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Abstract. Billions of dollars allegedly lost to piracy of multimedia have
recently triggered the industry to rethink the way music and movies are
distributed. As encryption is vulnerable to re-recording, currently all
copyright protection mechanisms tend to rely on watermarking. A wa-
termark is an imperceptive secret hidden into a host signal. In this paper,
we analyze the security of multimedia copyright protection systems that
use watermarks by proposing a new breed of attacks on generic water-
marking systems. A typical replacement attack relies upon the observa-
tion that multimedia content is often highly repetitive. Thus, the attack
procedure replaces each signal block with another, perceptually similar
block computed as a combination of other similar blocks found either
within the same media clip or within a library of media clips. Assuming
the blocks used to compute the replacement are marked with distinct se-
crets, we show that if the computed replacement block is at some minimal
distance from the original marked block, large portion of the embedded
watermark is irreversibly removed. We describe the logistics of the at-
tack and an exemplary implementation against a spread-spectrum data
hiding technology for audio signals.

1 Introduction

Significantly increased levels of multimedia piracy over the last decade have put
the movie and music industry under pressure to deploy a standardized anti-piracy
technology. The goal is to enforce copyright protection via content screening on
client media players. A media player would refuse to play copyright protected
content for which the user does not hold a license. A content screening platform,
for example, aims at disabling free downloads from centralized and peer-to-
peer file-sharing networks – e.g., Napster alone had orchestrated almost 3 billion
downloads of sound clips in February 2001. Several industry-wide initiatives have
had little success in establishing a content screening standard [1–3].

1.1 Content Screening

The problem of ensuring copyright at the client side lies in the fact that tra-
ditional data protection technologies such as encryption or scrambling cannot



be applied as they are prone to digital or analog re-recording (copying). Thus,
almost all modern copyright protection mechanisms tend to rely to a certain
extent on watermarks, imperceptive marks hidden in host signals. In a typi-
cal content screening system, the client’s media player searches the content for
hidden information. If the secret mark is found, the player must verify, prior to
playback, whether it has a license to play the content. By default, unmarked
content is considered as unprotected and is played without any barriers. A key
technology required for content screening is public-key watermarking, that is, a
marking scheme where breaking a single player or a relatively large subset of
players does not compromise the security of the entire system. Such a system,
potentially efficient for content screening, has been detailed in [4]. If breaking a
single player does not pose a significant security threat, the main target of the
adversary is finding a signal processing primitive that removes the watermark
or prevents a detector to find it. Several attack mechanisms surveyed in [5] have
been largely successful in setting up robustness benchmarks for watermarking
technologies. However, none of the attack technologies that do not rely on having
access to the watermark detector, remove watermarks without any hope that an
irreversible or preventing action is possible.

1.2 The Replacement Attack

In this manuscript, we propose an attack which aims at reducing the correlation
of a watermarked signal with its watermark by replacing each original water-
marked block of the multimedia signal with another perceptually similar block
which is computed as a combination of other signal blocks that are perceptually
similar but not tainted with the same watermark bits as the original marked
block. We call this type of an attack: a replacement attack. The rationale
behind this attack is the fact that the replacing block, if at certain minimal
distance from the original marked block, conveys little correlation with respect
to the watermark embedded in the replaced block as it is created from data that
is independent with respect to this watermark. Thus, the newly created content
preserves the perceptual similarity with respect to the original clip, while irre-
versibly cleared of the correlation with the originally embedded watermark. The
strategy of this new attack paradigm is simple:

1 partition the content into overlapping low-granularity signal blocks,
2 for each block B find a subset S of K most perceptually similar blocks,
3 compute a block R as a combination of blocks from S, such that the

Euclidean distance between R and B is minimal, and
4 replace B with R.

In step 2, perceptually similar blocks are originally searched within the orig-
inal media clip. The search is constrained to a part of the media clip which is
assumed to be marked with a different secret compared to block B. If the com-
puted replacement block R is at an Euclidean distance which is higher than some



predefined fidelity constraint (e.g., |B − R| < 4dB), the adversary can alterna-
tively seek replacement blocks in an external multimedia library. The distance
between R and B must not be small, because the replaced block in that case pre-
serves certain correlation proportional to the similarity. For example, if B = R
then the attack does not affect the existence of the watermark. Thus, if R is
at a distance which is closer than a certain lower bound, it is recomputed as to
increase the similarity beyond that bound.

Finding perceptually similar blocks of certain music or video content is a
challenging task. With no loss of generality, in this paper we restrict our focus
to audio, although video is in many cases a much better source of repetitive
content within a single recording. For example, within a common scene both
background and objects experience geometric transformations significantly more
frequently than changes in appearance. In general, repetition is often a principal
part of composing music and is a natural consequence of the fact that distinct
instruments, voices and tones are used to create a soundtrack. Thus, it is likely
to find similarities within a single musical piece, an album of songs from a single
author, or in instrument solos. In this paper, we explore the challenges of the
replacement attack and show how it can be launched on audio content.

2 Logistics of the Replacement Attack

The replacement attack is not limited to a type of content or to a particu-
lar watermarking algorithm. For example, systems that modulate secrets using
spread-spectrum [6] and/or quantization index modulation (QIM) [7] are all
prone to the replacement attack. In order to launch the attack successfully, the
adversary does not need to know the details of the watermark codec. The ad-
versary needs to reduce the granularity of integral blocks of data such that no
block contains enough information from which a watermark can be identified
individually. Note that watermark detection involves processing large amount of
data (for example, reliable and robust detection of audio watermarks requires at
least several seconds of audio [8]). Thus, blocks considered for replacement must
be at least one order of magnitude smaller than watermark length. For both
audio and video, this requirement is not difficult to satisfy as typically blocks of
256− 2048 transform coefficients for audio or bitmaps of up to 64× 64 pixels for
video are considered for pattern matching.

In the remainder of this section, we assume that coefficients of the marked
signal are replaced only with other coefficients of the same signal. It is straight-
forward to redefine the attack such that coefficients from external signal vectors
are considered as a substitution base.

The host signal to be marked x ∈ RN can be modeled as a vector, where
each element xi ∈ x is a zero-mean independent identically distributed normal
random variable1 with standard deviation σx: xi ∼ N (0, σx). The replacement
1 This model is adopted for the purpose of analyzing the watermark detector. Reality
shows that the model is not memoryless as parts of the signal tend to repeat, slightly
distorted, both in music and video.



attack is not restricted to a particular signal model; we use the Gaussian as-
sumption to analyze certain properties of the attack. A watermark is defined
as an arbitrary pseudo-randomly generated vector w ∈ RN , where each ele-
ment wi ∈ w is a random variable with standard deviation δ � σx. For exam-
ple, if direct sequence spread-spectrum is used for watermark modulation then
w ∈ {±δ}N . We assume that the watermark w is mutually independent with
respect to x. The marked signal x̃ is created as x̃ = x+w. The replacement
attack receives as input the marked signal x̃ and outputs its modification x̃′.

2.1 Attack steps

Signal partitioning. In the initial step of the attack, the watermarked content
x̃ is partitioned into a set B of overlapping blocks, where each block Bp represents
a sequence of m samples of x̃ starting at x̃(Bp). (Bi) denotes the index of the
first sample in the i-th block Bi. For an overlap ratio of η, the total number of
blocks equals n = 
N−m

1−η �. The higher the overlap, the larger the search-space
for the replacement attack. We want to select the overlap such that:

1. consecutive blocks do not have similar perceptual characteristics – this upper
bound on block overlap aims at reducing the search space – and

2. for two consecutive blocks Bp and Bp+1 starting at x̃(Bp) and x̃(Bp+1) respec-
tively, the block starting at x̃a, a = [(Bp) + (Bp+1)]/2 is not perceptually
similar to Bp or Bp+1.

Similarity function. This is the core function of the replacement attack.
It takes as an input a pair of blocks Bp and Bq and returns a real number
φ(Bp, Bq) ≥ 0 that quantifies their similarity. Block equality is represented as
φ(Bp, Bq) = 0. The adversary can experiment with a number of different func-
tions. In this section, we restrict similarity to the root-mean-square distortion
between blocks:

φ(Bp, Bq) =
1√
m
||Bp −Bq|| =

√√√√ 1
m

m−1∑
i=0

[
x̃i+(Bp) − x̃i+(Bq)

]2
. (1)

Search for the substitution base. This step is repeated for each block (target
B) of the original media clip. The goal is to find a subset S of K perceptually
similar blocks to B. An additional constraint is that the subset S is searched in
part of the signal which is marked with watermark bits different with respect
to the watermark present in the target. Usually, watermark bits are replicated
within certain vicinity of the target [8], which excludes several neighboring blocks
to the target from the search process. The following principles guide the search
process.

1. Lower bound on similarity – the computed block R replacing B must be
at a certain minimal distance from B, i.e. φ(B,R) ≥ α. This requirement



stems from the fact that replacing a signal block with another, exceptionally
similar block has only nominal impact on watermark existence. Parameter
α depends on the watermark amplitude as well as the type of watermark
modulation (e.g., direct-sequence spread spectrum or QIM). It is discussed
further in Subsection 2.2.

2. Upper bound on similarity – the upper limit ensures that the resulting
clip has a preserved high fidelity with respect to the marked copy. If the
search procedure cannot find a subset of blocks that can linearly combine to
create a replacement block R that is sufficiently similar to B, φ(B,R) � β,
then R = B, i.e. replacement does not occur. Note that the search procedure
is not limited to the host media clip – the subset of similar blocks can be
extracted from a large library of media clips.

Based on the above principles, the algorithm for computing the replacement
block R takes the following steps. In the first step, the algorithm finds two pools
of blocks, S′ and S. The first pool S′ contains all blocks from the substitution
database which are at distance (∀Bi ∈ S′)φ(Bi, B) < α. Frequently, with the
exception of electronically generated music, this pool is empty as it is hard to find
exceptionally similar blocks in music performed by humans. The second pool S
contains K most similar blocks to B that are at distance (∀Bi ∈ S)φ(Bi, B) ≥ α.
Parameter K should be significantly smaller than the length of a block. For 256-
to 2048-long audio blocks, values within 10 � K � 50 result in good balance
for fidelity and performance. Although parameter K can, in general, be variable
across blocks, in our experiments we consider only constant K. The complexity
of finding S is linearly proportional to the size of the replacement database.

1 for each block B

2 find S′ ⊂ B|(∀Bi ∈ S′)φ(Bi, B) < α

3 find S ⊂ B|(∀Bi ∈ S)φ(Bi, B) ≥ α

4 create matrix s such that each row in s is a distinct block from S

5 compute R′ = s(sT s)−1sTB

6 depending on φ(R′, B) and S′, set R according to rules (i-iv)
7 replace B with R

8 end for

In the next step, the replacement block R is computed from the selected
blocks in S such that its similarity with respect to R is maximized. More for-
mally, we construct a matrix s ∈ R

K×m where each row of this matrix represents
one block from S. We aim to compute a vector A such that ||sA − B|| is mini-
mized. The least-squares solution to this set of overdetermined linear equations,
commonly called pseudo-inverse of s, equals A = (sT s)−1sTB. A temporary
replacement block R′ is now computed as R′ = sA. Four cases can occur:

(i) the temporary replacement block R′ satisfies the requirements, e.g., α �
φ(B,R′) � β, in which case the replacement equals R = R′,



(ii) R′ is too distorted and subset S′ is empty, e.g., φ(B,R′) > β and S′ = ∅,
in which case no replacement occurs R = B for preserved signal fidelity,

(iii) R′ is too distorted and S′ is not empty, e.g., φ(B,R′) > β and S′ �= ∅,
in which case R′ and a randomly chosen block T from S′ are mixed as
R = (1− q)T + qR′ such that φ(R,B) = α, and

(iv) R′ is too similar to B, e.g., φ(B,R′) < α, in which case R′ and a randomly
chosen block T from S are mixed asR = (1−q)T+qR′ such that φ(R,B) = α.

The mixing parameter q enforces the desired similarity φ(B,R) = α in the
last two cases if:

q =
ε2 − √

α2(ϑ2 + ε2)− ϑ2ε2

ϑ2 + ε2
, (2)

where ||R′ − B||2 = mϑ2 and ||T − B||2 = mε2 under the assumption that
T −B and R′ −B are mutually independent2.

Block substitution. In the final step, each block B of the original watermarked
signal is replaced with the corresponding computed replacement R to create the
output media clip x̃′.

2.2 Determining α for Spread-Spectrum Watermarks

Lets assume that vector x+w is deemed similar to and replaced by vector y+v,
where x and y are original signals marked with two distinct watermarks w and
v, where w,v ∈ {±δ}m. All vectors are assumed to have the same length as a
single block:m. In addition, we assume that the watermarks are spread-spectrum
sequences, which means that watermark w is detected in a signal z by matched
filtering: C(z,w) = zTw. If z has been marked with w, E[C(z,w)] = mδ2,
otherwise E[C(z,w)] = 0, with variance Var[C(z,w)] = mσ2

z . Watermark is
detected if C(z,w) is greater than a certain detection threshold τ . In order to
have symmetric probability of a false alarm and misdetection, τ is commonly set
to mδ2/2. From the requirement for two blocks to be eligible for substitution:

E[||(y + v)− (x+w)||2] = E[||y − x||2] + 2mδ2 − 2E[C(v,w)] � mα2, (3)

we can compute the expected resulting correlation E[C(y + v,w)] under the
assumption that vectors v and w are independent with respect to x and y:3

E[C(y + v,w)] � 1
2
E[||y − x||2] +m(δ2 − α2

2
) (4)

2 In case (iv) the two vectors are not mutually independent as R′ is dependent upon
T . To address this issue, we select T as the block from S which has the smallest
absolute value of the corresponding coefficient in the vector A that builds R′.

3 E[C(y,v)] = E[C(x,v)] = E[C(y,w)] = E[C(x,w)] = 0.



Assuming that there exists true repetition of the original content y = x,
then setting α � δ

√
2 would set the expected minimum correlation to zero after

substitution. If y �= x, then α needs to be additionally increased to compensate
for the effect of E[||y−x||2] on resulting correlation. Quantifying this compensa-
tion analytically is difficult as it depends upon the self-similarity of the targeted
content.

3 A Replacement Attack for Audio

In this section, we demonstrate how the generic principles behind the replace-
ment attack can be applied against an audio watermarking technology. We first
describe how an audio signal is partitioned and pre-processed for improved per-
ceptual pattern matching. Next, we analyze the similarity function we used for
our experiments. The effect of the replacement attack on direct-sequence spread-
spectrum watermark detection is presented in the following sections.
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Fig. 1. Block diagram of the signal processing primitives performed as pre- and post-
processing to the replacement attack.

3.1 Audio Processing for the Replacement Attack

Since most psycho-acoustic models operate in the frequency spectrum [9], we
launch the replacement attack in the logarithmic (dB) frequency domain. The
set of signal blocks B is created from the coefficients of a modulated complex
lapped transform (MCLT) [9]. The MCLT is a 2× oversampled DFT filter bank,
used in conjunction with analysis and synthesis windows that provide perfect
reconstruction. We consider MCLT analysis blocks with 2048 transform coef-
ficients and an η = 0.25 overlap. Each block of coefficients is normalized and
psycho-acoustically masked using an off-the-shelf masking model [9]. Similarity



is explored exclusively in the audible part of the frequency spectrum. Because
of psycho-acoustic masking, the actual similarity function in Eqn.1 is not com-
mutative. A replacement block is always masked with the psycho-acoustic mask
of the replaced block. Figure 1 illustrates the signal processing primitives used
to prepare blocks of audio content for substitution.

Watermark length is assumed to be greater than one second. In addition, we
assume that watermark chips may be replicated along the time axis at most for
one second4 [8]. Thus, we restrict that for a given block its potential substitution
blocks are not searched within one second.
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Fig. 2. Music self-similarity: a similarity diagram for five different 2048-long MCLT
blocks within a techno clip with 240 MCLT blocks. Zero-similarity denotes equality.
The abscissa x denotes the index of a particular MCLT block. The ordinate denotes
the similarity φ(x, Bi) of the corresponding block x with respect to the selected five
blocks with indices Bi|i = {122, 127, 132, 137, 142}.

3.2 Analysis of the Similarity Function

We performed several experiments in order to evaluate the effectiveness of the
replacement attack. The first set of experiments aims at quantifying similarity
between blocks of several audio clips marked with spread-spectrum watermarks
4 Higher level of redundancy may enable effective watermark estimation.



at δ = 1dB. In all examples, block similarity is computed over the 2–7kHz sub-
band as watermark codecs commonly hide data in a sub-band that is not strongly
distorted by compression and medium quality low- and high-pass filtering [8].
Figure 2 shows the values of the similarity function φ(Bi, Bj) for five 2048-long
MCLT blocks at positions i = {122, 127, 132, 137, 142} against a database of 240
blocks j = {1 . . . 240} within one audio clip (techno music). We observe that
throughout the database four different pairs of blocks (circled in the subfigure)
are found as similar below 4dB to the pair of blocks with indices 127 and 137.
All similar pairs of blocks preserve the same index distance as the target pair.
This points to the fact that in many cases content similarity is not a result of
cöıncidence, but a consequence of repetitive musical content.
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Fig. 3. Music self-similarity: probability density function of the similarity function
φ(Bi, Bj) within an audio clip – five different types of music are considered: rock, clas-
sical, jazz, vocals and techno. A certain value x on the abscissa represents a histogram
bin from x − 0.25 to x + 0.25 dB.

Figure 3 illustrates the probability that for a given 2048-long MCLT block
Bi, there exists another block Bj within the same audio clip that is within
φ(Bi, Bj) ∈ [x − 0.25, x + 0.25}dB, where x is a real number. This experiment
was conducted for five different types of audio content: techno, jazz, rock, vocals,
and classical music. For this benchmark set of distinctly different musical pieces,
we conclude that the average φ(Bi, Bj) for two randomly selected blocks within



an audio clip is in the range of 6–8dB. The probability of finding a similar block
should rise proportionally to the size of the substitution database, especially if
it consists of clips of the same genre/performer. Finally, note that electronically
generated music (in our benchmark a techno song) is significantly more likely to
contain perceptually correlated blocks than music that is performed by humans.
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Fig. 4. Probability density function of the similarity function φ(B, R′) for two different
cases: K = 1 (left) and K = 10 (right).

Table 1. Improvement in signal distortion due to the replacement attack as parameter
K is increased. Results are reported on the dB scale. Average block length is m̄ ≈ 400.

φ(B, R′) Techno Jazz Rock Vocals Classical Average φK(B, R′)− φK=1(B, R′)
K=1 3.5714 5.2059 5.3774 5.3816 5.8963 N/A
K=10 2.3690 3.2528 3.5321 3.5193 4.0536 1.741
K=20 2.2666 3.0576 3.3792 3.3664 3.7968 1.914
K=30 2.2059 2.9255 3.3061 3.2762 3.5613 2.032
K=50 2.1284 2.6595 3.1702 3.1209 3.0635 2.253
K=100 1.9512 2.1331 2.8631 2.7439 1.8719 2.775

The second set of experiments explores the distortion that the replacement
attack introduces. We consider three cases. In the first case, in the left subfigure
of Figure 4, we present the probability that the replacement block R′ is at
distance φ(B,R′) if R′ equals the most similar block found in the substitution
database (e.g., K = 1). The right subfigure presents the same metric for the case
when K = 10 and R′ is computed as described in Subsection 2.1. Finally, Table 1
quantifies the improvement in the average distortion φ(B,R′) as K increases
from 1 to 100. We conclude that the replacement attack in our experimental



setup induces between 1.5–3dB distortion noise with respect to the marked copy
– a change in fidelity that most users are willing to sacrifice for free content.

4 Effect of the Attack on Watermark Detection

In order to evaluate the effect of a replacement attack on spread-spectrum wa-
termarks, we conducted two experiments. For both experiments, we used spread-
spectrum watermarks that spread over 240 consecutive 2048-long MCLT blocks
(approximately 11sec long), where only the audible frequency magnitudes in the
2–7kHz subband were marked. We did not use chip replication as its effect on
watermark detection is orthogonal with respect to the replacement attack.
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Fig. 5. Response of a spread-spectrum watermark detector to the replacement attack.
The abscissa quantifies the change in parameter K from 1 to 100 for fixed watermark
amplitude of δ = 1dB. The left ordinate shows the increase of the normalized correlation
as K increases. The results are obtained for five full songs in different genres. The
right ordinate shows the corresponding minimal, maximal, and average distortion with
respect to the set of benchmark clips due to the replacement attack.

Figure 5 shows how normalized correlation of a spread-spectrum watermark
detector is affected by the increase of the parameterK. We performed the follow-
ing experiment. We marked the first 240 2048-long MCLT blocks of five different
songs (ranging from 3 to 5 minutes in duration) with a direct sequence spread
spectrum watermark. The watermark amplitude was set to δ = 1dB. During the



attack, we replaced each target block B with its computed replacement block
R following the recipe presented in Subsection 2.1. For the purpose of demon-
strating the change of the correlation due to increase in K, we did not apply
steps (iii -iv). When these steps are applied the minimal distortion per block is
limited to αdB.

In Figure 5, we show two results. First, we show the average normalized
correlation value (left ordinate) across 10 different tests for watermark detection
within marked content E[C(z,w)] = 1 (curves marked WM) and within marked
content attacked with our attack for several values of K = {1, 10, 20, 30, 50, 100}
(curves marked RA). Second, we show on the right ordinate the signal distortion
caused by the replacement attack: the minimal, average, and maximal distortion
across all five audio clips. We can conclude from the diagram that for small
values of K, its increase results in greatly improved distortion metrics, while for
large values of K, the computed replacement vectors are too similar with respect
to the target blocks which results in lower effect on the normalized correlation.

The power of the replacement attack is most notably observed by comparing
the effect of adding a white Gaussian noise (AWGN) pattern n = N (0, σn) of
certain standard deviation σn ∈ {2 . . . 3}dB to a replacement attack of equivalent
distortion. Whereas the dramatic effect of replacement can be observed in Figure
5, AWGN affects the correlation detector only negligibly. In the latter case, the
expected correlation value remains the same E[C(x̃+n,w)] = E[C(x̃,w)], with
increased variance V ar[C(x̃ + n,w)] = V ar[C(x̃,w)] + mσ2

n. Finally, additive
noise of 2–3dB in the 2–7kHz subband is a relatively tolerable modification.

Another important issue is the fact that the distortion introduced by the re-
placement attack is linearly proportional to the watermark amplitude. Clearly,
with the increase of watermark amplitude δ, the search process of the replace-
ment attack becomes harder for two reasons: (i) block contents become more
randomized and (ii) the substituted blocks are more correlated with the original
blocks. On the other hand, we have empirically concluded that watermark am-
plitude affects the reduction of the normalized correlation minimally. Although
stronger watermarks may sound like a solution to the replacement attack, high
watermark amplitudes cannot be accepted because of two reasons: first, the re-
quirement for high-fidelity marked content and second, strong watermarks can
be efficiently estimated using an optimal watermark estimator [4], i.e. estimate
v = sign(x+w) makes an error per bit ε = Pr[vi �= wi] = 1

2erfc(
σx

δ
√

2
) exponen-

tially proportional to δ.

5 Conclusion

For any watermarking technology and any type of content, one powerful attack
is to re-record the original content, e.g., perform again the music or capture the
image of the same original visual scene. In this paper, we emulate this attack us-
ing a computing system: the replacement attack aims at replacing small pieces of



the marked content with perceptually similar but unmarked5 substitution blocks
created using a library of multimedia content. The hope is that the substitutions
have little correlation with the original embedded mark. Inspired by predictive
coding of speech and video [15, 10], we present an algorithm for computing the
replacement blocks using a least-squares linear combination of K signal blocks
most similar to the target block.

Although the attack is generic and can be applied to all marking strategies,
we demonstrate how it can be launched for audio content and a traditional wa-
termarking modulation technology: direct sequence spread-spectrum. Our pre-
liminary results demonstrate that the attack has similar effect on other marking
mechanisms such as quantization index modulation.

From the presented experimental results, we conclude that an implementation
of the replacement attack that considers a relatively small substitution database
can create replacement blocks that are only within 1.5–3dB distance with respect
to the target signal blocks. Such an attack removes approximately 80–90% of the
correlation between the watermark and the marked/attacked content. Similar
adversarial effects can be obtained against QIM-based watermarking schemes.

We identify two possible prevention strategies against a replacement attack.
For example, a data hiding primitive may identify rare parts of the content at
watermark embedding time and mark only these blocks. However this reduces
significantly the practical capacity of the scheme and increases dramatically the
complexity of the embedding process. In the case of spread-spectrum water-
marks, longer watermarks and increased detector sensitivity may enable water-
mark detection at lower thresholds (e.g., τ < mδ2/10). Unfortunately, such a
solution comes at the expense of having significantly longer watermarks which
results in a significantly lowered robustness with respect to de-synchronization
attacks.
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