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Abstract

Given the recent changes in the policy governing Internet content distribution, such as the
institution of per listener royalties for Internet radio broadcasters, content distributors now
have an incentive to under-report the size of their audience. Previous audience measurement
schemes only protect against inflation of audience size. We present the first protocols for
audience measurement that protect against both inflation and deflation attempts by content
distributors. The protocols trade-off the amount of additional information the content dis-
tributors must distribute to facilitate audience inference with the amount of infrastructure
required and are applicable to Internet radio, web plagiarism, and software license enforce-
ment.

1 Introduction

Internet content distributors often want to prove to a third party that they have a large number
of vistors or listeners. Such information is usually used to set advertising rates, so content
distributors have an incentive to inflate these numbers. Various schemes for preventing content
distributors from reporting artificially inflated audience sizes have been proposed [22, 13, 18].

With the advent of per listener royalty fees for Internet radio [15] and the growth of web
content plagiarism [11], content distributors now have an incentive to report artificially small
audiences, but none of the prior schemes for audience measurement prevent such behavior.
We present two new audience measurement protocols which prevent content distributors from
reporting artificially deflated audience sizes. Besides the application to Internet radio, these
protocols have a variety of uses, as we describe in Section 1.3.

Our protocols achieve accurate audience measurement by leveraging the ability of the auditor
to anonymously request content. Anonymity can be achieved with services such as [1]. Our first
protocol (see Section 2) requires essentially no additional infrastructure. The content distributor
simply maintains a Bloom filter [4] that is computed as a function of the IDs (anonymized to
preserve privacy) of all clients who have requested the content. The filter is small in applications
such as micro-broadcasting. The protocol offers protection against deflation because each client
can verify that their ID was one of the inputs to the filter, however inflation cannot be detected.

The second protocol (see Section 3) uses encryption to offer protection against both inflation
and deflation. Assuming a keying infrastructure is in place, a trusted party randomly allocates
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Scheme Protocol 1 Protocol 2

Deflation protection Yes Yes
Inflation protection No Yes
Privacy preserving Yes No

Communication overhead O(n) O(1)
Counts cumulative audience Yes Yes

Counts current audience Yes No

Table 1: The main features of the schemes presented in this paper. The number of clients is
denoted by n.

to each client a subset of a global set of keys. The content distributor makes the content publicly
available (e.g. by posting a file on the web) in encrypted form using an encryption key known to
all its clients. If the keys are allocated according to a well-chosen distribution, then the auditor
can estimate the number of clients based only on the encryption key the content distributor is
using. This protocol requires essentially no additional communication (that is, other than the
encrypted content) on the part of the content distributor, but doesn’t completely preserve the
privacy of the clients. Table 1 summarizes the main features of our protocols.

1.1 Related Work

One of the first methods for counting the number of visitors to a web site is due to Franklin
and Malkhi [13]. Naor and Pinkas [22] present a protocol with stronger security guarantees
[13]. Ogata and Kurosawa [23] identify flaws in the Naor and Pinkas scheme, and propose their
own. The Naor-Pinkas model has been generalized and analyzed extensively [5, 18, 6, 27]. In a
similar vein, Kuhn [17] presents a scheme by which an auditor can efficiently verify the number
of unique signatures on a document, with applications to digital petitions and web metering.

The methods currently used to measure audience size are far more primitive than anything
proposed in the above papers. The simplest audience measurement technique counts the number
of entries in the server’s log files [8]. Since it is easy for the server administrator to delete or
insert entries into the log files, these numbers cannot be trusted. In the specific case of counting
the number of visitors that see an advertisement, the trustworthiness of the measurements can
be improved by having the advertising agency serve the ad directly [12]. In this arrangement, the
ad agency can under-report the number of ads it serves, thus lowering the advertising fees it pays.
Reiter, Anupam, and Mayer [25] propose a scheme for detecting this sort of fraud. Conversely,
Mayer, Nissam, Pinkas and Reiter [2] describe general attacks for inflating the number of ads
that appear to be served through a given web page.

The size of a particular website’s audience can also be gauged by consumer surveys and focus
groups [19, 26]. These numbers can be fairly accurate, but this method is expensive. Some
audience measurement services combine log analysis and consumer surveys [19, 9]. Similarly,
audience size can be measured by having web surfers keep a diary of the sites they visit, although
these numbers are prone to accidental error as much as malicious mis-reporting [10, 26].

All the audience measurement techniques above are designed for determining advertising
rates and thus are only concerned about attempts by the content distributor to inflate the
audience size. In all the schemes above except the survey and diary methods, the content
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distributor can easily deflate the size of her audience. In the context of advertising, content
distributors have no incentive to do so, hence this has not been a problem. This is not the case
when the audience size is being measured to determine royalty fees. Ours are the first schemes
we know of that attempt to prevent the content distributor from deflating her audience size.

Finally, we note that secure voting (see for example, [7, 24]) is also concerned with accurate
audience measurement. However, voting protocols tend to be fairly heavyweight due to the
requirements of that setting (e.g. public verifiability) hence we don’t believe those techniques
are directly applicable to the content distributor setting.

1.2 Goals and Limitations

We are primarily interested in efficient and easily implemented schemes whereby Internet content
distributors can prove to an auditor that their audience is small. Depending on the nature of
the content provided, it may be appropriate to measure the number of client requests (or hits)
received during a given time interval, or it may be better to track the number of active clients
(or streams, in unicast applications) during a given time period. It is also desirable that the
auditor learn nothing about the audience members, i.e. they maintain their anonymity.

In most of the scenarios we consider, it makes sense to assume that content distributors
and clients are aligned against the auditor, hence we need to protect against attempts by the
distributor and the clients to conduct their transactions “under the table”, and other collusion
attacks. We offer such protection by monitoring content distributor/client interactions to check
for protocol compliance. The auditor cannot monitor every transaction but, on the relatively
anonymous Internet, he can pose as a regular client. The auditor can then verify that the
content distributor obeys the protocol in a small number of randomly chosen transactions. In
traditional web metering schemes, each client of a content distributor gives a token to the
content distributor. After the distributor has received enough tokens, it combines them (e.g.
using a secret sharing scheme) and presents the result to an auditor. The content distributor
cannot forge tokens and hence cannot inflate her audience size. The content distributor can
obviously throw away tokens in order to appear to have a smaller audience. In our schemes,
the auditor poses anonymously as a client, giving the content distributor some (undetectably)
marked tokens. If the content distributor tries to cheat by throwing away one of the marked
tokens, she will be caught. Since the content distributor cannot distinguish the marked tokens
from regular ones, she cannot safely throw away any tokens, and hence cannot cheat.

Since our protocols require the auditor to pose as a regular client, they require a network
which supports anonymous connections by default. Ideally, the underlying network would sup-
port perfect anonymity and unlinkability for all connections. The current Internet offers relative
anonymity and, by virtue of dynamically assigned addresses and dial-up connections, relative
unlinkability. Emerging peer-to-peer technologies may support perfect anonymity in the near
future. Thus we analyze our protocols in the context of perfect anonymity, and believe they
will degrade gracefully in the imperfect world of the current Internet. Some DRM applications
may not allow perfect anonymity, since each client may have a fixed public/private key pair
that it uses to communicate with content distributors. Note that this scenario doesn’t preclude
anonymity, just unlinkability. Both of the protocols described in this paper depend primarily
on anonymity, not unlinkability, so they may still be usable in these DRM applications.

The client anonymity we require can also be used against the content distributor. The
auditor (or any other client) may artificially inflate the audience size by repeatedly requesting

3



the content as a new client. Our protocols do not explicitly protect against this. One possible
remedy is to insert a trusted party between the distributor and the clients with anonymous
communication only between the trusted party and the distributor. If the content distributor
suspects this attack is underway, the trusted party’s logs can be examined. Of course, requiring
a trusted party for the sole purpose of protecting against this attack is suboptimal, however
if the protocol is such that a trusted party is already required (as is true of the protocol in
Section 3) then this approach is worth considering.

1.3 Applications

There are a number of settings in which audience measurement protocols that are secure against
deflation are necessary.

Internet Radio. The Internet has given rise to hobbyist Internet radio broadcasters which
have extremely small audiences. For example, according to live365.com, there are over 1000
Internet radio stations with less than 100 listening hours per month; e.g. these stations have
an average of less than one listener tuned in for 3 hours each day. An audience measurement
protocol may be used to prove this fact to an organization such as the RIAA.

Distribution of Licensed Content. Consider a web site that holds a limited distribution
license for content (e.g. movies, music files or software). Our protocols can be used to ensure
that the distributor does not exceed the license.

Web Advertising As described in Section 1.1, some web advertisers serve their ads directly,
and hence can under-report the number of ads they serve in order to reduce the fees they must
pay to carrying websites. Our audience counting schemes can detect this type of fraud.

Screen-Scraping. Websites that provide a useful service, such as Yahoo’s real-time stock
prices, often get “screen-scraped” by other web services [11]. The scraping service simply fetches
the information from the original service, parses the desired data out of the returned web page,
repackages it in a new format, and finally presents it to the client. As long as the screen-
scraping service does not overuse the original service provider, this behavior can be tolerated.
If the scraping service agrees to use one of our request counting protocols, then the originating
web service provider can audit the scraping service to ensure that it is not abusing the original
service provider.

2 Estimating Audience Size with Minimal Infrastructure

This protocol is very easy to adopt and can be adapted to support either total request counting
or current client set counting. Its main drawback is that the bandwidth required is linear in the
size of the audience, but this protocol is quite efficient for scenarios in which the audience is small,
as is the case for several of our intended applications (e.g. Internet radio micro-broadcasters).

The protocol uses Bloom filters [4], so we give a brief introduction to them here. A Bloom
filter is a lossy representation of a set and consists of a bit-vector ~b of length m and s independent
hash functions h1, . . . , hs : {0, 1}∗ → N. 1 In the literature of Bloom filters, m is called the width
of the filter. Initially, the bit vector is all zeros. To insert an element x into the set represented

1The hash functions need not be cryptographically secure. They are just used to map the universe of objects
down to integers.
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Figure 1: The join counting version of the Bloom-filter protocol. The content distributor is
denoted by CD. The client, A, must be anonymous, and N is the result of executing a coin
flipping protocol for r coins.

by the Bloom filter ~b, set the bits ~b[h1(x) mod m] = · · · = ~b[hs(x) mod m] = 1 (if a bit is already
set to 1 then it remains 1). To test whether x is an element of the set represented by Bloom
filter ~b, test that ~b[h1(x) mod m] = · · · = ~b[hs(x) mod m] = 1. Note that this test can lead to
false positives; this is why the Bloom filter is termed “lossy”. If ~b[hi(x)] = 0 for some i, then x
cannot be in the set. Bloom filters do not support item removal.

Let w(~b) denote the Hamming weight of ~b. The probability that a bit is 1 in a Bloom filter
of width m after n insertions using s hash functions is 1 − (1 − 1

m)ns. So given a filter ~b, we

can estimate the number of insertions which have been performed on ~b by I(~b) = ln(1−w(~b)/m)
s ln(1−1/m) .

To minimize the probability of a false positive, s should be chosen so that s = (ln 2)m/n, which

gives a false positive rate of
(

1
2

)(ln 2)m/n ≈ (0.6185)m/n. So, for example, if m/n = 8, the false

positive rate using s = 5 is 0.0216. Finally, if ~b1 and ~b2 are two Bloom filters of the same width,
then we say ~b1 ≤ ~b2 if ~b1[i] ≤ ~b2[i] for all i.

The protocol is illustrated in Figure 1. Each content distributor maintains a Bloom filter of
width m = cn, where n is the average number of requests seen by the content distributor each
week and c is a parameter agreed upon in advance. In practice, c = 8 works well. When a client
sends a request to the content distributor, the content distributor and client engage in a coin
flipping protocol to agree on an r bit nonce N and the content distributor inserts N into the
Bloom filter. Any standard coin flipping protocol will work [14]. They then proceed with their
normal protocols. Each week, for example, the content distributor sends the Bloom filter to the
auditor and then starts again with a fresh filter. The auditor checks that the Bloom filter it
receives, ~b, has w(~b) ≤ 2m/3 and computes an estimate of the number of requests seen by the

content distributor via I(~b) = ln(1−w(~b)/m)
s ln(1−1/m) . The requirement that w(~b) ≤ 2m/3 is a technical

constraint necessary to guarantee that the estimate I(~b) is sufficiently accurate (see Theorem 1).
To audit the content distributor for compliance, the auditor anonymously sends k requests to
the content distributor and then checks that all their nonces, N1, . . . , Nk, are present in the
Bloom filter that the content distributor submits for that interval.

For small content distributors, this scheme is very efficient. Using the ratio m/n = 8 men-
tioned above, the content distributor must send the auditor about 1 byte per join. So, for
example, a content distributor that receives 20 requests each day would only have to send a
140 byte message to the auditor each week. Thus this scheme is completely feasible for small
to medium content distributors. Even a relatively large content distributor with around 150
requests per day would only have to send a 1K weekly message to the auditor. In the context of
Internet radio broadcasters, these overheads are very small since the average audio stream takes
at least 2K/s.

5



Using I(~b) as an estimate of the size of the content distributor’s audience gives good accuracy.
The following theorem implies that if we use I(~b) as an estimate of the number of requests
received by the content distributor then, with extremely high probability, the actual number of
requests will differ from our estimate by at most α

√
m for a small value of α.

Theorem 1 Fix nmax < m ln s
s and W < (1 − 1

s )m. Let X be a random variable representing
the set of nonces received by the content distributor. We model X as taking on values at random
from the set {{x1, . . . , xn}|xi ∈ Z/2r

Z, 0 ≤ n < nmax}. Let ~B[X] denote the Bloom filter
representation of X, and w(X) = w( ~B[X]). Then

Pr[||X| − I( ~B[X])| ≥ α
√

m | w(X) = W ] = O

(√
m exp

(−(α− 1)2

2

))

.

Proof. By Bayes’ Theorem,

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n] Pr[|X| = n]

∑M
i=0 Pr[w(X) = W | |X| = i] Pr[|X| = i]

.

Since we are estimating |X| from w(X), we assume that |X| is uniformly distributed. 2 Letting
K =

∑M
i=0 Pr[w(X) = W | |X| = i] and simplifying gives

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n]

K
.

Except for the factor of K, the LHS of this equation is just the well-known occupancy distribution
derived from tossing n balls into m bins. Let µ(i) = E[w(X) | |X| = i] = (1 − (1 − 1

m)is)m.

When µ(i) < (1− 1
s )m (or, equivalently, when i < m ln s

s ), then dµ
di > 1.

By Kamath, Motwami, Palem, and Spirakis’ Occupancy Bound [16],

Pr[|w(X)− µ(|X|)| ≥ θµ(|X|)] ≤ 2 exp

(

θ2µ(|X|)2(m− 1/2)

m2 − µ(|X|)2
)

.

By combining this bound with the Bayesian equation above and unenlightening algebraic ma-
nipulation, one can derive that

Pr[||X| − I(W )| ≥ α
√

m | w(X) = W ] ≤ 4
√

m

K

∞
∑

i=α

exp

(−(i− 1)2

2

)

= O

(√
m exp

(−(α− 1)2

2

))

The only tricky part of the derivation is to use that |i−I(W )| ≤ |W −µ(i)|, which holds because
dµ
di > 1. 2

In practice, I(~b) is a much better estimate of the number of requests than this theorem
predicts. Figure 2 shows the width of the 99.9% confidence interval for several choices of m. As

2This is a common but controversial assumption in Bayesian analysis. The controversy arises because the
validity of the analysis depends on this assumption, but the assumption cannot be verified statistically. For the
purposes of bounding the tail probabilities, the uniform distribution is a relatively pessimistic choice, hence we
believe it is a safe one. A similar situation arises in Section 3.
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Figure 2: The accuracy of using I(x) to estimate the number of insertions performed on a Bloom
filter. Note that the confidence intervals have been normalized to

√
m. Since our protocol

requires that content distributors submit Bloom filters ~b with w(~b) ≤ 2m
3 , we can conclude that

with 99.9% confidence, the actual number of requests received by the content distributor differs

from I(~b) by at most 4
√

m
5 .

the figure shows, as long as w(~b) ≤ 2m/3 as required by our protocol, then with 99.9% confidence,

|I(~b) − |X|| ≤ 4
√

m
5 . So for example, using a Bloom filter ~b with m = 640, if w(~b) = 320, then

with 99.9% confidence, the actual number of insertions performed on the filter is between 80
and 100.

In general, the content distributor can attempt to cheat during an auditing period by re-
porting a Bloom filter ~b′ < ~b, where ~b is the correct Bloom filter containing all requests for the
auditing period. The auditor detects this cheating if there exist i and j such that ~b′[hi(Nj)] = 0.
The following Proposition describes the content distributor’s optimal strategy and bounds his
chances of success.

Proposition 2 Suppose the content distributor is allowed to service L requests, but receives
n > L requests. Let {J1, . . . , Jn} be the set of nonces generated by servicing the requests, and ~b
be the Bloom filter generated from {J1, . . . , Jn}. Then the content distributor’s optimal strategy is
to report a Bloom filter ~b′ containing the largest subset S ⊆ {J1, . . . , Jn} such that I(w(~b′)) ≤ L.
If w(~b)− w(~b′) = D and the auditor sent k requests to the content distributor, then

Pr[content distributor succeeds] ≤
(

n−k
D/s

)

(

n
D/s

)

Proof. The content distributor gains nothing by reporting a Bloom filter ~b′ 6≤ ~b, since it does
not decrease his chances of being caught. If there exist i, j such that ~b′[hi(Jj) mod m] = 0, then

7



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Cheating rate

provable bound, 4 taps
provable bound, 8 taps
empirical bound, 4 taps
empirical bound, 8 taps

Figure 3: The probability that a content distributor can fool the auditor, assuming m = 1024,
s = 5, and the content distributor is allowed to report Bloom filters with weight at most
512, which corresponds to 128 requests. The top two curves are provable bounds: a content
distributor cannot fool the auditor with probability better than these curves indicate. The
bottom two curves are empirical bounds: based on computer simulations, we believe that a
content distributor cannot fool the auditor with greater probability than these curves indicate.
So for example, if a content distributor receives 1.3∗128 requests, and the auditor sent 8 auditing
requests, then the content distributor’s chances of successfully convincing the auditor that he
only received 128 requests is less than 10%.

setting ~b′[hi′(Jj) mod m] = 1 for i′ 6= i does not decrease the content distributor’s chances of

being caught. Hence the content distributor’s optimal strategy is to report a Bloom filter ~b′

containing some subset S ⊆ {J1, . . . , Jn}.
To decrease the weight of the Bloom filter by D, one must remove at least D/s items, since

each item can decrease the weight of the filter by at most s. Since the content distributor cannot
distinguish the auditor’s requests, his best strategy is to select the largest S such that w( ~B[S]) is
below the allowed threshold. We may assume that for any Jj ∈ {J1, . . . , Jn} \ S, there exists an
i such that hi(Jj mod m) = 0 since otherwise the content distributor could add Jj to S without

affecting the weight of ~B[S]. So cheating successfully requires selecting (at least) D/s items
from {J1, . . . , Jn} without selecting one of the k requests sent by the auditor. The probability

of doing this is
(n−k

D/s)
( n

D/s)
.

2

Again, the bounds in this proposition are not as tight as possible. In practice, the content
distributor will have to omit considerably more than D/s requests in order to reduce the weight of
the reported Bloom filter below the allowed threshold. To get a better idea what the real chances
of cheating successfully are, we wrote a computer program to simulate a content distributor
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trying to cheat by finding the optimal subset S described in the above proposition. Based on
our experiments, the content distributor has to remove at least D/2 items from {J1, . . . , Jn}
in order to decrease the weight of his Bloom filter by D. Figure 3 compares the probability
of successfully cheating estimated from the above proposition and the probability of success
derived from our experiments. As the graph shows, the actual probability of cheating is much
lower than the proposition indicates.

This scheme preserves audience anonymity. The content distributor and client use a coin
flipping protocol to agree on the nonce to be placed in the Bloom filter. Since this nonce is
generated randomly, it cannot reveal anything about the identity of the client. This strong
guarantee of privacy has a downside: a malicious client can send many requests to the content
distributor, artificially inflating the audience size. Since this scheme provides total listener
anonymity, the content distributor cannot identify the attacker. Also, a content distributor and
a group of cooperative clients can agree to always generate the same nonce, hence all the clients
would appear to be just one client, deflating the content distributor’s audience.

We have described this scheme in terms of request-counting, but it can also be used to count
current audience size. Suppose the auditor wants to know the current audience size at each
minute. Then the content distributor simply inserts the IDs for all its active clients into a
Bloom filter every minute and sends this off to the auditor. To audit, the auditor anonymously
requests content from the content distributor and verifies that it is counted among the active
streams. Although the reporting overheads are obviously increased in such a scheme, they are
still quite low. For example, an Internet radio station with 20 listeners will have to send the
auditor about 20 bytes of data every minute, which is quite modest. The above accuracy and
security analyses apply directly to this scheme, too.

Finally, this scheme can be further improved by using compressed Bloom filters[20] to reduce
the false positive rate without increasing the size of messages sent to the auditor.

3 Estimating Audience Size with Constant Overhead

In the following protocol, the auditor is able to infer the audience size from a constant number
of bits that are associated with the (encrypted) content. The protocol offers security against
both inflation and deflation of audience size. It is most naturally applicable to the distribution
of fairly static content, for example, consider a web site that provides software or movies in
encrypted form available for download and decryption with payment. When used with real-time
content, the content distributor must be using the network as a broadcast channel in order for
the auditor to be assured the measurements are accurate. The drawback of the protocol is that
it requires a keying infrastructure. As in Section 2, the basic protocol is essentially a metering
scheme in that it counts hits (or, joins). In Section 3.2, we discuss extensions to the basic
protocol that allow demographic information to be extracted from the content and the current
audience size (i.e., not just the cumulative audience) to be estimated.

In this protocol, each client stores a set of encryption keys issued by a trusted party (TP).
In the initial phase of the protocol, the TP sends all the keys to the content distributor. When
a client requests the content, the TP gives some subset of the keys to the client and sends the
ID number of each of the client’s keys to the content distributor. To distribute content to the
current set of clients, the content distributor forms the intersection of the clients’ key sets, T ,
and chooses a key from T for encrypting the content. Because the TP assigns keys to clients
probabilistically, the auditor (who may be the same as the TP) when requesting the content
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Figure 4: The black ovals represent keys in the set T when there are 1, 2 and 3 clients. The
larger ovals correspond to keys that are more likely to be assigned to any given client. As the
number of clients grows the proportion of large ovals in T increases. Hence, the key that’s
selected from T reflects the audience size.

anonymously3 (e.g. by visiting the distributor’s web site), can infer the audience size from the
encryption key in use.

The TP assigns keys to clients as follows. First, the entire set of keys is partitioned into t
sets, S1, . . . , St. Each client receives any particular key with a fixed, independent probability.
For keys in the same set Si, this probability is the same. By choosing the sets {Si}ti=1 to be of
decreasing size (as i increases), but with increasing associated probabilities, the TP can control
the proportion of keys in T that are in any Si given the audience size. More precisely, if the
audience is small, T is dominated by keys from S1, but as the audience grows, the proportion
of keys in T that are in S1 will be far less than the proportion that are in Si for i > 1. Hence,
because the content distributor doesn’t have any a priori knowledge of the composition of the sets
{Si}i, the distributor is unable to distinguish between the keys in T and so the choice of k ∈ T is
a reflection of the distribution of T , and by inference, the audience size. Figure 4 demonstrates
how T , may change over time. For illustrative purposes, keys with higher probabilities are
indicated by larger ovals.

The following makes the protocol more precise.

Basic Protocol. This protocol takes as input a positive integer m representing the number of
keys in the system, a positive integer t, and positive integers s1, . . . , st such that s1+s2+. . .+st =
m. The keys are partitioned into t sets, S1, . . . , St, such that for each i, |Si| = si, where
s1 > s2 > . . . > st. For each i = 1, . . . , t there is a probability pi that the TP will assign a
key kj ∈ Si to any given client (keys are assigned independently), where p1 < p2 < ... < pt.
Numbers ε1, ε2, 0 < ε1, ε2 < 1, are also input to provide a gauge of the accuracy of the audience
measurements. These parameters imply an upper bound, nmax, on the number of joins that can
be accurately measured by the system. The variable n is used to denote the actual number of
joins. The protocol consists of the following steps:

1. The TP randomly generates m keys, k1, . . . , km, and sends them to the content distributor.

3Receiving the content anonymously also allows the auditor to determine that the content distributor isn’t
distributing keys to clients (to maintain the appearance of a small audience) or abusing the protocol in some
other way. For applications in which the surreptitious distribution of keys to clients by the content distributor is
a real concern, a simplified version of the analysis in Section 2 can be performed to calculate the frequency with
which the auditor should request the content.
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2. Upon contacting the content distributor, a client, ui, receives a set of keysKi ⊆ {k1, . . . , km}
from the TP. For j = 1, . . . , m, kj ∈ Ki with probability pr if kj ∈ Sr. The TP sends the
content distributor the ID numbers of the client’s keys4.

3. To distribute content to clients uj1 , . . . , ujr , the content distributor chooses a key k ∈ T =
Kj1 ∩ . . . ∩ Kjr and encrypts the content (or perhaps, a key that is used to encrypt the
content) with k. A fresh key should be chosen regularly.

4. Periodically, the auditor requests content and notes the key, k, that the content distributor
is using in Step 3. There exists i ∈ {1, . . . , t} such that k ∈ Si. The auditor calculates the
distribution of the random variable that measures the proportion of keys in T that are in Si

as a function of n, ( |T∩Si|
|T | |n), to within a confidence level of 1− ε1. Using this distribution,

the auditor determines a range [n1, n2] such that for each n ∈ [n1, n2], P (k ∈ Si|n) ≥ ε2,
and estimates5 the audience size as being in this range.

– To increase the likelihood of inferring audience size correctly, the auditor can monitor
the content through several key changes.

– If the auditor has contacted the content distributor previously and received a different
set of keys, the auditor should check that k is also in that key set. Alternatively,
the auditor can request the content as several different clients and perform the same
checks. If any of these checks fail, the content distributor is not following the protocol.

This protocol relies on the content distributor’s inability to distinguish between the keys in
the intersection, T . The content distributor can gain such an ability in the following ways. First,
a key that is not known to any of a large set of clients is less likely to be in St than a key in
T . However, provided the distributor follows the protocol and encrypts the content so that all
of the audience can decrypt it, the distributor is unable to make use of this information. The
other information the content distributor learns about the keys comes from bills (e.g. licensing
royalties). For example, if the distributor is charged less when using key k than when using key
k′, the distributor knows the index jk such that k ∈ Sjk

is less than the index jk′ such that
k′ ∈ Sj′k

. To remedy this, we suggest that the system be refreshed with every bill (e.g. once a
month).

There is also the possibility that the content distributor attempts to cheat in a similar way
as in our first protocol, namely by removing some users’ key sets from the calculation of the
intersection, T , in order to get a larger set from which to draw the encryption key. We argue
that it is unlikely this attack will be successful. First, cheating in this way can have the effect of
preventing some users from accessing the content (which should generate complaints). Second,
it is difficult to guarantee that a small audience will be inferred by the auditor because the key

4We suggest that the TP send the keys rather than the client, so that the client cannot cause the audience
size to appear larger than it is by sending only a subset of their keys to the content distributor.

5Note that the probability that directly infers audience size is P (n = x|k ∈ Si). Since the distribution
on n is unknown we cannot calculate this probability precisely. However, provided some information on the
distribution of n is available, this probability can be derived from the one we know by using: P (n = x|k ∈ Si) =
P (k∈Si|n=x)P (n=x)

P (k∈Si)
≥ P (k ∈ Si|n = x)P (n = x). For example, if P (n = x) ≥ α for all x, then we have an upper

bound: P (n = x|k ∈ Si) ≥ αP (k ∈ Si|n = x), and if n is uniformly distributed (as is assumed in Section 2 to
achieve analysis benefits that don’t seem to occur for this protocol), we have an equality: P (n = x|k ∈ Si) =
ciP (k ∈ Si|n = x) where ci = Σnmax

y=1 P (k ∈ Si|n = y). Hence, we believe {P (k ∈ Si|n = x)}x is sufficient to infer
the value of n as being in [n1, n2].
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allocation algorithm is probabilistic. That is, if the content distributor chooses a key that is not
known to several of the clients then there is still some probability that this key is in Si for large
i, in which case a large audience will be inferred. To guarantee that a small audience will be
inferred, the content distributor has to use a key that’s not known to several clients, in which
case the distributor may indeed only be able to reach a small audience.

Finally, the content distributor can potentially benefit from collusion with clients or other
content distributors. If the TP is using the same global set to allocate keys to clients of different
content distributors (which is a desirable practice because it can allow clients to “surf” multi-
ple distributors without needing to repeat the initialization phase) then the distributors (and
users) may be able to distinguish between keys that they wouldn’t have been able to otherwise.
However, as mentioned earlier, this may be only of limited value because a key that causes a
small audience to be inferred does so because it is only likely to be stored by a small number of
clients.

3.1 Analysis

In this section we develop equations that allow the auditor to execute the protocol. First, we
find an accurate approximation to the distribution of ( |T∩Si|

|T | |n).

Lemma 3 Let 0 < δ < 1. For i = 1, . . . , t and n = x, P (k ∈ Si|n = x) is at least as large as
(1−δ)sipi

x

(1+δ)(s1p1
x+...+si−1pi−1

x+si+1pi+1
x+...+stpt

x)+(1−δ)sipi
x and at most as large as

(1+δ)sipi
x

(1−δ)(s1p1
x+...+si−1pi−1

x+si+1pi+1
x+...+stpt

x)+(1+δ)sipi
x with probability at least 1− ε1, when

( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2stp1
nmax/2 ≤ 1−(1−ε1)1/t

2 .

Proof. For i = 1, . . . , t, when the number of clients is x, the random variable |T∩Si| is binomially
distributed with size si and probability pi

x. Hence, the expected value of |T∩Si| is sip
x
i . Applying

Chernoff bounds (see, for example, [21]), it follows that, |T ∩Si| ∈ [(1− δ)sip
x
i , (1 + δ)sip

x
i ] with

probability at least (1−ε1)
1/t when both ( eδ

(1+δ)1+δ )sipi
nmax ≤ ( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and

e−δ2sipi
nmax ≤ e−δ2stp1

nmax/2 ≤ 1−(1−ε1)1/t

2 . Hence, P (k ∈ Si|n = x) = |T∩Si|
|T | = |T∩Si|

|T∩S1|+...+|T∩St|

is in the interval stated in the lemma with probability at least (1− 2 1−(1−ε1)1/t

2 )t = 1− ε1. 2

From the above lemma, it follows that the auditor needs to find x values such that
(1−δ)sipi

x

(1+δ)(s1p1
x+...+si−1pi−1

x+si+1pi+1
x+...+stpt

x)+(1−δ)sipi
x ≥ ε2 to complete the protocol. In addition,

nmax, si and pi must be chosen to satisfy Lemma 3, for example, by using the bounds in the
following corollary.

Corollary 4 To satisfy step 4 of the basic protocol it suffices (but isn’t generally necessary) to

choose nmax ≤
ln(

c(ε1,δ,t)
st

)

ln p1
and si ≥ ci(ε1,δ)

pi
nmax for all i, where c(ε1, δ, t) and ci(ε1, δ) are defined

below. Provided these inequalities are met, the expected number of keys that a client must store
is at least Σt

i=1
ci(ε,δ)

pnmax−1
i

.

Proof. The constant ci(ε1, δ) in the upper bound on si comes from solving the following two

inequalities used in the proof of Lemma 3: ( eδ

(1+δ)1+δ )sipi
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2sipi
nmax/2 ≤

1−(1−ε1)1/t

2 . It follows that ci(ε1, δ) = max{2 ln(
1−(1−ε1)1/t

2
)

−δ2 ,
ln(

1−(1−ε1)1/t

2
)

ln ( eδ

(1+δ)1+δ )
}.
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Figure 5: In the left-hand side of the figure we graph,
px

i si

px
1s1+px

2s2
for i = 1, 2 (where p1 = .6,

p2 = 1, s1 = 37000, s2 = 370) as estimates for P (k ∈ S1|n = x) and P (k ∈ S2|n = x).
P (k ∈ S1|n = x) and P (k ∈ S2|n = x) are within the distance indicated by the dashed lines of
their respective estimates with probability at least .75.

The bound on nmax follows similarly with c(ε1, δ, t) = min{2 ln(
1−(1−ε1)1/t

2
)

−δ2 ,
ln(

1−(1−ε1)1/t

2
)

ln ( eδ

(1+δ)1+δ )
}.

The lower bound on the expected number of keys per client follows by substituting the lower
bound for si into the quantity, Σt

i=1pisi. 2

For illustrative purposes6, we conclude this section with a small example.

Single Threshold Example. The following example shows how the basic protocol can be
used to determine that a threshold number of clients has been achieved. Let s1 = 37000,
p1 = .6, s2 = 370, p2 = 1 and nmax = 13. Because |T ∩ S2| = 370 with probability 1, we
need only find a confidence interval for |T ∩ S1| and this will imply confidence intervals for
|T ∩ S1|/|T | and |T ∩ S2|/|T |. Setting δ = .2, by the proof of Lemma 3 we need the following
inequality to hold: (.98)s1p1

13
< ε1

2 . Solving for ε1 yields, ε1 ≥ .75. If we choose ε2 = .75,

then with at least .75 confidence, it follows by solving the inequality, (1−δ)37000(.6)x

(1−δ)37000(.6)x+370 ≥ .75

for x, that P (k ∈ S1|n ≤ 6) ≥ .75. Similarly, by solving, 370
(1+δ)37000(.6)x+370 ≥ .75 we get,

P (k ∈ S2|n ≥ 12) ≥ .75. Hence, if k ∈ S1 the auditor returns the interval [1, 6] for n and if
k ∈ S2 the interval n ≥ 12 is returned. This is depicted in Figure 5.7

In this example, we expect a client to store 22, 570 keys. If the keys are each 64 bits long,
this represents .17 megabytes of keying material. While this is significant, it is a fraction of
the space required by most media players (for example, it’s about .09 of the download size of
WinAmp.com’s “full” player). Viewed differently, after listening to streaming music at a data
rate of 28.8 kilobits per second for less than 20 minutes, the keying material is less than .0425

6In general, it is unwise to choose p2 = 1 and t = 2 because the content distributor then knows that any key,
k, that’s not stored by all the clients, is in S1 with probability 1. However, even in this example it’s arguable that
using key k yields a successful attack, since we expect k to only be stored by around 7 clients (.6nmax) which is
already very close to the 6 client audience that the auditor will infer from the usage of k.

7Note that the confidence intervals hold up to n = 13 only.
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of the audio data that’s been downloaded.
Since a client will typically have more than half of the 37, 370 keys in this example, the TP

can tell the content distributor the keys the client doesn’t have more efficiently than listing the
keys the client does have, in step 2 of the protocol. Since the key IDs are less than 16 bits
long, we expect this step to require the transmission of at most 29 kilobytes of data. Using
compression, this can probably be reduced to only 10 kilobytes. Again, this is only necessary
when the client first requests the content.

3.2 Extensions

Multiple Content Distributors. The basic protocol is easily modified to allow the trusted
party to use a single set of keys for multiple content distributors. In step 2, each user sends keys
that are computed as the output of a one-way function applied to each of the keys received from
the TP concatenated with the CD’s ID. Because the CDs have distinct IDs it is computationally
infeasible for them to determine which of their received keys are the same.

Privacy and Demographics. Note that this protocol is not completely privacy preserving
because the auditor learns something about the clients, namely, that they have key k. However,
if there is sufficient separation between the auditor and the TP it will be difficult for the auditor
to make use of this information. In addition, we note that it may be possible to use this aspect of
the scheme to embed demographic information. For example, although men and women should
with high probability receive the same number of keys in Si, the particular keys they tend to
receive may be partly a function of their sex. Hence, the auditor may be able to infer the
predominant sex of the audience from the content distributor’s choice of encryption key in Si.

Measuring the Current Audience. The protocol described above is best suited to estimate
cumulative audience size, for example, the number of hits received by a web site over a certain
period of time. In some settings, this may be the only possible measure of audience size. For
example, in multicast applications, the content distributor typically only is informed of new
additions to the multicast group and is unlikely to know when a member leaves [3]. Hence, by
observing the content distributor’s behavior, or by querying directly, it may only be possible to
learn the cumulative audience. In this case, behavioral patterns may be used to infer current
audience size from cumulative data.

It may also be possible to modify the basic protocol to measure audience size directly. The
key idea is that if the auditor can observe the content for long enough8 to gain an accurate
estimate of the entire contents of T , then the current audience may be inferred. The entire
contents of T are necessary because the content distributor gains some ability to distinguish
keys from every new client. For example, if k is stored by several clients but k′ is only known
to a few, then k′ may be a cheaper key for the content distributor to use because it may imply
a smaller audience in the basic protocol (k′ ∈ Si, k ∈ Sj , where i < j). Hence, if the audience
shrinks and k′ ends up being a key all the current clients know, the content distributor may seek
to mislead the auditor by only using k′. However, if the content distributor is required to change
keys frequently (e.g., a different key for every few songs) and the auditor listens long enough
to determine that k′ is the only key in use, an alarm will be raised as the probability that the
content distributor would be left with only k′ at some point is very low. One problem with this

8This requirement may be easy to meet because the auditor may need to observe the content for a long time
in order to preserve anonymity.
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is that a key that is known to clients who are no longer in the audience may be selected as the
encryption key.

4 Open Problems

Each of our protocols requires some a priori knowledge of the maximum audience size. Although
this seems like a reasonable assumption for the applications we consider, it would be useful to
design a scheme that can efficiently adapt to unanticipated surges in audience size. Ideally,
such a protocol would provide content access to only the current set of clients while preserving
privacy and enabling efficient auditing. In addition, we believe the general problem of measuring
current audience size in a manner that’s secure against both inflation and deflation hasn’t been
adequately explored.
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