains an encryption of a bit b, creates a ciphertext contain-
ing ¬b. Given a ciphertext CT, output Rerandomize(PK, g/CT).

CreateWIProof(PK, b): Creates a witness indistinguishable zero-knowledge proof that a ciphertext
contains an encryption of a bit. For a bit b, pick a random r

R← [0, n−1] and output (g2b−1hr)r

as the proof.

VerifyWIProof(PK,CT, π): Using the witness indistinguishable zero-knowledge proof π, verifies
that the ciphertext contains an encryption of a bit. Given ciphertext CT and a witness
indistinguishable proof π, check that e(CT,CT · g−1) = e(h, π).

Creating and verifying the witness indistinguishable zero-knowledge proofs. The algo-
rithms for creating and verifying the witness indistinguishable proofs are originally due to Groth,
Ostrovsky, and Sahai [41], and were simplified by Boyen and Waters [16]. For a valid ciphertext,
we see that m ∈ {0, 1} if and only if either CT or CT · g−1 is of order q1. Thus, it is sufficient
to prove that e(CT,CT · g−1) has order q1. Also note that e(CT,CT · g−1) = e(h, (g2b−1hr)r) for
b ∈ {0, 1} where CT is an encryption of b. If this equation holds, then since h has order q1, therefore
e(CT,CT · g−1) = e(h, (g2b−1hr)r) has order q1.

19

Security

We now turn to proving semantic security of the system under the subgroup decision assumption.
Semantic security is the standard notion of security for encryption schemes and is typically defined
using a game between an adversary and challenger. We first define semantic security before proving
our scheme secure.

Semantic Security:

Setup: The challenger runs the Keygen(τ) algorithm to create a public and private key, and sends
the public key to the adversary.

Challenge: The adversary sends the challenger two equal length messages M0,M1 ∈ {0, 1}∗. The
challenger obtains a random bit b R← {0, 1}, encrypts Mb with the public key, and sends the
resulting ciphertext to the adversary.

Output: The adversary outputs a bit b′ ∈ {0, 1} as its guess for b.

We define the advantage of such an adversary B in attacking the encryption scheme as
∣∣Pr[b = b′]− 1

2

∣∣.
Roughly speaking, we say that an encryption scheme is semantically secure if no poly-time adversary
has non-negligible advantage in winning the semantic security game.

Theorem 3.1.1. The subgroup decision public key system is semantically secure assuming G sat-
isfies the subgroup decision assumption.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of the system with
non-negligible advantage ε(τ). We construct an algorithm A that breaks the subgroup decision
assumption with the same advantage. Given (n,G,G1, e, x) as input, algorithm A works as follows:

1. A picks a random generator g ∈ G and gives B the public key (n,G,G1, e, g, x).
2. Algorithm B outputs two messages m0,m1 ∈ {0, 1, . . . , T} to which A responds with the

ciphertext CT = gmbxr ∈ G for a random b
R← {0, 1} and random r

R← {0, 1, . . . , n− 1}.
3. Algorithm B outputs its guess b′ ∈ {0, 1} for b. If b = b′ algorithm A outputs 1 (meaning x

is uniform in a subgroup of G); otherwise A outputs 0 (meaning x is uniform in G).

When x is uniform in G, the challenge ciphertext CT is uniformly distributed in G and is indepen-
dent of the bit b. Hence, in this case Pr[b = b′] = 1/2. On the other hand, when x is uniform in
the q1-subgroup of G, then the public key and challenge CT given to B are as in a real semantic
security game. In this case, by the definition of B, we know that Pr[b = b′] > 1/2 + ε(τ). It now
follows that A satisfies SD-AdvA(τ) > ε(τ) and hence A breaks the subgroup decision assumption
with advantage ε(τ) as required.

We note that if G satisfies the subgroup decision assumption then semantic security also holds
for ciphertexts in G1. These ciphertexts are the output of the multiplicative homomorphism. If
semantic security did not hold in G1, then it would also not hold in G because one can always
translate a ciphertext in G to a ciphertext in G1 by “multiplying” by the encryption of 1. Hence,
by Theorem 3.1.1, semantic security must also hold for ciphertexts in G1.

20

3.1.2 Homomorphic system based on the linear problem

We now present the homomorphic public key encryption scheme based on the linear assumption
introduced by Boneh, Boyen, and Shacham [8]. They observed that their linear encryption scheme
was additively homomorphic. We show later that the bilinear map allows for one multiplication on
encrypted values. We describe the three algorithms making up the system:

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple (p,G,G1, e). Choose a
generator g3

R← G and u,w
R← Zp. Set g1 ← g

1/u
3 ∈ G and g2 ← g

1/w
3 ∈ G. The public key is

PK = (p,G,G1, e, g1, g2, g3) ∈ G3. The private key is SK = (u,w) ∈ Zp
2.

Encrypt(PK,M): We assume the message space consists of integers in the set {0, 1, . . . , T} with
T < p. To encrypt a message m using public key PK, pick r, s R← Zp and (gr

1, g
s
2, g

−(r+s)+m
3) ∈

G3 as the ciphertext.

Decrypt(SK,CT): To decrypt a ciphertext CT = (A,B,C) using the private key SK = (u,w),
observe that for a properly formed ciphertext,

D = (Au ·Bw · C) = gur
1 · gws

2 · g
−(r+s)+m
3 = gm

3 ∈ G

To recover m, it suffices to compute the discrete log of D to the base g3. Since 0 ≤ m ≤ T
this takes expected time Õ(

√
T) using Pollard’s lambda method [48, p.128].

As in the subgroup decision system, decryption in this system also takes polynomial time in the
size of the message space T . Therefore, the system as described above can only be used to encrypt
short messages. The techniques stated in the previous section for enciphering longer messages and
for speeding up decryption can also be applied here.

Homomorphic properties

The system is clearly additively homomorphic. Let PK = (p,G,G1, e, g1, g2, g3) be a public key.
Given encryptions CT1 = (A1, B1, C1),CT2 = (A2, B2, C2) ∈ G3 of messages m1,m2 ∈ {0, 1, . . . , T}
respectively, anyone can create a uniformly distributed encryption of m1 +m2 mod p by computing
the product CT = (A1 ·B2 · gt

1, A1 ·B2 · gt
2, , C1 · C2 · g−t

3) ∈ G3 for t R← Zp.
More importantly, anyone can multiply two encrypted messages once using the bilinear map.

Suppose we are given two ciphertexts CT1 = (A1, B1, C1),CT2 = (A2, B2, C2) ∈ G3 that are
encryptions of messages m1,m2 ∈ {0, 1, . . . , T}. Let

h1 = e(g1, g1), h2 = e(g1, g2), h3 = e(g1, g3), h4 = e(g2, g2), h5 = e(g2, g3), h6 = e(g3, g3).

To build an encryption of the product m1 ·m2 mod p given only C1 and C2, do: 1) pick a random
t ∈ Zp, and 2) set the ciphertext as

CT =
(
e(A,A′) · ht

1, e(A,B
′) · e(A′, B) · ht

2, e(A,C
′) · e(A′, C) · ht

3,

e(B,B′) · ht
4, e(B,C

′) · e(B′, C) · ht
5, e(C,C

′) · h−5t
6

)
.

21

For valid ciphertexts CT1 = (gr1
1 , g

s1
2 , g

−(r1+s1)+m1

3) and CT2 = (gr2
1 , g

s2
2 , g

−(r2+s2)+m2

3) ∈ G3,
observe that

CT =
(
hr1r2 + t

1 , hr1s2 + r2s1 + t
2 , h

r1(−(r2+s2)+m2)+ r2(−(r1+s1)+m1)+ t
3 , hs1s2 + t

4 ,

h
s1(−(r2+s2)+m2)+ s2(−(r1+s1)+m1)+ t
5 , h

(−(r1+s1)+m1)(−(r2+s2)+m2)− 5t
6

)
. (3.1)

where the exponent of the h6 term is distributed uniformly in Zp as required. Thus, CT is a
uniformly distributed encryption of m1m2 mod p, but in the group G1 rather than G (this is why
we allow for just one multiplication). Note that the system is still additively homomorphic in
G1. In some applications we avoid blinding with hr

1, h
r
2, h

r
3, h

r
4, h

r
5, h

r
6, making the homomorphic

computation deterministic.
Note that the ciphertext for the linear system has 6 terms after a multiplication instead of 3.

As a result, the decryption algorithm for the ciphertexts after a multiplication is slightly different.

DecryptG1(SK,CT): To decrypt a ciphertext CT = (D,E, F,G,H, I) ∈ G6
1 using the private key

SK = (u,w), compute
J = Du2 · Euw · F u ·Gw2 ·Hw · I ∈ G1.

To recover the message, it suffices to compute the discrete log of J to the base h6.

We now show that the decryption algorithm gives the correct answer for properly formed cipher-
texts. For a properly formed ciphertext such as that in equation 3.1, we have

J =
(
Du2 · Euw ·Gw2

)
· (F u ·Hw) · I

=
(
h

(r1+s1)(r2+s2) + 3t
6

)
·
(
h

(r1+s1)(−(r2+s2)+m2) + (r2+s2)(−(r1+s1)+m1) + 2t
6

)
h

(r1+s1)(r2+s2) − (r1+s1)(−(r2+s2)+m2) − (r2+s2)(−(r1+s1)+m1) + m1m2 − 5t
6

= hm1m2
6 .

Quadratic polynomials. As in the subgroup decision system, the homomorphic properties of the
subgroup decision system can also be used to compute quadratic polynomials.

Additional Algorithms

We now describe three additional useful algorithms that will be used in the 2-DNF protocols. We
only describe the algorithms for ciphertexts belonging to G but the first two algorithms can be
extended to G1 in a similar fashion.

Rerandomize(PK,CT): Re-randomizes the input ciphertext. Given a ciphertext CT = (A,B,C),
pick random t, u

R← [0, n− 1] and output (A · gt
1, B · gu

2 , C · g
−(t+u)
3).

Blind(PK,CT, r): Blinds the message encrypted in the ciphertext with r. Given a ciphertext
CT = (A,B,C) and a blinding factor r ∈ [0, T], compute CT′ = (A,B,C · gr

3) and output
Rerandomize(PK,CT′).

BlindBit(PK,CT): If the ciphertext contains an encryption of a bit b, creates a ciphertext con-
taining ¬b. Given a ciphertext CT = (A,B,C), compute CT′ = (1/A, 1/B, g3/C) and then
output Rerandomize(PK,CT′).

22

Our linear system does not lend itself to creating non-interactive witness indistinguishable zero-
knowledge proofs that a ciphertext is an encryption of 0 or 1. On the other hand, for interactive
protocols, we can use standard techniques to create (less efficient) zero-knowledge proofs that a
ciphertext created by our linear system is an encryption of a bit. For the rest of this paper, when
the algorithms CreateWIProof and VerifyWIProof are invoked in our protocols for the linear system,
we mean to say that we use general zero-knowledge techniques to create and verify these proofs
interactively. We note that the variant of the linear system described by Groth, Ostrovsky, and
Sahai [41] is amenable to creating non-interactive witness indistinguishable proofs of bit encryption;
that variant can be substituted for our linear system in all our protocols.

Security

We now turn to proving semantic security of the system under the linear assumption.

Theorem 3.1.2. The linear public key system is semantically secure assuming G satisfies the linear
assumption.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of the system with non-
negligible advantage ε(τ). We construct an algorithm A that breaks the decision linear assumption
with the same advantage. Given

(
p,G,G1, e, g1, g2, g3, g

a
1 , g

b
2, g

c
3

)
∈ G6 as input, algorithm A works

as follows:

1. A gives algorithm B the public key (g1, g2, g3).

2. Algorithm B outputs two messages m0,m1 ∈ {0, 1, . . . , T} to which A responds with the
ciphertext (gar

1 , g
br
2 , g

−cr+mb
3) ∈ G3 for b R← {0, 1} and r

R← Zp.

3. Algorithm B outputs its guess b′ ∈ {0, 1} for b. If b = b′ algorithm A outputs 1 (meaning
c = a+ b); otherwise A outputs 0.

When c
R← Zp, the challenge ciphertext C is uniformly distributed in G and is independent of

the bit b. Hence, in this case Pr[b = b′] = 1/2. On the other hand, when c = a + b, then the
public key and challenge C given to B has the identical distribution as in a real semantic security
game. In this case, by the definition of B, we know that Pr[b = b′] > 1/2 + ε(τ). It now follows
that A satisfies Linear-AdvA(τ) > ε(τ) and hence A breaks the decision linear assumption with
non-negligible advantage ε(τ) as required.

We note that if G satisfies the decision linear assumption then semantic security also holds
for ciphertexts in G1. These ciphertexts are the output of the multiplicative homomorphism. If
semantic security did not hold in G1, then it would also not hold in G because one can always
translate a ciphertext in G to a ciphertext in G1 by “multiplying” by the encryption of 1. Hence,
by Theorem 3.1.2, semantic security must also hold for ciphertexts in G1.

3.1.3 Comparison

We briefly compare the subgroup decision and the linear schemes. The subgroup decision scheme
creates ciphertexts that consist of only one group element whereas the linear scheme creates cipher-
texts that consist of three group elements (six group elements after a homomorphic multiplication).

23

On the other hand, group elements in the subgroup scheme are from a composite order bilinear
group whereas those in the linear scheme are from a prime order bilinear group (and are significantly
smaller).

The arithmetic operations in the linear system are computed over prime order bilinear groups
and will be faster than equivalent operations over the composite order bilinear groups used in the
subgroup decision scheme. With this in mind, we see that encryption requires two exponentations
in the subgroup scheme and three exponentiations in the linear scheme. Decryption requires one
exponentiation in the subgroup scheme and two exponentiations (five exponentiations after a homo-
morphic multiplication) in the linear scheme, and both require a discrete log computation roughly
of order square root the size of the message space.

With re-randomization, an homomorphic addition operation on two ciphertexts requires one
exponentiation in the subgroup decision scheme, whereas it requires three exponentiations in the
linear scheme. A homomorphic multiplication operation on two ciphertexts requires a pairing
computation and one exponentiation in the subgroup decision scheme, whereas it requires nine
pairings and three exponentiations in the linear scheme.

When used in the semi-honest 2-DNF protocol, the subgroup decision scheme, although simpler
than the linear system, results in a more complicated protocol because of the need for Alice to
validate the public key generated by Bob; this validation check is trivial in the linear system. On
the other hand, the subgroup decision system gives very efficient non-interactive witness indistin-
guishable proofs of bit encryption, whereas we resort to using general interactive techniques to
create and verify such proofs for the linear system. These proofs of bit encryption are used in the
malicious Bob 2-DNF protocol. We note that Groth, Ostrovsky, and Sahai [41] present a variant
of the linear system that is amenable to the construction of a non-interactive proof; their system
can be used in this protocol for malicious Bob.

3.2 Two party efficient SFE for 2-DNF

We now show how to use our homomorphic encryption schemes to construct an efficient secure
function evaluation protocol for 2-DNF. Our basic result is a direct application of the additive
and multiplicative homomorphisms of our public key encryption schemes. We consider a two-
party scenario where Alice holds a Boolean formula φ(x1, . . . , xs) and Bob holds an assignment
a = a1, . . . , as. As the outcome, Bob learns φ(a). We restrict our attention to 2-DNF formulas:

Definition 3.2.1. A 2-DNF formula over the variables x1, . . . , xs is given as ∨k
i=1 (`i,1 ∧ `i,2) where

`i,1, `i,2 ∈ {x1, . . . , xs, x̄1, . . . , x̄s}.

We first give a protocol for the model of semi-honest parties, and then modify it to cope with
a malicious Bob.

3.2.1 The basic protocol

In the semi-honest model, both parties are assumed to perform computations and send messages
according to their prescribed actions in the protocol. They may also record whatever they see
during the protocol (i.e. their own input and randomness, and the messages they receive). On the
other hand, a malicious party may deviate arbitrarily from the protocol. We sketch the security
definitions for the simple case where only one party (Bob) is allowed to learn the output. We refer
readers to Goldreich’s book [36] for the complete definitions.

24

Security in the semi-honest model. The definition is straightforward since only one party
(Bob) is allowed to learn the output:

• Bob’s security – indistinguishability: Alice cannot distinguish between the different possible
inputs Bob may hold.

• Alice’s security – Bob gets no information about φ beyond whether a satisfies φ.

Protocol 2-DNF in Figure 3.1 efficiently evaluates 2-DNFs with semi-honest parties. Either
the subgroup decision or the linear system can be used in the protocol. We get a three message
protocol with communication complexity O(s · τ) — a quadratic improvement in communication
with respect to Yao’s garbled-circuit [70] that yields communication proportional to the potential
formula length, Θ(s2). Recall that the message space of our two encryption schemes belongs to the
interval [0, T].

Input: Alice holds a 2-DNF formula φ(x1, . . . , xs) = ∨k
i=1 (`i,1 ∧ `i,2) and Bob holds an assignment

a = a1, . . . , as ∈ {0, 1}s. Both parties’ inputs include a security parameter τ .

1. Bob performs the following:

(a) He invokes KeyGen(τ) to compute keys SK,PK, and sends PK to Alice.

(b) He computes and sends Encrypt(PK, aj) for j = 1, . . . , s.

2. Alice performs the following:

(a) She computes an arithmetization Φ of φ by replacing “∨” by “+”, “∧” by “·” and “x̄j”
by “(1− xj)”. Note that Φ is a polynomial in x1, . . . , xs with total degree 2.

(b) Alice computes the encryption of r · Φ(a) for a randomly chosen r ∈ [0, T] using the
encryption scheme’s homomorphic properties and also the Blind algorithm. The result
is sent to Bob.

3. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Figure 3.1: Protocol 2-DNF.

Claim 3.2.1. Protocol 2-DNF is correct for semi-honest Alice and Bob.

Proof. For correctness, it suffices to show that Φ arithmetizes φ correctly when Φ is applied to
Bob’s assignment. When Φ is applied to Bob’s assignment, each arithmetized ∧ clause results in a
0 or 1 because Bob’s assignment consists solely of n bits. Because Bob’s assignment consists only
of bits and also by comparing the definition of ∧ against multiplication on bits, we see that the
∧ clauses are computed correctly. Next, to compute the ∨ operations, the results of the ∧ clauses
(mulplication results) are summed up; if all of the ∧ clauses are 0, then the summation is also 0; if
n of the ∧ clauses are 1, then the summation is n. By construction of the protocol, a summation
result of 0 results in Bob outputting 0, and a summation result of any other value results in Bob
outputting 1, which is the desired answer.

Claim 3.2.2. If the encryption scheme is semantically secure, then protocol 2-DNF is secure against
semi-honest Alice and Bob.

25

Proof. Intuitively, Alice’s security follows as the distribution on Bob’s output only depends on
whether φ is satisfied by a or not; Bob’s security follows directly from the semantic security of the
encryption scheme. We provide a simulation proof from Alice and Bob’s view of the protocol.

We first consider the case when Alice is corrupt. Alice’s view in an execution of 2-DNF are
the public key PK and n encryptions of bits generated using PK. We now build a simulator
that simulates Alice’s view given access to only her inputs and output. The simulator uses Alice’s
security parameter τ as input to KeyGen(τ) to compute keys SK,PK, and then writes PK on the
transcript of Alice’s view. Next, the simulator picks s random bits a1, . . . , as ∈ {0, 1} and writes the
s ciphertexts generated by Encrypt(PK, aj) for j = 1, . . . , s onto the transcript. We now argue that
the distribution of the simulated transcription is computationally indistinguishable from that of a
real transcript. The same algorithm and input is used to generate the public key in both the real
and simulated transcript; therefore PK has the same distribution in both transcripts. Because the
encryption scheme is semantically secure, the distribution of an encryption of 0 is identical to that
of an encryption of 1 using the same public key. As a result, the distribution of the n ciphertexts in
the simulated transcript is also computationally indistinguishable from that of the real transcript,
concluding the case when Alice is corrupt.

We next consider the case where Bob is corrupt. Bob’s view in an execution of 2-DNF is Alice’s
encrypted output of r · Φ(a). We now build a simulator that simulates Bob’s view given access to
only his inputs and output. The simulator first picks b R← {0, 1} and using Bob’s public key PK, the
simulator computes CT1 = Encrypt(PK, b) and CT2 = Encrypt(PK, b). Next the simulator applies
the multiplicative homomorphism to CT1 and CT2 to obtain CT3, which is the encrypted message
b · b. Using the Blind algorithm, the simulator re-randomizes the message in CT3 using r and then
writes the result onto the transcript of Bob’s view. We now argue that the distribution of the
simulated transcription is identical to that of a real transcript. In the real transcript, if Φ(a) = 0,
then Bob receives a valid encryption of 0; if Φ(a) = 1, then Bob receives a valid encryption of a
random value r ∈ [0, T]. Furthermore, Bob receives only this encrypted result of the computation of
φ applied to his assignment and nothing else. Furthermore, from Bob’s view, the result from Alice
is independent of his assignment because his only knowledge of φ is from this blinded encryption of
a bit. Therefore, the distribution of the simulated transcript is computationally indistinguishable
from that of the real transcript.

Note. Protocol 2-DNF (as well Malicious-Bob-2-DNF below) is secure even against a computa-
tionally unlimited Bob. Interestingly, the garbled circuit protocol (where Alice garbles φ) has the
opposite property where it can be secured against an unbounded Alice but not an unbounded Bob.
(See also Cachin et al. [17] for a discussion of computing on encrypted data versus garbled circuits).

3.2.2 Example application – private information retrieval

A private information retrieval (PIR) scheme [21, 46] allows a user to retrieve information from
an s-bit database without revealing any information on which bit he is interested in. Symmetric
private information retrieval (SPIR) is a PIR scheme that also protects the database privacy – a
(semi-honest) user will learn only one of the database bits [35]. In this section, we show how an
immediate application of protocol 2-DNF results in a PIR/SPIR scheme. Our constructions can use
either the linear or the subgroup decision encryption scheme and the protocol is based on that of
Kushilevitz and Ostrovsky [46].

26

A SPIR scheme. We get a SPIR scheme with communication O(τ ·
√
s) as an immediate applica-

tion of protocol 2-DNF. Without loss of generality, we assume that the database size s is a perfect
square and treat the database as a table D of dimensions

√
s ×
√
s. Using this notation, suppose

Bob wants to retrieve entry (I, J) of D. Alice (the database holder) holds the 2-DNF formula φ
over x1, . . . , x√s, y1, . . . , y√s:

φ(x1, . . . , x√s, y1, . . . , y√s) = ∨Di,j=1 (xi ∧ yj) ,

and Bob’s assignment a sets xI and yJ to 1 and all other variables to 0. Bob and Alice carry out the
2-DNF protocol with this assignment and 2-DNF formula. It is clear that φ(a) = DI,J as required.

An alternative construction. Using the 2-DNF protocol for SPIR restricts database entries to
bits. We provide an alternative construction that allows each database entry to contain up to
O(log n) bits. We consider the data as a table of dimensions

√
s×
√
s as above. To retrieve entry

(I, J) of D, Bob creates two polynomials p1(x) and p2(x) of degree
√
s− 1 such that p1(i) is zero

on 0 ≤ i <
√
s except for p1(I) = 1, and similarly p2(j) is zero on 0 ≤ j <

√
s except for p2(J) = 1.

Bob sends to Alice the encryption of the coefficients of p1(x) and p2(x). Alice uses the encryption
scheme’s homomorphic properties to compute the encryption of

DI,J =
∑

0≤i,j<
√

s

p1(i)p2(j)Di,j .

We allow Di,j to be b-bit values where b = O(log n). Bob recovers Di,j in time O(2b/2) by computing
a discrete logarithm e.g. using the baby-step giant-step algorithm.

A PIR scheme. Standard communication balancing of our SPIR scheme results in a PIR scheme
where each party sends O(τ · 3

√
s) bits. In particular, view the database as comprising of s1/3

chunks, each chunk containing s2/3 entries, where Bob is interested in retrieving entry (I, J,K) of
D. Bob sends Alice the coefficients of two polynomials p1(x) and p2(x) of degree 3

√
s− 1 such that

p1(i) = p2(i) = 0 on 0 ≤ i < 3
√
s except for p1(I) = p2(J) = 1. Alice uses the encryption scheme’s

homomorphic properties to compute encryptions of

DI,J,k =
∑

0≤i,j< 3√s

p1(i)p2(j)Di,j,k

for 0 ≤ k < 3
√
s. Alice sends the 3

√
s resulting ciphertexts to Bob who decrypts the Kth entry.

Recursively applying this balancing (as in Kushilevitz-Ostrovsky [46]) results in a protocol with
communication complexity O(τsε) for any ε > 0. We note that the recursion depth to reach ε is
lower in our case compared to that of Kushilevitz-Ostrovsky [46] by a constant factor of log2 3.

3.2.3 Security of the 2-DNF protocol against a malicious Bob.

The security definition for malicious parties captures both the privacy and correctness of the proto-
col and is limited to the case where only one of the parties is corrupt. Note that when considering
malicious adversaries, actions such as refusing to participate in the protocol, aborting the protocol
prematurely, and using different inputs from those given, cannot be prevented.

Informally, the security definition for malicious adversaries is based on a comparison with an
ideal trusted party model (here the corrupt party may give an arbitrary input to the trusted

27

functionality). The security requirement is that for any strategy a corrupt party may play in a
real execution of the protocol, there is an efficient strategy it could play in the ideal model with
computationally indistinguishable outcomes. A complete definition of this ideal/real simulation
paradigm can be found in the exposition of Yao’s garbled circuits protocol in the malicious setting
by Lindell and Pinkas [47].

In the basic 2-DNF protocol, a malicious Bob may try to learn about Alice’s 2-DNF formula
by sending Alice an encryption of a non-boolean assignment a1, . . . , as. He may also let Alice
evaluate φ for an encrypted assignment that Bob cannot decrypt himself. Both types of behaviors
do not correspond to a valid run in the ideal model. To prevent the first attack, we require that
Bob creates witness indistinguishable zero-knowledge proofs for the encrypted assignments that
allows Alice to ensure that a ciphertext she receives is an encryption of a bit. The second attack is
prevented by Alice presenting Bob with a challenge that cannot be resolved unless he can decrypt;
this decryption ability is used by the simulator for malicious Bob to create valid inputs for the
trusted party.

Protocol Malicious-Bob-2-DNF described in Figure 3.2 evaluates 2-DNFs with malicious par-
ties. As with the semi-honest protocol, either the subgroup decision or the linear encryption scheme
can be used in the protocol. In this protocol, the subgroup decision scheme, although simpler than
the linear system, results in a more complicated protocol because of the need for Alice to validate
the public key generated by Bob; this validation check is trivial in the linear system. On the other
hand, the subgroup decision system gives very efficient non-interactive witness indistinguishable
proofs of bit encryption, whereas we resort to using general interactive techniques to create and
verify such proofs for the linear system. Again we note that Groth, Ostrovsky, and Sahai [41]
present a variant of the linear system that is amenable to the construction of a non-interactive
proof; their system can be used in this protocol for malicious Bob.

Public Key Validation. In step 2 of the protocol, Bob has to prove to Alice that the public key is
valid. For the linear encryption scheme, this step is trivial — for a public key (p,G,G1, e, g1, g2, g3),
Alice checks that g1, g2, g3 ∈ PK are points in G. For the subgroup decision encryption scheme,
the procedure is more complicated and works as follows; for a public key PK = (n,G,G1, e, g, h),

1. Bob proves to Alice in zero knowledge that n is a product of two primes [4, 68, 33, 18].
2. Alice checks that gn = hn = 1 ∈ G and that both g 6= 1 and h 6= 1. She rejects PK otherwise.

Claim 3.2.3. If the encryption scheme used is semantically secure, then Protocol 2-DNF is secure
against semi-honest Alice and malicious Bob.

Proof. In the case where Alice is semi-honest, the simulator that simulates Alice’s view is identical
to that for the (semi-honest) protocol 2-DNF with three additions; our simulator here has to also
simulate 1) the public key validation (step 2), 2) the proof of decryption ability (step 3), and 3)
creating the witness indistinguishable zero-knowledge proofs (step 4). We first show how to simulate
the public key validation step. For the linear system, there is nothing to simulate in public key
validation step because there is no interaction between Alice and Bob. For the subgroup decision
system, the simulator has to simulate the zero-knowledge interaction with Alice; this simulation can
be done using standard techniques [4, 68, 33, 18]. For this step, the distribution of the simulated
transcript is computationally indistinguishable from that in the real transcript by the security of the
zero-knowledge protocol. We now show how to simulate the proof of decryption ability step. For

28

Input: as in protocol 2-DNF in Figure 3.1.

1. Bob invokes KeyGen(τ) to compute keys SK,PK and sends PK to Alice.

2. Alice and Bob engage in a ‘public key validation’ protocol (see discussion below).

3. Next, Alice and Bob engage in a ‘proof of decryption ability’ protocol:

(a) Alice chooses τ random bits b1, . . . , bτ and then sends to Bob the encryptions
Encrypt(PK, b1), . . . ,Encrypt(PK, bτ).

(b) Bob replies with a decryption b′1, . . . , b
′
τ of the received encryptions. Alice aborts if any

of Bob’s decryptions is incorrect.

4. Bob computes and sends CTaj
← Encrypt(PK, aj) for j = 1, . . . , s, as well as s corresponding

witness indistinguishable zero-knowledge proofs (generated using CreateWIProof) showing
that each ciphertext CTaj is an encryption of a bit.

5. Alice performs the following:

(a) She checks the witness indistinguishable zero-knowledge proofs using the algorithm
VerifyWIProof to ensure that each CTaj

is indeed an encryption of a bit. Alice aborts
if any CTaj does not verify. Note that if the proofs are non-interactive, then Alice can
verify the proofs interactively in Step 4.

(b) She computes an arithmetization Φ of φ as in protocol 2-DNF.

(c) Using the homomorphic properties of the encryption scheme, she computes the encryp-
tion of r · Φ(a) for randomly chosen r ∈ [0, T]. She sends the result to Bob.

6. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Figure 3.2: Protocol Malicious-Bob-2-DNF.

both the linear or subgroup decision encryption scheme, the simulator uses the secret key generated
in the first step of the simulation to run the Decrypt algorithm on Alice’s challenge ciphertexts; the
results of these decrypted messages are written to the transcript. For this step, the distribution
of the simulated transcript is indistinguishable from that in a real transcript. Finally, in step 4,
the simulator creates the proofs that the encrypted assignments are encryptions of bits by running
the CreateWIProof algorithm on the assignment bits. Since the proofs are created according to
the protocol, the distribution of the simulated and real transcripts are indistinguishable, which
concludes the proof for a semi-honest Alice.

In the case of a malicious Bob, we build an ideal model simulator that has access to Bob
and also to the trusted party, and can simulate the view of a real run of the protocol with Bob.
The simulator interacts with malicious Bob and the trusted party as follows. The simulator runs
the protocol and obtains the public key PK that Bob outputs in the first step. The simulator
follows the protocol exactly (for either encryption scheme) in the public key validation step and
also the proof of decryption ability step. In the proof of decryption ability step, the simulator
remembers the τ ciphertexts CTb1 , . . . ,CTbτ sent to Bob and their corresponding bits b1, . . . , bτ .
When Bob outputs the encrypted assignments CTaj ← Encrypt(PK, aj) for j = 1, . . . , s together
with their corresponding witness indistinguishable proofs, the simulator checks the proofs to ensure
that CTa1 , . . . ,CTas are all encryptions of bits, and then does the following:

Procedure 1: Repeat the following steps s times; on the ith iteration

29

(a) The simulator rewinds the execution to the beginning of the proof of decryption ability
step (step 3) of the protocol.

(b) The simulator chooses a random bit b R← {0, 1} and a random k ∈ [1, τ]. If b = 0, the
simulator runs Rerandomize(PK,CTai) to obtain a re-randomized CTai ; if b = 1, the
simulator runs BlindBit(PK,CTai) to obtain a re-randomized and blinded CTai .
Finally, the simulator sends Bob the encryptions CTbj

for j = 1, . . . , τ excluding k, as
well as the re-randomized and possibly blinded CTai ; these τ ciphertexts are arranged
in a uniformly random permutation and then sent to Bob.

(c) Bob replies with the decryption of the ciphertexts including the decryption of the re-
randomized and possibly blinded ciphertext CTai . The simulator checks that the mes-
sages b1, . . . , bk−1, bk+1, . . . , bτ are correctly decrypted and then unblinds CTai to obtain
the ith bit of Bob’s assignment.

On every run, since 1) the encryption scheme is semantically secure, 2) CTai is rerandomized
and blinded, and 3) the ciphertexts are sent to Bob arranged according to a uniformly random
permutation, a malicious Bob that wishes to lie about the assignment bit while still answering the
τ−1 challenge ciphertexts correctly can do no better than to guess at which is the re-randomized and
blinded ciphertext and returning an incorrect value for that ciphertext. As a result, the probability
of Bob successfully lying about the assignment bit on a single run is 1/τ . The probability of
Bob successfully lying about at least one assignment bit over s runs is 1 − ((τ − 1)/τ)s. To make
the probability of Bob successfully lying about at least one assignment exponentially small, the
simulator runs Procedure 1 f(s) times where f is a polynomial function of s. We will later consider
the event where Bob returns invalid encryptions causing the simulator to abort when arguing the
computational indistinguishability of the execution between the ideal and real model.

The simulator then sends Bob’s extracted assignment a to the trusted party and obtains φ(a)
in return. The simulator rewinds the execution one final time to the beginning of the proof of
decryption ability step (step 3) of the protocol, and sends the τ ciphertexts CTb1 , . . . ,CTbτ to
Bob. The rest of the execution proceeds as before and Bob eventually sends CTa1 , . . . ,CTas again
together with the corresponding witness indistinguishable proofs that that the ciphertexts are
encryptions of bits. The simulator picks a random r ∈ [0, T] (T + 1 is the size of the message space
of the encryption scheme), computes r · φ(a), and sends the result of Encrypt(PK, r · φ(a)) to Bob.
Finally, Bob outputs a bit as the result of the protocol.

We now argue that the view of malicious Bob in the ideal model is computationally indistin-
guishable from his view in the real model. Because the simulator follows the protocol exactly for
the steps 1, 2, 4, and 6 in the protocol, the view of the Bob in those steps is computationally
indistinguishable between the real and ideal model.

Next we argue that Bob’s view in step 3 (proof of decryption ability) is computationally indis-
tinguishable between the real and ideal model. We consider the first and last iteration of the step
separately from the rewinding iterations. The first and the last iterations are identical and in these
iterations, the simulator builds the challenge ciphertexts as specified in the protocol. Furthermore,
the simulator aborts only if Bob returns incorrect decryptions of any of the ciphertexts; if this event
occurred in an execution in the real model, Alice would also abort. Therefore, the distribution of
the first and last iterations are computationally indistinguishable between the real and ideal model.

In each rewound iteration, except for the one encrypted assignment CTai , the other challenge
ciphertexts are created according to the protocol. Since the encrypted assignment has a correspond-
ing witness indistinguishable zero-knowledge proof that it is a valid encryption of a bit, and also

30

because CTai is re-randomized and blinded with a random bit, we see that CTai is computation-
ally indistinguishable from the other challenge ciphertexts assuming that the encryption scheme is
semantically secure. Having established this fact, we now argue that if Bob did not send invalid
decryptions of CTb1 , . . . ,CTbτ in the first iteration (and hence causing the simulator to abort), Bob
will not send invalid decryptions of CTb1 , . . . ,CTbk−1

,CTbk+1
, . . . ,CTbτ in any rewound iteration

(which causes the simulator to abort). Suppose Bob sends invalid decryptions of the challenge
ciphertexts during a the ith rewound iteration. From Bob’s view, the only difference between the
first iteration (where Bob did not send invalid decryptions) and this failed iteration is that the
simulator sent CTai instead of CTbk

. Using a standard hybrid argument, we can use Bob to break
the semantic security of the encryption scheme. Since we assume that the encryption scheme is
semantically secure, therefore Bob’s view in step 3 (proof of decryption ability) is computationally
indistinguishable between the real and ideal model.

We now consider Bob’s view in step 5 of the protocol. By the argument after the description
of Procedure 1, we see that the assignment extracted by the simulator from Bob’s ciphertexts
CTa1 , . . . ,CTas obtained in the first iteration of steps 3 and 4 of the protocol is correct except with
exponentially small probability. Furthermore, in the last iteration of the rewinding, the simulator
feeds Bob the same challenge ciphertexts CTb1 , . . . ,CTbτ in step 3, which results in Bob emitting
the same set of encrypted assignments CTa1 , . . . ,CTas in step 4. Because the simulator uses the
correct assignment and follows the protocol exactly in this step, Bob’s view of a non-aborting run
of step 5 is computationally indistinguishable between the real and ideal model. We note that the
ideal model simulator aborts at this step only if Bob had sent ciphertexts and proofs in the previous
step that failed to verify; if this event occurred in an execution in the real model, Alice will also
abort the protocol. Therefore, Bob’s view of an aborting run of step 5 is also computationally
indistinguishable between the real and ideal model.

We have shown that Bob’s view of the protocol in the ideal model is computationally indistin-
guishable from his view in the real model, thus concluding our proof.

3.3 An efficient election protocol without random oracles

In this section, we describe two electronic election protocols where voters submit boolean (“yes/no”)
votes. Such protocols were first considered by Benaloh and Fisher [22, 3] and more recently by
Cramer et al. [23, 24].

A key component of electronic election schemes is a proof, attached to each vote, of its correct-
ness (or validity); for example, a proof that the vote really is an encryption of 0 or 1. Otherwise,
voters may corrupt the tally by sending an encryption of an arbitrary value. Such proofs of validity
are typically zero-knowledge (or witness indistinguishable) proofs. These interactive zero knowledge
proofs of bit encryption are efficiently constructed (using zero knowledge identification protocols)
for standard homomorphic encryption schemes such as ElGamal [29, 44], Pedersen [57, 23], or
Paillier [56, 26]. The proof of validity is then usually made non-interactive using the Fiat-Shamir
heuristic of replacing communication with an access to a random oracle [31]. In the actual in-
stantiation, the random oracle is replaced by some ‘cryptographic function’ such a hash function.
Security is shown hence to hold in an ideal model with access to the random oracle, and not in the
standard model [58].

Our first election protocol has the interesting feature that voters do not need to include proofs
of validity or any other information except for their encrypted votes when casting their ballots.

31

Instead, the election authorities can jointly verify that a vote is valid based solely on its encryption.
The technique is based on the following gadget:

A gadget for checking c ∈ {v0,v1}. This gadget exploits our ability to evaluate a polynomial
of total degree 2 on the encryption of c. We choose a polynomial that has v0 and v1 as zeros as
follows: given an encryption of a value c, Alice uses the homomorphic properties of the encryption
scheme to compute r · (c− v0) · (c− v1) for a randomly chosen r. For c ∈ {v0, v1}, this computation
results in the encryption of 0. For other values of c, the result is random. In the special case of
c ∈ {0, 1}, Alice computes r · c · (c− 1).

This gadget allows us to avoid using the Fiat-Shamir heuristic and yet makes our scheme
efficient. As a result, our election scheme is very efficient from the voter’s point of view as it
requires only a single encryption operation (two exponentiations) to create a ballot. Curiously,
this voting scheme is probably the most efficient for the voter, taking into account the efficiency of
operating in an elliptic curve group. Either the subgroup decision or the linear encryption scheme
can be used for this election protocol.

Our second election protocol is a variant of the first but instead of the election authorities using
the gadget to verify the encrypted votes, each voter includes a witness indistinguishable proof that
the ciphertext is an encryption of 0 or 1.

3.3.1 Election scheme 1

Our scheme belongs to the class of election protocols proposed by Cramer et al. [23, 24] where votes
are encrypted using a homomorphic encryption scheme.

For robustness, we use threshold versions of the encryption schemes in Section 3.1. For simplicity
(following Shoup [67]), we assume that a trusted dealer first generates the public/private keys,
shares the private keys between the election authorities, and then deletes the private key (a generic
secure computation may be used to replace the trusted dealer, as this is an offline phase). With
this assumption, threshold versions of our encryption schemes can be constructed using standard
techniques from discrete log threshold cryptosystems [57].

Correctness of threshold decryption. One caveat is that threshold decryption requires a zero
knowledge of correct partial decryption from each election authority that contributes a share of
its private key. Since the number of election authorities is typically a small constant, the proof of
correct partial decryption can be performed interactively with relative efficiency between election
authorities; transcripts of such interactions are made public for verification (note that transcripts
do not leak information on votes). Another possible technique is to use a trusted source of random
bits (such as a beacon [59]) among the election authorities, or for the authorities to collectively
generate a public source of random bits. In a typical run of our protocol, the election authorities
run only a limited number of these proofs (see below), hence the usage of either technique results
in a reasonably efficient protocol, and allows us to avoid using the Fiat-Shamir heuristic.

We note that these techniques can also be used in existing election protocols for verifying a
voter’s ballot, which avoids the Fiat-Shamir heuristic; but the resulting protocol becomes unwieldy
and inefficient especially when the number of voters is large (and we expect that there is at least
several orders of magnitude more voters than election authorities).

Vote verification. Here we use the verification gadget of Section 3.3 in combination with threshold
decryption. We let all authorities compute an encryption of v · (v− 1) and then jointly decrypt the

32

result. To save on computation, we check a batch of votes at once (i.e.
∑
ri · vi · (vi− 1) where the

ri’s are chosen by the verifiers) and then run a binary search to identify the invalid votes [2].

The protocol. We assume the existence of an online bulletin board where the parties participating
in the protocol post messages. Our election protocol works as follows:

Setup: As discussed above, a trusted dealer first generates the public parameters and the private
key for the either encryption scheme of Section 3.1, and shares the private key between the
k election authorities so that at least t out the k election authorities are needed to decrypt.
Finally, the trusted dealer deletes the private key and has no further role in the protocol. The
public parameters are posted on a public bulletin board.

Denote one of the k election authorities as a leader (the election authority that organizes
a quorum for decryption requests). After the public parameters are posted to the public
board, the leader publishes an encryption of the bit 1 and the random bits used to create
that encryption. Denote this encryption of the bit 1 as E1. With the random bits, the other
k − 1 election authorities can check that E1 is indeed an encryption of 1.

Vote casting: Voters cast their ballots by encrypting a bit indicating their vote, and then pub-
lishing the encrypted bit to the public bulletin board.

Vote verification: When a ballot v has been posted, all k election authorities compute a cipher-
text c corresponding to v · (v − 1) where E1 is used as the encryption of “1” (hence, c is
‘deterministic’ given the encryption of v). The leader forms a quorum of t− 1 other election
authorities to decrypt c (the other election authorities agree to participate only if c agrees
with the ciphertext they computed). If c decrypts to something other than 0, then the vote
v is invalid and is discarded.

For better efficiency in optimistic scenarios, any number of votes v1, . . . , vk can be verified in
bulk by first computing r1 · v1 · (v1 − 1) + . . .+ rk · vk · (vk − 1) where the ri’s are collectively
chosen by the election authorities, and then checking that the decryption of the result is 0.
All invalid votes are efficiently located by binary search. We note that in general it suffices
for ri to be relatively short, as the chance of

∑
ri · vi · (vi − 1) being zero when some of the

summed votes are invalid is exponentially small in |r|.

Vote tabulation and tally computation: After all the votes are posted and verified, all k elec-
tion authorities each add all the valid encrypted votes on the public board together (using the
additive homomorphic property of the encryption scheme) to form the tallied vote V . The
leader obtains a quorum of election authorities to decrypt V . Each election authority decides
whether to participate in the decryption request by comparing V with her own tally.

We note that our election protocol also possesses the necessary properties [22, 3, 23, 24] of voter
privacy (from semantic security of the encryption scheme), universal verifiability (from the homo-
morphic property of the encryption scheme and also because all votes and proof transcripts are
posted to the bulletin board), and robustness (from the threshold encryption scheme).

3.3.2 Election scheme 2

Unlike the first election scheme, this variant requires an encryption scheme that implements the
CreateWIProof and VerifyWIProof algorithms non-interactively. We assume the existence of an

33

online bulletin board where the parties participating in the protocol post messages. Our election
protocol works as follows:

Setup: Identical to election scheme 1 except that there is no need to create and publish the public
encryption of 1 and its random bits.

Vote casting: Voters cast their ballots by encrypting a bit indicating their vote and also run
the algorithm CreateWIProof to create a witness indistinguishable proof that their encrypted
ballot is a encryption of either 0 or 1. Both the encrypted ballot and the proof is published
on the bulletin board.

Vote verification: When a ballot has been posted, all k election authorities verify that the ballot
is an encryption of 0 or 1 by running the VerifyWIProof algorithm on the corresponding proof.
If the proof fails to verify for all the authorities, then the vote v is invalid and is discarded.

Vote tabulation and tally computation: Identical to election scheme 1.

3.4 Universally Verifiable Computation

We now describe a related application for the gadget of Section 3.3. Consider an authority per-
forming a computation, defined by a (publicly known) circuit C over the joint private inputs
a = (a1, . . . , an) of the n users. The authority publishes the outcome C(a) in a way that 1) lets
everyone check that the computation was performed correctly, but 2) does not reveal any other
information on the private inputs. Besides voting, other applications of universally verifiable com-
putation include auctions.

To simplify our presentation, we only consider the case where ai ∈ {0, 1}; general inputs are
treated similarly using any binary representation. We describe a single authority protocol that is
easily transformed into a threshold multi-authority protocol using standard methods.

3.4.1 A protocol for verifying C(a)

Setup. The authority uses KeyGen(τ) to generate a public-key/private-key pair PK,SK. We
assume the existence of a bulletin board where each user i posts an encryption ci = Encrypt(PK, ai)
of her input. We also assume the existence of a random function H accessible by all parties, which
implies that we prove security only in the random oracle model. As in the previous section, we can
do without a random oracle in the multi-authority case (details omitted).

We first give a high level overview of the protocol. After all users post their encrypted inputs
onto the bulletin board, the authority decrypts each user’s input and evaluates the circuit on these
inputs. In the process of evaluating the circuit, the authority computes and publishes ciphertexts
for all the wire values in C. In addition, the authority also publishes an encryption of the bit 1 and
the random bits used to create that encryption. Denote this encryption of the bit 1 as E1. Finally,
the authority publishes an encrypted value V and a witness-indistinguishable proof that V is an
encryption of 0; for now, we defer the exact definition of V .

To convince a verifier that the circuit was computed correctly, the authority needs to prove that
1) all inputs are binary, and 2) all gate outputs are correct. We show how a verifier checks that
both conditions hold using validators v that can be publicly constructed from the public encrypted
wire values. We first show how to construct validators for the user inputs and gate outputs before
showing how to use these validators to verify the computation.

34

Building Validators for User Inputs. In the process of evaluating the circuit, the authority
publishes the values on every wire of the circuit. We enumerate the wires and denote the value
on wire i as ai. We also denote the encryption of ai as ci. Recall that each user posts ci =
Encrypt(PK, ai) of her input ai on the bulletin board (the ai’s are never revealed in the clear). For
each input wire i with value ai, let ri = H(i, ci); note that ri can be computed by any of the parties.
The validator for ai is vi = ri · ai · (1− ai), and the computation occurs modulo q2 where q2 is one
of the factors of the modulus n (recall that SK = q1). It is easy to see that the encryption of vi

can be computed by anyone given H, ci, and E1.
We note that even given q2 and allowing a polynomial (in the security parameter τ) number of

applications of H, the probability that an adversary successfully generates an invalid ci with vi = 0
is bounded by O(poly(τ)/q2), which is negligible in τ .

Building Validators for Gate Outputs. Let g ∈ C be a binary gate for which both input wires
x, y are validated. In addition, let G(x, y) be the bivariate polynomial of total degree 2 that realizes
the gate g. For example, an AND gate has Gand(x, y) = xy, an OR gate has Gor(x, y) = x+y−xy,
and a NOT gate has Gnot(x) = 1− x. The validator for the output wire (enumerated z) of gate
g is vz = rz · (az −G(x, y)) where rz = H(z, cz) and cz is the encryption of the value az on wire z.
Again, it is easy to see that any party can compute the encryption of vz given H, cx, cy, cz, and E1.

Verifying the Circuit Using Validators. Using the homomorphic properties of the encryption
scheme, anyone can compute (by herself) an encryption of the sum of validators for the circuit.
Note that if all posted encryptions are correct, then the sum of validators is zero. Otherwise, it
is zero with only a negligible probability. The authority supplies its own version of the encrypted
validator sum called V , together with a zero-knowledge proof that the resulting sum is zero; in
this case, the encryption is of the form hr so to create the proof, one can either use protocols
designed for the Pedersen encryption [57] or the CreateWIProof algorithm. To verify the circuit
computation, a verifier computes her own validator sum V ′, checks that V ′ = V , and then verifies
the witness-indistinguishable proof that V is an encryption of 0.

3.5 Summary and open problems

We presented a homomorphic encryption scheme that supports addition and one multiplication.
We require that the values being encrypted lie in a small range as is the case when encrypting bits.
These homomorphic properties enable us to evaluate multi-variate polynomials of total degree 2
given the encrypted inputs. We described a number of applications of the system. Most notably,
using our encryption scheme, we (i) reduced the amount of communication in the basic step of the
Kushilevitz-Ostrovsky PIR, (ii) improved the efficiency of election systems based on homomorphic
encryption, and (iii) implemented universally verifiable secure computation. We hope this scheme
will have many other applications. We end with a couple of open problems related to our encryption
scheme:

n-linear maps. The multiplicative homomorphism was possible due to properties of bilinear maps.
We note that an n-linear map would enable us to evaluate polynomials of total degree n
rather than just quadratic polynomials. This provides yet another motivation for constructing
cryptographic n-linear maps [15].

Message space. Our scheme is limited in the size of message space due to the need to compute

35

discrete logarithms during decryption. An encryption scheme that allows for a large message
space would enable more applications, such as an efficient shared RSA key generation.

36

Chapter 4

Hierarchical Identity Based
Encryption

An Identity Based Encryption (IBE) system [65, 9] is a public key system where the public key
can be an arbitrary string such as an email address. A central authority uses a master key to
issue private keys to identities that request them. Hierarchical IBE (HIBE) [43, 34] is a natural
extension of IBE that mirrors an organizational hierarchy. An identity at level k of the hierarchy
tree can issue private keys to its descendant identities, but cannot decrypt messages intended for
other identities (details are given in Section 4.1.1). The first construction for HIBE is due to Gentry
and Silverberg [34] where security is based on the Bilinear Diffie-Hellman (BDH) assumption in
the random oracle model. A subsequent construction due to Boneh and Boyen [5] gives an efficient
(selective-ID secure) HIBE based on BDH without random oracles. In both constructions, the
length of ciphertexts and private keys, as well as the time needed for decryption and encryption,
grows linearly in the depth ` of the hierarchy.

There are currently two principal applications for HIBE. The first, due to Canetti, Halevi, and
Katz [19], is forward secure encryption. Forward secure encryption enables users to periodically
update their private keys so that a message encrypted at period n cannot be read using a private
key from period n′ > n. To provide for T = 2t time periods, the CHK construction uses a HIBE of
depth t where identities are binary vectors of length at most t. At time n, the encryptor encrypts
using the identity corresponding to the n-th node of this depth t binary tree. Consequently, using
previous HIBE systems [34, 5], ciphertexts in this forward secure construction are of size O(t);
private keys are of size O(t2) but can be reduced to size O(t) by using updateable public storage.
The second application for HIBE, due to Dodis and Fazio [27], is using HIBE to convert the NNL
broadcast encryption system [54] into a public-key broadcast system. Unfortunately, the resulting
public-key broadcast system is no better than simpler constructions because ciphertext length in
previous HIBE constructions is linear in the depth of the hierarchy.

Our Contribution. We present a HIBE system where the ciphertext size as well as the decryp-
tion cost are independent of the hierarchy depth `. Ciphertexts in our HIBE system are always just
three group elements and decryption requires only two bilinear map computations. Private keys in
our basic system contain ` group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts consisting of only
three group elements, for any number T = 2t of time periods. With our basic HIBE system, the

37

private key size in this forward secure encryption system is O(t2). In Section 4.2 we describe a
hybrid system that borrows some features from the Boneh-Boyen HIBE [5] and results in a forward
secure encryption scheme where private key size is reduced to O(t3/2) and ciphertext size is O(

√
t).

By using updateable public storage as in CHK [19], private key size in these systems can be further
reduced to size O(t) and O(

√
t) respectively. In addition, instantiating the Dodis-Fazio [27] system

with our HIBE system results in a public-key broadcast system that is as efficient as the NNL subset
difference method.

It is worth noting that private keys in our system shrink as the identity depth increases; this
shrinkage is the opposite behavior from previous HIBE systems where private keys become larger
as we descend deeper down the hierarchy tree. This behavior leads to “limited delegation” where
an identity at depth k can be given a restricted private key that only lets it issue private keys to
descendants of limited depth (as opposed to any descendant).

Security of our system is based on the previously used Bilinear Diffie-Hellman Inversion as-
sumption [5, 28, 51]. This assumption was described in Section 2.5. In Section 4.1 we describe our
HIBE system and prove its security in the selective identity model without using random oracles.
We then observe that a selective-ID secure HIBE results in a fully secure HIBE in the random
oracle model. In Sections 4.2 and 4.3 we discuss several extensions and applications of the system.
For example, in addition to the applications already mentioned, we show how private keys can be
further compressed to sublinear size and also describe an efficient mechanism for encrypting to the
future.

4.1 A HIBE System with Constant Size Ciphertext

Let G be a bilinear group of prime order p and let e : G × G → G1 be a bilinear map. For now,
we assume that public keys (that is, identities ID) at depth k are vectors of elements in (Z∗

p)k. We
write ID = (I1, . . . , Ik) ∈ (Z∗

p)k. The j-th component corresponds to the identity at level j. We
later extend the construction to public keys over {0, 1}∗ by first hashing each component Ij using
a collision resistant hash H : {0, 1}∗ → Z∗

p. We also assume that the messages to be encrypted are
elements in G1. The HIBE system works as follows:

Setup(`): To generate system parameters for an HIBE of maximum depth `, select a random
generator g ∈ G, a random α ∈ Z∗

p, and set g1 = gα. Next, pick random elements
g2, g3, h1, . . . , h` ∈ G. The public parameters and the master key are

params = (g, g1, g2, g3, h1, . . . , h`) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate a private key dID for an identity ID = (I1, . . . , Ik) ∈ (Z∗
p)k of depth

k ≤ `, using the master secret, pick a random r ∈ Z∗
p and output

dID =
(
gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r
, gr, hr

k+1, . . . , hr
`

)
∈ G2+`−k.

Note that dID becomes shorter as the depth of ID increases.

The private key for ID can be generated incrementally, given a private key for the parent
identity ID|k−1 = (I1, . . . , Ik−1) ∈ (Z∗

p)k−1, as required. Indeed, let

dID|k−1 =
(
gα
2 ·
(
hI1

1 · · ·h
Ik−1

k−1 · g3
)r′
, gr′ , hr′

k , . . . , h
r′
`

)
= (a0, a1, bk, . . . , b`)

38

be the private key for ID|k−1. To generate dID, pick a random t ∈ Z∗
p and output

dID =
(
a0 · bIkk ·

(
hI1

1 · · ·h
Ik
k · g3

)t
, a1 · gt, bk+1 · ht

k+1, . . . , b` · ht
`

)
.

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for r = r′ + t ∈ Z∗
p.

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under identity ID = (I1, . . . , Ik) ∈ (Z∗
p)k,

pick a random s ∈ Z∗
p and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s) ∈ G1 ×G2.

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given ciphertext CT =
(A,B,C) using the private key dID = (a0, a1, bk+1 . . . , b`), output

A · e(a1, C)
/
e(B, a0) = M.

Indeed, for a valid ciphertext, we have

e(a1, C)
e(B, a0)

=
e
(
gr, (hI1

1 · · ·h
Ik
k · g3)s

)
e
(
gs, gα

2 (hI1
1 · · ·h

Ik
k · g3)r

) =
1

e(g, g2)sα
=

1
e(g1, g2)s

.

Observe that for identities at any depth, the ciphertext contains only 3 elements and decryption
takes only 2 pairings. In previous HIBE systems, ciphertext size and decryption time grow lin-
early in the identity depth. Also, note that e(g1, g2) used for encryption can be precomputed (or
substituted for g2 in the system parameters) so that encryption does not require any pairings.

4.1.1 Security

We first define the security model for HIBE before proving our scheme secure under that model.

Fully Secure HIBE Systems. Like an Identity Based Encryption (IBE) system, a Hierarchical
Identity Based Encryption (HIBE) system consists of four algorithms [43, 34, 5]: Setup, KeyGen,
Encrypt, Decrypt. In HIBE, however, identities are vectors; a vector of dimension k represents
an identity at depth k. The Setup algorithm generates system parameters, denoted by params,
and a master key master-key. We refer to the master-key as the private key at depth 0 and note
that an IBE system is a HIBE where all identities are at depth 1. Algorithm KeyGen takes as
input an identity ID = (I1, . . . , Ik) at depth k and the private key dID|k−1 of the parent identity
ID|k−1 = (I1, . . . , Ik−1) at depth k − 1, and then outputs the private key dID for identity ID. The
encryption algorithm encrypts messages for an identity using params and the decryption algorithm
decrypts ciphertexts using the private key.

Chosen ciphertext security for HIBE systems is defined under a chosen identity attack where
the adversary is allowed to adaptively chose the public key on which it will be challenged. More
precisely, HIBE security (IND-ID-CCA) is defined by the following game between an adversary A
and a challenger C:

IND-ID-CCA Security Game:

39

Setup: The challenger C runs the Setup algorithm and gives A the resulting system parameters
params, keeping the master-key to itself.

Phase 1: A adaptively issues queries q1, . . . , qm where query qi is one of the following:

– Private key query 〈IDi〉. C responds by running algorithm KeyGen to generate the private key
di corresponding to the public key 〈IDi〉 and sends di to A.

– Decryption query 〈IDi, Ci〉. C responds by running algorithm KeyGen to generate the private
key d corresponding to IDi. It then runs algorithm Decrypt to decrypt the ciphertext Ci

using the private key d and sends the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗ and two equal length
plaintexts M0,M1 ∈M on which it wishes to be challenged. The only restriction is that A did not
previously issue a private key query for ID∗ or a prefix of ID∗. C picks a random bit b ∈ {0, 1} and
sets the challenge ciphertext to CT = Encrypt(params, ID∗,Mb), which is sent to A.

Phase 2: A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define the advantage of the
adversary A in attacking the scheme E as

AdvE,A =
∣∣Pr[b = b′]− 1/2

∣∣ .
The probability is over the random bits used by the challenger and the adversary.

Canetti, Halevi, and Katz [19, 20] define a weaker notion of security in which the adversary
commits ahead of time to the public key it will attack. We refer to this notion as selective identity,
chosen ciphertext secure HIBE (IND-sID-CCA). The game is exactly the same as IND-ID-CCA except
that the adversary A discloses to the challenger the target identity ID∗ before the Setup phase.
The restrictions on private key queries from phase 2 also hold in phase 1.

Definition 4.1.1. We say that a HIBE system E is (t, qID, qC , ε)-secure if for any t-time IND-ID-CCA
(respectively IND-sID-CCA) adversary A that makes at most qID chosen private key queries and at
most qC chosen decryption queries, we have that AdvE,A < ε. As shorthand, we say that E is
(t, qID, qC , ε)-IND-ID-CCA (resp. IND-sID-CCA) secure.

Semantic Security. As usual, we define chosen plaintext security for a HIBE system as in the
preceding game, except that the adversary is not allowed to issue any decryption queries. The
adversary may still issue adaptive private key queries. This security notion is termed as IND-ID-
CPA (or IND-sID-CPA in the case of a selective identity adversary).

40

Definition 4.1.2. We say that a HIBE system E is (t, qID, ε)-IND-ID-CPA secure (resp. IND-sID-
CPA) if E is (t, qID, 0, ε)-IND-ID-CCA secure (resp. IND-sID-CCA).

We now show that our HIBE scheme is selective identity secure (IND-sID-CPA) under the de-
cisional Bilinear Diffie-Hellman Inversion assumption. We use a slightly weaker assumption called
the decisional Weak BDHI as stated in Section 2.5. We later describe how to provide both chosen
ciphertext security (IND-sID-CCA) and full HIBE security (IND-ID-CCA).

Theorem 4.1.1. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε, `)-wBDHI
assumption holds in G. Then the previously defined `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the `-HIBE system. Using A, we build an algorithm
B that solves the Decision `-wBDHI* problem in G.

For a generator g ∈ G and α ∈ Z∗
p let yi = g(αi) ∈ G. Algorithm B is given as input a random

tuple (g, h, y1, . . . , y`, T) that is either sampled from PwBDHI∗ (where T = e(g, h)(α
`+1)) or from

RwBDHI∗ (where T is uniform and independent in G∗
1). Algorithm B’s goal is to output 1 when

the input tuple is sampled from PwBDHI∗ and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ÎD
∗

=
(I∗1, . . . , I

∗
m) ∈ (Z∗

p)m of depth m ≤ ` that it intends to attack. If m < ` then B pads ÎD
∗

with `−m
zeroes on the right to obtain a vector ID∗ a vector of length `.

Setup. To generate the system parameters, algorithm B picks a random γ in Z∗
p and sets g1 =

y1 = gα and g2 = y` · gγ = gγ+(α`). Next, B picks random γ1, . . . , γ` in Z∗
p and sets hi = gγi/y`−i+1

for i = 1, . . . , `. Algorithm B also picks a random δ in Z∗
p and sets g3 = gδ ·

∏`
i=1 y

I∗i
`−i+1.

Finally, B gives A the system parameters params = (g, g1, g2, g3, h1, . . . , h`). Observe that
all these values are distributed uniformly and independently in G as required. The master key
corresponding to these system parameters is gα

2 = gα(α`+γ) = y`+1y
γ
1 , which is unknown to B since

B does not have y`+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ (Z∗

p)u where u ≤ `. The only restriction is that ID is not ID∗ or a prefix of
ID∗. This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗); we set k such that it is the smallest such index. To respond to the query,
algorithm B first derives a private key for the identity (I1, . . . , Ik) from which it then constructs a
private key for the requested identity ID = (I1, . . . , Ik, . . . , Iu).

To generate the private key for identity (I1, . . . , Ik), B first picks a random r̃ in Z∗
p. We pose

r = αk

(Ik−I∗k) + r̃ ∈ Z∗
p. Next, B generates the private key(

gα
2 · (h

I1
1 · · ·h

Ik
k g3)r, gr, hr

k+1, . . . , hr
`

)
, (4.1)

41

which is a properly distributed private key for the identity (I1, . . . , Ik). We show that B can compute
all elements of this private key given the values at its disposal. We use the fact that y(αj)

i = yi+j

for any i, j.
To generate the first component of the private key, first observe that

(hI1
1 · · ·h

Ik
k g3)r =

(
gδ+

Pk
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i−Ii)
`−i+1 · y

(I∗k−Ik)

`−k+1 ·
∏̀

i=k+1

y
I∗i
`−i+1

)r

. (4.2)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =

gδ+
Pk

i=1 Iiγi ·
k−1∏
i=1

y
(I∗i−Ii)
`−i+1︸ ︷︷ ︸

=1

·
∏̀

i=k+1

y
I∗i
`−i+1


r

.

Note that the second term in Z equals 1 because Ii = I∗i for all i < k. One can verify that B can
compute all the terms in Z given the values at its disposal. Next, observe that the third term in
Eq (4.2), namely yr(I∗k−Ik)

`−k+1 , is:

y
r(I∗k−Ik)

`−k+1 = y
r̃(I∗k−Ik)

`−k+1 · y
(I∗k−Ik) αk

(Ik−I∗
k
)

`−k+1 = y
r̃(I∗k−Ik)

`−k+1 /y`+1.

Hence, the first component in the private key (4.1) is equal to:

gα
2 (hI1

1 · · ·h
Ik
k g3)r = (y`+1y

γ
1) · Z · (yr̃(I∗k−Ik)

`−k+1 /y`+1) = yγ
1 · Z · y

r̃(I∗k−Ik)

`−k+1 .

Since y`+1 cancels out, all the terms in this expression are known to B. Thus, B can compute the
first private key component.

The second component, gr, is y1/(Ik−I∗k)

k gr̃ which B can compute. Similarly, the remaining
elements hr

k+1, . . . , h
r
` can be computed by B since they do not involve a y`+1 term. Thus, B can

derive a valid private key for (I1, . . . , Ik). Algorithm B uses this private key to derive a private key
for the descendant identity ID and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on
which it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT = (Mb · T · e(y1, h
γ), h, hδ+

P`
i=1 I∗i γi)

where h and T are from the input tuple given to B. First note that if h = gc (for some unknown c
in Z∗

p) then

hδ+
P`

i=1 I∗i γi =

(
(
∏̀
i=1

gγiI
∗
i) · gδ

)c

=

(∏̀
i=1

(gγi/y`−i+1)I
∗
i · (gδ

∏̀
i=1

y
I∗i
`−i+1)

)c

= (hI∗1
1 · · ·h

I∗`
` g3)c,

and
e(g, h)(α

`+1) · e(y1, h
γ) =

(
e(y1, y`) · e(y1, g

γ)
)c = e(y1, y`g

γ)c = e(g1, g2)c.

42

Therefore, if T = e(g, h)(α
`+1) (i.e., when the input tuple is sampled from PwBDHI∗), then T ·

e(y1, h
γ) = e(g1, g2)c. It follows that the challenge ciphertext is a valid encryption of Mb under the

original (unpadded) identity ID∗ = (I∗1, . . . , I
∗
m) chosen by the adversary, since

CT =
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m · · ·h

I∗`
` g3)c

)
=
(
Mb · e(g1, g2)c, gc, (hI∗1

1 · · ·h
I∗m
m g3)c

)
.

On the other hand, when T is uniform and independent in G∗
1 (when the input tuple is sampled

from RwBDHI∗), CT is independent of b in the adversary’s view.

Phase 2. A issues queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`+1). Otherwise, it outputs 0
meaning T is random in G1.

When the input tuple is sampled from PwBDHI∗ (where T = e(g, h)(α
`+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RwBDHI∗ (where T is uniform in G∗

1) then Pr[b = b′] = 1/2. Therefore,
with g uniform in G∗, h uniform in G, α uniform in Z∗

p, and T uniform in G1 we have that∣∣∣∣Pr
[
B
(
g, h, ~yg,α,`, e(g, h)(α

`+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣

≥ |(1/2± ε)− 1/2| = ε

as required, which completes the proof of the theorem.

Chosen Ciphertext Security. Canetti et al. [20] show a general method of building an IND-
sID-CCA secure `-HIBE from a IND-sID-CPA secure ` + 1-HIBE. A more efficient construction is
given by Boneh and Katz [13]. Applying either method to our HIBE construction results in a IND-
sID-CCA secure `-HIBE for arbitrary ` where the ciphertext length is independent of the hierarchy
height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities ID = (I1, . . . , I`)
with Ii ∈ {0, 1}∗ for i = 1, . . . , ` by hashing each Ii with a collision resistant hash function H :
{0, 1}∗ → Z∗

p during key generation and encryption. A standard argument shows that if the original
HIBE scheme is IND-sID-CCA secure, then so is the HIBE scheme using H.

4.1.2 Full HIBE Security

Theorem 4.1.1 shows that our HIBE system is selective-ID secure without random oracles. Thus,
the system is secure when the adversary commits ahead of time to the identity he intends to attack.
Boneh and Boyen [5] observed that IBE systems that are selective-ID secure are also fully secure
(i.e., secure against adversaries that adaptively select the identity to attack) as long as one hashes
the identity prior to using it. The reduction, however, is not tight. Let H : {0, 1}∗ → {0, 1}d
be a hash function (where, e.g., d = 160 bits). Assuming H is collision resistant, the reduction

43

introduces a 2d multiplicative security loss factor in the standard model. When H is viewed as
a random oracle, the reduction introduces a qH multiplicative security loss factor where qH is the
number of the hash oracle queries issued by the adversary.

A similar observation applies to HIBE systems. Let E be a selective-ID secure HIBE of
depth `. Let EH be an HIBE system where an identity ID = (I1, . . . , Ik) is hashed to IDH =
(H(I1), . . . ,H(Ik)) before using it in KeyGen and Encrypt. Then, if H is collision resistant, it
follows that EH is a fully secure HIBE, but the reduction introduces a loss factor of 2`d. In the
random oracle model, EH is a fully secure HIBE and the reduction introduces a loss factor of q`

H .
We remark that in the random oracle model, the public parameters are of constant size and

contain only the two group elements (g, g1); the other parameters (g2, g3, h1, . . . , h`) need not be
specified as they can be derived by applying the oracle on a predetermined input string.

We also note that the construction of Waters [69], for a fixed depth `, applied to our HIBE could
give a fully secure constant ciphertext HIBE with a polynomial time reduction to the underlying
complexity assumption in the standard model. The resulting private keys are much larger, namely
of size d`, as opposed to ` in our system.

4.2 Extensions

We discuss a number of extensions to the HIBE system of the previous section.

4.2.1 Limited Delegation

Let dID = (a0, a1, bk, . . . , b`) be the private key for the identity ID. Note that the Decrypt algorithm
uses only the terms a0 and a1, and the KeyGen algorithm uses only the remaining terms bk, . . . , b`.

By removing any number of bk, . . . , b`, an identity ID at depth k can be given a restricted
private key that only lets it issue private keys to descendants of bounded depth. For example,
if the private key for ID only contains bk, bk+1, bk+2 (instead of all bk, . . . , b`), then ID can only
issue private keys for three generations of descendants, and those descendants’ private keys will be
limited even further.

We note that the security model and corresponding proof of limited delegation for our HIBE
system was developed by Shacham [64].

4.2.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Section 4.3), are better
served by using a HIBE system with short private keys rather than ciphertexts. We show how to
construct a HIBE system whose private key size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 4.1 and the Boneh-Boyen HIBE [5].
Recall that in the former system the private key shrinks as the identity depth increases, while in
the latter system the private key grows with the depth of an identity. The hybrid is based on the
algebraic similarities between both systems, and exploits their opposite behavior with regard to
private key size, to ensure that no private key ever contains more than O(

√
`) group elements.

Specifically, for ω ∈ [0, 1], the hybrid scheme achieves O(`ω + `1−ω) private key size and O(`ω)
ciphertext size at every level in a hierarchy of depth `. The setting ω = 0 corresponds to our HIBE,
whereas ω = 1 corresponds to the Boneh-Boyen HIBE [5]. The most efficient hybrids are obtained
when ω ∈ [0, 1

2]. For example, when ω = 1
2 , private keys and ciphertexts are of size O(

√
`).

44

Hybrid Scheme. As before, we assume a bilinear group G and a map e : G × G → G1, where
G and G1 have prime order p. Let `1 = d`ωe and `2 = d`1−ωe. The basic idea is to partition levels
of the hierarchy into `1 consecutive groups of size `2. Within each group we use the system of
Section 4.1. Between groups we use the Boneh-Boyen HIBE [5].

Let ID = (I1, . . . , Ik) ∈ (Z∗
p)k be an identity of depth k ≤ `. We will represent ID as a pair (k, I)

where I ∈ (Z∗
p)`1×`2 is an `1 × `2 matrix filled using the elements I1, . . . , Ik in typographic order:

one row at a time starting from the top, in each row starting from the left (note that `1 ·`2 ≥ ` ≥ k;
the unfilled matrix entries are undefined). For convenience, we decompose the indices k = 1, . . . , `
into row-column pairs (k1, k2) such that k = `2 · (k1 − 1) + k2 where k1, k2 > 0. For shorthand, we
write (k1, k2) = k. It follows that in the above matrix representation of ID we have I(i1,i2) = Ii for
all i = 1, . . . , k. Or, pictorially, for an ID at the maximum depth ` with I = I1, . . . , I` and ` = `1`2:

I =


I1 I2 . . . I`2

I`2+1 I`2+2 . . . I2 `2
...

...
. . .

...
I(`1−1)`2+1 I(`1−1)`2+2 . . . I`1`2

 =


I(1,1) I(1,2) . . . I(1,`2)

I(2,1) I(2,2) . . . I(2,`2)
...

...
. . .

...
I(`1,1) I(`1,2) . . . I(`1,`2)

 .

Using this convention, we can now describe the hybrid HIBE system as follows.

Setup(`, ω): For a HIBE of maximum depth `, first determine `1 and `2 as above so that ` ≤ `1 · `2.
Next, select a random generator g in G, a random α ∈ Z∗

p, and set g1 = gα. Then, pick
random elements g2, f1, . . . , f`1 , h1, . . . , h`2 ∈ G. The public parameters params and the
secret master-key are given by

params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate private key dID for identity ID = (I1, . . . , Ik) ∈ (Z∗
p)k of depth

(k1, k2) = k ≤ `, where k1 ≤ `1 and k2 ≤ `2, pick random r1, . . . , rk1 ∈ Z∗
p, and output

dID =

(
gα
2 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r′k1 ,

gr1 , . . . , grk1−1 , g
r′k1 , h

r′k1
k2+1, . . . , h

r′k1
`2

)
∈ G1+k1+`2−k2 .

(4.3)

Note that the factors (. . .)ri under the
∏

sign contain `2 identity terms each, whereas the
last factor (. . .)rk1 only has k2 such terms. The size of dID grows with k1 and shrinks with k2;
the private key thus becomes alternatively shorter and longer as the depth of ID increases,
but never exceeds `1 + `2 elements of G.

The private key for ID can be generated with a private key for ID|k−1 = (I1, . . . , Ik−1) ∈
(Z∗

p)k−1 as required. Decompose k as (k1, k2) according to our convention. There are two
cases:

1. If k− 1 is written (k1, k2− 1), namely k and k− 1 have the same row index k1, then we know

45

that the private key for ID|k−1 is of the form:

dID|k−1 =
(
gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri ·
(
h

I(k1,1)

1 · · ·hI(k1,k2−1)

k2−1 · fk1

)rk1 , gr1 ,

. . . , grk1 , h
rk1
k2
, . . . , h

rk1
`2

)
= (a0, b1, . . . , bk1 , ck2 , . . . , c`2) ∈ G2+k1+`2−k2 .

In this case, to generate dID from dID|k−1, pick a random r∗ ∈ Z∗
p and output

dID =
(
a0 · c

I(k1,k2)

k2
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r∗
, b1, . . . , bk1−1, bk1 · gr∗ ,

ck2+1 · hr∗
k2+1, . . . , c`2 · hr∗

`2

)
∈ G1+k1+`2−k2 .

This tuple is of the same form as Eq (4.3) where r′k1
= rk1 + r∗.

2. If the row indices differ, then necessarily k − 1 = (k1 − 1, `2) and k = (k1, 1), and the private
key for ID|k−1 must be of the form:

dID|k−1 =
(
gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri , gr1 , . . . , grk1−1

)
= (a0, b1, . . . , bk1−1) ∈ Gk1 .

In this case, to generate dID from dID|k−1, pick a random r ∈ Z∗
p and output

dID =
(
a0 ·

(
h

I(k1,1)

1 · fk1

)r
, b1, . . . , bk1−1, gr, hr

2, , . . . , hr
`2

)
∈ Gk1+`2 .

Again, this tuple conforms to Eq (4.3) in which rk1 has been set to r.

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under identity ID = (I1, . . . , Ik) ∈ Zp[k]
where k = (k1, k2), pick a random s ∈ Z∗

p and output

CT =
(
e(g1, g2)s ·M, gs,

(
h

I(1,1)

1 · · ·hI(1,`2)

`2
· f1

)s
, . . . ,(

h
I(k1−1,1)

1 · · ·hI(k1−1,`2)

`2
· fk1−1

)s
,
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)s) ∈ G1 ×G1+k1 .

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik) with k = (k1, k2). To decrypt a ciphertext
CT = (A,B,C1, . . . , Ck1−1, Ck1) using the private key dID = (a0, b1, . . . , bk1 , ck2+1, . . . , c`2),
output

A ·
k1∏
i=1

e(bi, Ci)
/
e(B, a0) = M.

Note that the private key components ck2+1, . . . , c`2 are not used for decryption.

46

Complexity. It is easy to see that in a hierarchy of depth `, private keys at all levels contain
at most `1 + `2 elements of G, while ciphertexts contain at most 1 + `1 elements of G and one
element of G1. Encryption, decryption, and one-level-down key generation, all require O(`1 + `2)
operations, or O(

√
`) for the choice ω = 1

2 as claimed. We note that the combination of having
a selectable parameter ω together with the option of using an asymmetric bilinear group geared
toward reducing the ciphertext or the private key size (described in Section 4.2.3), gives great
flexibility toward achieving the optimal trade-off for a given application.

Security. We prove security based on the (`2)-wBDHI assumption. We note that for ω = 1/2,
security for a `-level hierarchy is based on the O(

√
`)-wBDHI assumption.

Theorem 4.2.1. Let G be a bilinear group of prime order p. Consider a hybrid `-HIBE system
with identity hierarchy partitioned into `1 groups each of size `2. Suppose the Decision (t, ε, `2 + 1)-
wBDHI assumption holds in G. Then the hybrid `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the hybrid `-HIBE system. Using A, we build an
algorithm B that solves the Decision (`2)-wBDHI* problem in G.

For a generator g ∈ G and α ∈ Z∗
p, let yi = g(αi) ∈ G. Algorithm B is given as input a random

tuple (g, h, y1, . . . , y`2 , T) that is either sampled from PwBDHI∗ (where T = e(g, h)(α
`2+1)) or from

RwBDHI∗ (where T is uniform and independent in G∗
1). Algorithm B’s goal is to output 1 when

the input tuple is sampled from PwBDHI∗ and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ÎD
∗

=
(I∗1, . . . , I

∗
m) ∈ Z∗

p[m] of depth m ≤ ` that it intends to attack. If m < ` then B pads ÎD
∗

with `−m zeroes on the right to obtain a vector ID∗ of length `. Following our convention,
we write ID∗ as a pair (`, I∗) where the matrix I∗ ∈ Z∗

p[`1 × `2] is filled using the elements
I∗1, . . . , I

∗
` .

Setup. To generate the system parameters, algorithm B picks a random γ in Z∗
p and sets g1 =

y1 = gα and g2 = y`2 · gγ = gγ+(α`2).

Next, B picks random γ1, . . . , γ`2 in Z∗
p and sets hi = gγi/y`2−i+1 for i = 1, . . . , `2.

Algorithm B also picks random δ1, . . . , δ`1 in Z∗
p and sets fi = gδi ·

∏`2
j=1(y`2−j+1)I∗

(i,j) for
i = 1, . . . , `1.

Finally, B gives A the system parameters params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2). Observe
that all these values are distributed uniformly and independently in G as required.

The master key g4 corresponding to these system parameters is g4 = gα(α`2+γ) = y`2+1y
γ
1 ,

which is unknown to B since B does not have y`2+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ Z∗

p[u] where u ≤ `. The only restriction is that ID is not a prefix of ID∗.
This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗); we set k such that it is the smallest such index. To respond to the

47

query, algorithm B first derives a private key for the identity IDk = (I1, . . . , Ik) from which it
then constructs a private key for the requested identity ID = (I1, . . . , Ik, . . . , Iu).

As per our convention, we write IDk as a pair (k, I) where the matrix I ∈ Z∗
p[`1 × `2] is filled

using the elements I1, . . . , Ik. Recall that our convention allows for decomposing the depth
index k into a row-column pair (k1, k2) = k.

To generate the private key for the identity IDk at depth k = (k1, k2) where k1 ≤ `1 and k2 ≤
`2, algorithm B first picks random r1, . . . , rk1−1, r̃k1 in Z∗

p. We pose rk1 = αk2

(I(k1,k2)−I∗
(k1,k2)

) +

r̃k1 ∈ Z∗
p. Next, B generates the private key

dIDk
=

(
g4 ·

(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
,

gr1 , . . . , grk1−1 , grk1 , h
rk1
k2+1, . . . , h

rk1
`2

)
∈ G1+k1+`2−k2 .

(4.4)

which is a properly distributed private key for the identity IDk. We show that B can compute
all elements of this private key given the values at its disposal. We use the fact that y(αj)

i =
yi+j for any i, j.

We first show how to generate the first component of the private key. Observe that

(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 =grk1
·(δk1

+
Pk2

i=1 I(k1,i)γi) ·
k2−1∏
i=1

y
rk1

·(I∗
(k1,i)

−I(k1,i))

`2−i+1 · y
rk1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 ·
`2∏

i=k2+1

y
rk1

·I∗
(k1,i)

`2−i+1


(4.5)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =
(
grk1

·(δk1
+

Pk2
i=1 I(k1,i)γi)

)
·

k2−1∏
i=1

y
rk1

·(I∗
(k1,i)

−I(k1,i))

`2−i+1︸ ︷︷ ︸
=1

·
`2∏

i=k2+1

y
rk1

·I∗
(k1,i)

`2−i+1 .

Note that the second term in Z equals 1 because Ii = I∗i for all i < k (namely, I(i,j) = I∗(i,j)
where both i ≤ k1 and j < k2 hold). One can verify that B can compute all the terms in
Z given the values at its disposal. On the other hand, B cannot compute the third term in
Eq (4.5) by itself since it requires knowledge of y`2+1 = yαk2

`2−k2+1. We, however, observe that

y
rk1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 = y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1

/
y`2+1 = y

r̃k1
·(I∗

(k1,k2)
−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1).

Hence, the product of the first two terms in the first component (4.4) in the private key is:

g4 ·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 = g4 · Z · y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1)

= Z · y
r̃k1

·(I∗
(k1,k2)

−I(k1,k2))

`2−k2+1 · yγ
1 .

48

Since g4 cancels out from the expression on the right, all the terms in that expression are
known to B. Thus, B can compute the product of the first two terms in the first component
of the private key (4.4). To conclude, note that the third term

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

=
k1−1∏
i=1

gri·(δi+
P`2

j=1 I(i,j)γi) ·
`2∏

j=1

y
ri·(I∗(i,j)−I(i,j))

`2−j+1


has a similar form to Z and can be computed by B given the values at its disposal. Therefore,
we have shown that B can compute the first component of the private key (4.4).

The components gr1 , . . . , grk1−1 are easily computed by raising g to the powers of r1, . . . , rk1−1,

all of which B knows. The component grk1 is simply y
1/(I(k1,k2)−I∗

(k1,k2)
)

k2
· gr̃k1 , which B can

also compute. Finally, observe that

h
rk1
k2+i =

(
gγk2+i

/
y`2−k2−i+1

) αk2
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

=
(
y

γk2+i

k2

/
y`2−i+1

) 1
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

,

which B can compute for all i = 1, . . . , `2 − k2 because there are no y`2+1 terms.

Thus, B can derive a valid private key for IDk. Algorithm B derives a private key for the
requested ID from this private key and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on which
it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT =
(
Mb · T · e(y1, h

γ), h, hδ1+
P`2

j=1 I∗
(1,j)

γj , h
δ2+

P`2
j=1 I∗

(2,j)
γj , . . . , h

δ`1
+

P`2
j=1 I∗

(`1,j)
γj

)
where h and T are from the input tuple given to B. First note that if h = gc (for some
unknown c in Z∗

p) then

h
δi+

P`2
j=1 I∗

(i,j)
γj =

(
h

I∗
(i,1)

1 · · ·h
I∗
(i,`2)

`2
· fi

)c

Therefore, if T = e(g, h)(α
`2+1), (i.e., when the input tuple is sampled from PwBDHI∗) then

the challenge ciphertext is:

CT =
(
Mb · e(g1, g2)c, gc,

(
h

I∗
(1,1)

1 · · ·h
I∗
(1,`2)

`2
· f1

)c

, . . . ,

(
h

I∗
(`1,1)

1 · · ·h
I∗
(`1,`2)

`2
· f`1

)c)
which is a valid encryption of Mb under the public key ID∗ = (I∗1, . . . , I

∗
`). On the other hand,

when T is uniform and independent in G∗
1 (when the input tuple is sampled from RwBDHI∗),

then CT is independent of b in the adversary’s view.

Phase 2. A continues to issue queries not issued in Phase 1. Algorithm B responds as before.

49

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`2+1). Otherwise, it
outputs 0 meaning T is random in G1.

When the input tuple is sampled from PwBDHI∗ (where T = e(g, h)(α
`2+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RwBDHI∗ (where T is uniform in G∗

1) then Pr[b = b′] = 1/2. Therefore,
with g uniform in G∗, h uniform in G∗ α uniform in Z∗

p, and T uniform in G1 we have that∣∣∣∣Pr
[
B
(
g, h, ~yg,α,`2 , e(g, h)(α

`2+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`2 , T

)
= 0
]∣∣∣∣

≥
∣∣(1

2 ± ε
)
− 1

2

∣∣ = ε

as required, which completes the proof of the theorem.

4.2.3 Asymmetric Bilinear Groups and MNT Curves.

It is often desirable to use bilinear maps e : G × G′ → G1 where G and G′ are distinct groups.
Such maps let us take advantage of certain curves called MNT curves [52]. Typically, elements
of the group G tend to afford a particularly compact representation compared to elements of G′.
This property is used for constructing short signatures [14, 6, 8]. For our system, we can use this
property to shrink either the private keys or the ciphertexts.

We briefly describe how to rephrase the above HIBE in terms of asymmetric bilinear groups
e : G×G′ → G1. Recall that such groups are necessarily equipped with an efficiently computable
homomorphism φ : G′ → G. Thus, Setup picks all randomly selected group elements from G′.
Before these elements are used or disclosed, each element is either converted to a point in G using
φ, or left alone in G′, depending on whether this particular element is destined to appear in the first
or second argument of the bilinear map e(·, ·). It is easy to see that there are no conflicts. There are
two ways to perform this conversion: we can either send the private key or the ciphertext elements
to G; in one case we end up with smaller private keys, and in the other, smaller ciphertexts.

4.3 Applications

We now discuss applications of our compact HIBE system and its extensions.

4.3.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that all messages encrypted
before the secret key is compromised remain secret.

An elegant public key encryption scheme with forward security was proposed by Canetti, Halevi,
and Katz (CHK) [19]. Let T = 2t be the number of distinct time periods in the forward secure
system. When implemented with previous HIBE systems [34, 5], the CHK framework results in
ciphertexts of size O(t) and private keys of size O(t2). Using public updateable storage, Canetti
et al. reduce private key size to O(t) without affecting ciphertext length — the idea is to encrypt
the private key for time period i under the public key of time period i− 1 and store the resulting
ciphertext, of size O(t2), in public storage; consequently, only one HIBE private key of size O(t) is
kept in private storage.

50

Using the HIBE system of Section 4.1 in the CHK framework, we obtain a forward secure
encryption scheme with O(1) ciphertext size and decryption time — independent of the number of
time periods. Private keys using our basic system are of size O(t2). Alternatively, using the hybrid
HIBE of Section 4.2.2 in which we set ω = 1

2 , we obtain a forward secure encryption scheme with
private key size O(t3/2); in this case ciphertext size and decryption time become O(

√
t).

Following Canetti et al. [19], we can store most of the private key in updateable public storage
in order to lessen the private storage requirement. Applied to our basic forward secure system,
using O(t2) public storage we can reduce the private key size to O(t) while keeping the ciphertext
size constant. Using the hybrid HIBE system (for ω = 1

2), the private storage requirement can be
similarly reduced to O(

√
t) at the cost of O(t3/2) updateable public storage; ciphertext size in this

case remains O(
√
t).

4.3.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [71]. Their scheme essentially
uses two HIBE hierarchies in the manner of Canetti et al. [19] to obtain forward security together
with the ability to derive subordinate keys. Their system has ciphertexts of size O(` · t) where ` is
the depth of the identity hierarchy and T = 2t is the number of time periods. Indeed, they pose as
an open problem if a forward secure HIBE scheme with “linear” complexity is possible.

Instantiating both hierarchies in their construction with our HIBE system immediately gives a
forward secure HIBE scheme with ciphertexts of size O(1), which resolves this question.

4.3.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [30], are cryptosystems designed for
the efficient broadcast of data to a dynamic group of users authorized to receive the data. Naor,
Naor, and Lotspiech [54] considered broadcast encryption in the stateless receiver setting; they
provided a general “subset cover” framework for such broadcast encryption schemes and gave two
instances of the framework — the Complete Subtree (CS) method and the more efficient Subset
Difference (SD) method. Further improvements have been proposed such as the Layered Subset
Difference (LSD) [42] and the Stratified Subset Difference (SSD) [39]. In the symmetric key setting,
only a “center” that possesses the secret keys can broadcast to the users. In a public key broadcast
encryption system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [27] showed how to translate the SD and LSD
methods to the public key setting. For N users and r revoked users, their SD and LSD constructions
based on previous HIBE systems give ciphertexts of size O(r · logN), which is no better than the
basic CS method. Substituting the HIBE system of Section 4.1 restores the full benefits of both
SD and LSD, which results in ciphertexts of size O(r).

4.3.4 Encrypting to the Future

Mont et al. [53] observed that an IBE system gives a mechanism for encrypting to the future using a
trusted server. Let D be a certain date string. We view D as a public key in an IBE system. Every
day, a trusted server publishes the private key corresponding to that day, which enables messages
encrypted for that day to be decrypted. Methods for encrypting to the future without a trusted
server were proposed by Rivest, Shamir, and Wagner [62].

51

One problem with the IBE timelock mechanism is that after n days have passed, the server has
to publish a bulletin board with n private keys on it (one private key for each day). The amount
of data on the bulletin board can be greatly reduced by using the CHK forward secure encryption
scheme in reverse. Suppose the CHK framework is set up for a total of T time periods (using
a tree of depth log2 T). To encrypt a message for day n < T , use the CHK public key for time
period T − n. Similarly, on day n the trusted server publishes the CHK private key corresponding
to time period T − n. This single private key enables anyone to derive the private keys for CHK
time periods T − n, T − n+ 1, . . . , T . Anyone can thus decrypt messages intended for days in the
range 1, . . . , n.

Implementing this encoding using our O(1) ciphertext HIBE, the trusted server on any day only
needs to publish a single private key comprising O(log2 T) group elements. Using the hybrid HIBE
system of Section 4.2.2, the private key posted by the server is further reduced to O(log3/2 T) group
elements for ciphertexts of size O(

√
log T). These parameters are much better than the IBE based

mechanism [53], where the bulletin board contains as many as T group elements.

4.4 Summary and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group elements and de-
cryption only requires computing two bilinear maps, both of which are independent of the hierarchy
depth. Encryption time is as efficient as other HIBE systems. For a hierarchy of depth `, we proved
security based on the (Weak) `-BDHI assumption.

We discussed several applications of our system, including efficient forward secure encryption,
an efficient public key version of the NNL broadcast encryption system, and an efficient mechanism
for encrypting to the future. Our HIBE system allows for limited delegation and can be combined
with the Boneh-Boyen HIBE to form a hybrid HIBE that has sublinear private key size.

We note that our selective-ID proof of security is tight. On the other hand, the proof of
full security (either in the random oracle or standard model) discussed in Section 4.1.2 degrades
exponentially in the hierarchy depth. The same is true for all existing HIBE systems. It is an
open problem to construct a HIBE system where security does not degrade exponentially in the
hierarchy depth.

52

Bibliography

[1] cryptology. Encyclopædia Britannica Online, June 2007. http://www.britannica.com/eb/
article-25626.

[2] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Proceedings of Eurocrypt ’98, volume 1403, 1998.

[3] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.

[4] M. Blum. Coin flipping by telephone. In Proceedings of Crypto ’81, 1981.

[5] D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without random
oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027
of LNCS, pages 223–38. Springer, 2004.

[6] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 56–73. Springer,
2004.

[7] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size
ciphertext. In R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
440–456. Springer, 2005.

[8] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[9] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian,
editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29. Springer, 2001.

[10] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM Journal
of Computing, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

[11] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. Cryptology ePrint Archive, Report 2005/018, 2005.

[12] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Killian,
editor, Proceedings of Theory of Cryptography Conference 2005, volume 3378 of LNCS, pages
325–342. Springer, 2005.

[13] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity
based encryption. In Proceedings of RSA-CT 2005, 2005.

53

[14] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd,
editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer, 2001.

[15] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. In Top-
ics in Algebraic and Noncommutative Geometry, number 324 in Contemporary Mathematics.
American Mathematical Society, 2003.

[16] X. Boyen and B. Waters. Compact group signatures without random oracles. In S. Vaudenay,
editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 427–444. Springer, 2006.

[17] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure
autonomous mobile agents. In 27th International Colloquium on Automata, Languages and
Programming (ICALP ’2000), volume 1853 of Lecture Notes in Computer Science, pages 512–
523. Springer-Verlag, Berlin Germany, July 2000.

[18] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two
safe primes. In Eurocrypt ’99, pages 107–122, 1999.

[19] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Bi-
ham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS. Springer, 2003.

[20] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 207–22. Springer, 2004.

[21] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In 36th
Annual Symposium on Foundations of Computer Science, pages 41–50, Milwaukee, Wisconsin,
23–25 Oct. 1995. IEEE.

[22] J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election scheme.
In Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pages 372–382,
1985.

[23] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-ballot elec-
tions with linear work. In U. Maurer, editor, Proceedings of Eurocrypt 1996, volume 1070 of
LNCS, pages 72–83. Springer, 1996.

[24] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. European Transactions on Telecommunications, 8(5):481–490, Sep 1997.

[25] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

[26] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In K. Kim, editor, Proceedings of Public Key Cryptography
2001, volume 1992 of LNCS, pages 119–136. Springer, 2001.

[27] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In J. Feigen-
baum, editor, Proceedings of the Digital Rights Management Workshop 2002, volume 2696 of
LNCS, pages 61–80. Springer, 2002.

54

[28] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In
Proceedings of the Workshop on Theory and Practice in Public Key Cryptography 2005, 2005.

[29] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, Jul 1985.

[30] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Proceedings of Crypto 1993,
volume 773 of LNCS, pages 480–91. Springer, 1993.

[31] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. Odlyzko, editor, Proceedings of Crypto 1986, volume 263 of LNCS,
pages 186–194. Springer, 1986.

[32] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 1–19. Springer-Verlag, May 2004.

[33] R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In ACM Computer and Communi-
cations Security (CCS) ’98, 1998.

[34] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng, editor, Pro-
ceedings of Asiacrypt 2002, volume 2501 of LNCS, pages 548–66, 2002.

[35] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private infor-
mation retrieval schemes. Journal of Computer and System Sciences, 60(3):592–629, 2000.

[36] O. Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University Press,
2004.

[37] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographic protocol design (extended abstract). In 27th Annual Symposium
on Foundations of Computer Science, pages 174–187, Toronto, Ontario, Canada, 27–29 Oct.
1986. IEEE.

[38] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping
secret all partial information. In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, pages 365–377. ACM Press, 1982.

[39] M. Goodrich, J. Sun, and R. Tamassia. Efficient tree-based revocation in groups of low-state
devices. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages
511–27. Springer, 2004.

[40] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for NIZK. In
C. Dwork, editor, Proceedings of Crypto 2006, volume 4117 of LNCS, pages 97–111. Springer,
2006.

[41] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In
S. Vaudenay, editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–358.
Springer, 2006.

55

[42] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In M. Yung, editor,
Proceedings of Crypto 2002, volume 2442 of LNCS, pages 47–60, 2002.

[43] J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In L. Knudsen,
editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 466–81. Springer, 2002.

[44] M. Jakobsson and A. Juels. Millimix: Mixing in small batches. Technical Report 99-33, Center
for Discrete Mathematics and Theoretical Computer Science (DIMACS), Oct 1999.

[45] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, Proceed-
ings of 4th Algorithmic Number Theory Symposium, number 1838 in LNCS, pages 385–394.
Springer, Jul 2000.

[46] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-
private information retrieval (extended abstract). In 38th Annual Symposium on Foundations
of Computer Science, pages 364–373, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.

[47] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In M. Naor, editor, Proceedings of Eurocrypt 2007, volume 4515 of
LNCS, pages 52–78. Springer, 2007.

[48] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[49] V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.

[50] V. Miller. The weil pairing, and its efficient calculation. J. of Cryptology, 17(4), 2004.

[51] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Transactions Funda-
mentals, E85-A(2):481–84, 2002.

[52] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43, 2001.

[53] M. C. Mont, K. Harrison, and M. Sadler. The HP time vault service: exploiting IBE for
timed release of confidential information. In Proceedings of the International World Wide Web
Conference 2003, pages 160–69. ACM, 2003.

[54] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers.
In J. Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 41–62. Springer,
2001.

[55] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In
K. Nyberg, editor, Proceedings of Eurocrypt 1998, volume 1403 of LNCS, pages 308–318.
Springer-Verlag, May 1998.

[56] P. Pallier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages 223–238. Springer-Verlag,
May 1999.

56

[57] T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. Davies, editor,
Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–526. Springer, 1991.

[58] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor,
Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages 387–398. Springer, 1996.

[59] M. Rabin. Transaction protection by beacons. Journal of Computer and System Science,
27(2):256–267, 1983.

[60] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, 1978.

[61] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21(2):120–126, Feb 1978.

[62] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto. Technical
Report MIT/LCS/TR-684, MIT Laboratory for Computer Science, 1996.

[63] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing forNC1. In Proceedings
of the 40th Symposium on Foundations of Computer Science (FOCS), pages 554–567, New
York, NY, USA, Oct. 1999. IEEE Computer Society Press.

[64] H. Shacham. The BBG HIBE has limited delegation. Cryptology ePrint Archive, Report
2007/201, 2007.

[65] A. Shamir. Identity-based cryptosystems and signature schemes. In G. Blakley and D. Chaum,
editors, Proceedings of Crypto 1984, volume 196 of LNCS, pages 47–53. Springer, 1984.

[66] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256–66. Springer, 1997.

[67] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of Eurocrypt 2000,
volume 1807 of LNCS, pages 207–220. Springer, 2000.

[68] J. van de Graaf and R. Peralta. A simple and secure way to show validity of your private key.
In Proceedings of Crypto ’87, 1987.

[69] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, LNCS. Springer, 2005.

[70] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Symposium on
Foundations of Computer Science (FOCS), pages 160–164. IEEE Computer Society Press,
1982.

[71] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption for complex hierarchies
with applications to forward security and broadcast encryption. In B. Pfitzmann, editor,
Proceedings of the ACM Conference on Computer and Communications Security 2004, pages
354–63, 2004.

57

