
Client-side defense against web-based identity theft

Neil Chou Robert Ledesma Yuka Teraguchi Dan Boneh John C. Mitchell
Computer Science Department, Stanford University, Stanford CA 94305

{neilchou, led242, yukat, dabo, jcm}@stanford.edu

Abstract

Web spoofing is a significant problem involving fraud-
ulent email and web sites that trick unsuspecting users
into revealing private information. We discuss some
aspects of common attacks and propose a framework
for client-side defense: a browser plug-in that exam-
ines web pages and warns the user when requests for
data may be part of a spoof attack. While the plug-
in, SpoofGuard, has been tested using actual sites ob-
tained through government agencies concerned about
the problem, we expect that web spoofing and other
forms of identity theft will be continuing problems in
coming years.

1 Introduction

Web spoofing, also known as “phishing” or “carding”
[CNN03, FBI03], is a significant form of Internet crime
that is launched against hundreds or thousands of indi-
viduals each day. The US Secret Service and the San
Francisco Electronic Crimes Task Force report that ap-
proximately 30 attack sites are detected each day. Each
attack site may be used to defraud hundreds or thousands
of victims, and it is likely that many attack sites are
never detected. A typical web spoof attack begins with
bulk email to a group of unsuspecting victims. Each is
told that there is a problem with their account at a site
such as E*Trade. Victims of the spoofing attack then fol-
low a link in the email message to connect to a spoofed
E*Trade site. Once a victim enters his or her user name
and password on the spoof site, the criminal has the
means to impersonate the victim, potentially withdraw-
ing money from the victim’s account or causing harm in
other ways.

We describe some common characteristics of recent
web spoofing attacks and propose a framework for
client-side countermeasures. Like other inexact detec-
tion mechanisms, including virus detection and email
spam filtering, the approach we explore involves look-
ing for characteristics of previously detected attacks. We

experiment with this approach using a browser plug-in
called SpoofGuard. The plug-in monitors a user’s In-
ternet activity, computes a spoof index, and warns the
user if the index exceeds a level selected by the user.
While Internet-savvy users who watch the address bar,
status bar, and other information carefully may not need
SpoofGuard, the current level of accuracy and effec-
tiveness may be sufficient to help many unsophisticated
web users. If the methods we propose become widely
deployed, through our plug-in or through other client-
side defensive software, then phishers will certainly take
steps to circumvent them. However, we expect further
effort and study to produce correspondingly better de-
fenses. Moreover, if synergistic server-side methods are
deployed by concerned companies, it seems possible to
thwart increasingly sophisticated attacks.

SpoofGuard uses domain name, url, link, and
image checks to evaluate the likelihood that a
given page is part of a spoof attack. For ex-
ample, a page with a suspicious url such as
etrade-maintenance.suspicious.org
or www.etrade.com@129.170.213.101/
maintainance.asp and an E*Trade logo will have
a higher spoof index than a page with neither of these
characteristics. SpoofGuard also uses history, such as
whether the user has visited this domain before and
whether the referring page was from an email site
such as Hotmail or Yahoo!Mail. Most importantly,
SpoofGuard intercepts and evaluates user posts in
light of relevant history and the spoof index of a form
page. SpoofGuard examines post data user name and
password fields and compares posted data to previ-
ously entered passwords from different domains. This
mechanism warns a user against sending her E*Trade
password to a site with an E*Trade logo but outside
the etrade.com domain, for example. Password
comparisons are done using a cryptographically secure
hash, so that plaintext passwords are never stored by
SpoofGuard.

Stopping web spoofing bears some similarity to intru-
sion detection, spam filtering, and thwarting traditional
social engineering attacks. Intrusion detection systems
[Pax99, Sno03] typically monitor network and host ac-

1

tivity, compute statistical or other indices, and attempt
to detect intrusions by comparing the index of current
activity against previous statistics. While web spoofing
may be regarded as a special case of intrusion detection,
the browser seems like that appropriate place to combat
web spoofing. A browser plug-in is relatively easy to in-
stall and has access to honest and spoof pages sent over
https, giving SpoofGuard a better chance of catching an
attack than a network proxy or other external http traffic
monitors. While a plug-in alone does not have full infor-
mation from email programs such as Outlook or Eudora
that may contain the messages that launch an attack, the
browser does provide an indication of the referring page
or application, and it is possible to scan and parse pages
from email sites such as Hotmail or Yahoo!Mail. There-
fore, for non-expert users who read email through their
browser, SpoofGuard has the potential to examine every
step of a standard web spoof attack.

Like other intrusion detection efforts, it is appropriate
to evaluate SpoofGuard by measuring its effective at pre-
venting attacks, the false alarm rate (number of unnec-
essary warnings), and its performance impact. Spoof-
Guard will only be useful if it detects attacks without
raising too many false alarms, since users will almost
certainly reject any method that interferes with normal
browsing activity. We have evaluated the false-alarm
rate by using SpoofGuard ourselves over a period of
time, and we have evaluated its effectiveness for pre-
venting attacks using actual spoof sites brought to our
attention by members of the San Francisco Electronic
Crimes Task Force. While this is not an extensive
enough test to draw broader conclusions, SpoofGuard
does catch the sample attacks found in the wild and does
not add any noticeable delay to ordinary web browsing.

Since web spoofing attacks begin with bulk email, a
good general spam solution [Bri03, Din03] could reduce
the incidence of web spoofing attacks. However, current
spam solutions are only partly effective at blocking un-
wanted email, and we are not aware of any spam efforts
aimed specifically at identify theft. While the browser-
based techniques we explore in this paper are comple-
mentary and independent of spam filtering, there may be
additional ways of combining email scanning with web
page analysis that will lead to better spoof prevention in
the future.

Previous efforts by the Princeton Secure Internet Pro-
gramming group and others [FBDW97, EY01] have ad-
dressed another form of “web spoofing” in which an
attacker causes all html page requests from a victim
to pass through the attacker’s site. This form of web
spoofing allows the attacker to monitor all of the vic-
tim’s activities, including posted passwords or account
numbers. However, previous methods for countering
this form of attack have focused on maintaining the in-

tegrity of browser indicators such as the url indicator in
the status bar, not analyzing user behavior, web pages,
and html post data to stop leakage of sensitive user in-
formation. While we considered using an alternate term
such as “phishing” in this paper, we use “web spoofing”
since this currently appears to be the term most com-
monly used by law enforcement and concerned compa-
nies.

The goals of this paper are to raise awareness of the
web spoofing problem and propose a framework for
client-side protection. While sophisticated and deter-
mined attackers will be able to circumvent our current
tests (through simple techniques we explain later in the
paper), there is plenty of room for improving specific
tests and tuning the coefficients of our spoof index func-
tion. Furthermore, the web spoofing problem is impor-
tant and we believe our SpoofGuard experience will be
useful for developing more sophisticated defenses. We
discuss the web spoofing problem in more detail in Sec-
tion 2, and our solutions in Section 3. The SpoofGuard
implementation and user interface are described in Sec-
tion 4. Some SpoofGuard evaluation information ap-
pears in Section 5, followed by suggestions for server-
side methods in Section 6, some more speculative client-
side methods in Section 7, and concluding remarks in
Section 8.

Throughout the paper we use the following terminol-
ogy.

• Spoof siteor Spoof page: the site or page that is a
malicious copy of some legitimate web page.

• Attacker: the person or organization who sets up
the spoof site.

• Honest siteor honest page: the legitimate site or
page that is being spoofed.

• Spoof index: a measure of the likelihood that a spe-
cific page is part of a spoof attack, described in Sec-
tion 3.

A prototype version of SpoofGuard will be made pub-
licly available shortly.

2 The problem

According to Agents of the U.S. Secret Service San
Francisco Electronic Crimes Task Force [Von03], the
U.S. Government’s Internet Fraud Complaint Center re-
ceived over 75,000 complaints in 2002. Of this number,
48,000 cases resulted in further action requests. This is
a three-fold increase over 2001. The total dollar losses
are estimated at more than $54 million compared to $17
million for 2001. A majority of these fraud complaints
are intrusions, auction fraud, credit card/debit fraud, and
computer intrusion. Agents of the U.S. Secret Service
San Francisco Electronic Crimes Task Force report that
web spoofing was first noticed in late 2001 and grew in

2

popularity in 2002, correlating with the large increase in
Internet Fraud. Further, a majority of the $37 million
increase in losses from 2001 to 2002 can be attributed
to web spoofing. Agents working fraud cases in the Bay
Area also report that a majority of their Internet cases
involve web spoofing.

One factor that adds to the severity of web spoofing
attacks is that many users use the same username and
password at several sites. This allows a phisher who
reels in a victim to use this information on more than one
site. For this reason, companies that provide password-
protected services are dependent on each other for their
security. This is not only true with regard to web spoof-
ing, but for other kinds of attacks as well. If passwords
from one site can be stolen by attacking the site itself,
these may also be used at other sites that protect their
password database more effectively.

2.1 Sample attack

A recent attack described in a New York Times ar-
ticle [HF03] actually mentioned fraudulent email, indi-
cating some level of public awareness of spoof attacks.
On June 18, 2003, thousands of fraudulent e-mails with
the subject “Fraud Alert” were sent out, hoping to reach
Best Buy customers. The e-mails attempted to con-
vince customers that Best Buy’s fraud department re-
quired additional customer information, “in our effort to
deter fraudulent transactions.” To further lure unsuspect-
ing victims, the e-mail provided a link that purported
to reach a “special Fraud Department” at the Best Buy
web site. Instead, the link actually pointed to a fraudu-
lent page unrelated to Best Buy. The Best Buy attacker’s
page resembled an official Best Buy page, using the Best
Buy logo, incorporating elements from an official Best
Buy page, and providing links to other Best Buy re-
sources. The page requested a customer’s social security
number and credit card information.

A web page from the Michigan Attorney General
[Cox03] cites “a few giveaways to this particular scam:”

• The [email] message did not issue from an
@bestbuy.com address,

• The link embedded in the message does not
take the user to a “special Fraud Depart-
ment page” on Best Buy’s site, but to a
page hosted under a completely different do-
main name (such asdigitalgamma.com or
your-instant-credit-reporter.org),

• The “National Credit Bureau” mentioned in the
scam does not exist.

The Michigan Attorney General also points out that
the Best Buy spoof is similar to spoofs imitating Pay-
Pal and eBay. A more recent Dow Jones Newswires
story [Ber03] states that EarthLink, Citibank, Mor-

gan Stanley’s Discover unit, eBay Inc. and its Pay-
Pal unit, Wachovia Corp.’s First Union unit and the
Massachusetts State Lottery reported phishing scams in
recent months. Some general information about web
spoofing, including additional news articles and records
of actual attacks, may be found athttp://www.
antiphishing.org/ , a web site provided by Tum-
bleweed Communications.

2.2 Properties of recent attacks

We describe common properties of ten spoof web sites
recently found in the wild. Figure 4 gives an example of
an Ebay spoof (partially obscured by a SpoofGuard pop-
up warning the user).
• Logos.The spoof site uses logos found on the hon-

est site to imitate its appearance.
• Suspicious urls. Spoof sites are located on

servers that have no relationship with the hon-
est site. The spoof site’s url may contain
the honest site’s url as a substring (http:
//www.ebaymode.com), or may be simi-
lar to the honest url (http://www.paypaI.
com). IP addresses are sometimes used to dis-
guise the host name (http://25255255255/
top.htm). Others use @ marks to ob-
scure their host names (http://ebay.com:
top@255255255255/top.html), or contain
suspicious usernames in their urls (http://
middleman/http://www.ebay.com.)

• User input.All spoof sites contain messages to fool
the user into entering sensitive information, such as
password, social security number, etc. Some suc-
cessful spoofs have even been so bold as to ask for
name, address, mother’s maiden name, driver’s li-
cense, and so on.

• Short lived.Most spoof sites are available for only
a few hours or days – just enough time for the at-
tacker to spoof a high enough number of users. The
implication is that defensive methods that alert the
user to a spoof site are more effective than reactive
methods that attempt to shutdown the site.

• Copies. Attackers copy html from the honest site
and make minimal changes. Two consequences
are: (i) some spoof pages actually contain links to
images (e.g. logos and buttons) on the honest site,
rather than storing copies, (ii) the names of fields
and html code remain as on the honest site. We
note that when a spoof site refers to the honest site
for embedded images it gives the honest site an op-
portunity to detect the spoof: the honest site detects
an http request for an embedded image where the
referral header is not the honest site. Such requests
should not occur unless the honest site is being pla-
giarized.

3

• Sloppiness or lack of familiarity with English.
Many spoof pages have silly misspellings, gram-
matical errors, and inconsistencies. In the Best Buy
scam, the fake web page listed a telephone number
with a Seattle area code for a Staten Island, NY,
mailing address.

• HTTPS is uncommon. Most spoof web sites do not
use https even if the honest site does. This simpli-
fies setting up the spoof site.

3 Solutions

A number of tests can be used to distinguish spoof
pages from honest pages. We present the tests we im-
plemented and evaluated in three groups: stateless meth-
ods that determine whether a downloaded page is suspi-
cious, stateful methods that evaluate a downloaded page
in light of previous user activity, and methods that eval-
uate outgoing html post data. Our browser plug-in ap-
plies these tests to all downloaded pages and combines
the results using a scoring mechanism described below.
The total spoof index of a page determines whether the
plug-in alerts the user and determines the severity and
type of alert. Since pop-up warnings are intrusive and
annoying, we attempt to warn the user through a passive
toolbar indicator in most situations. A user checkbox
can eliminate all pop-ups if desired.

We note that server-side methods, such as tracking
server image requests, may also be effective in identi-
fying spoof sites. However, the focus of this paper is on
client-side browser solutions. In section 6, we comment
on some ways that server-side modifications may make
our client-side methods more reliable and effective.

3.1 Scoring

Given a downloaded web page and some browser state
as input, our plug-in applies testsT1, . . . , Tn, with test
Ti producing a numberPi in the range[0, 1]. By con-
vention,Pi = 1 indicates that the page is likely to be a
spoof andPi = 0 indicates the opposite. Most of our
tests return either 0 or 1, but some can return a value
between 0 and 1.

We combine the test results into a total spoof score,
TSS, using a standard aggregation function:

TSS(page) =
∑n

i=1
wiPi

+
∑n

i,j=1
wi,jPiPj

+
∑n

i,j,k=1
wi,j,kPiPjPk

+ . . .

Thew’s are preset weights selected to minimize the false
alarm rate. Note that most of thew’s are set to zero so
that the actual number of terms in the expression is rel-
atively small. This approach of applying multiple tests
and combining the results using a scoring mechanism is

commonly used in intrusion detection systems and spam
filters [Din03].

The scoring function not only sums individual tests,
but also sums products of pairs, triples, and larger sub-
sets of tests. The reason for product terms is that when
certain combinations of events occur the likelihood of
the page being a spoof increases dramatically. For exam-
ple, if a company logo appears on an unauthorized page
and the page contains password and creditcard fields, the
page is very likely to be a spoof. Consequently, the term
corresponding to the product of these three tests is given
substantial weight.

3.2 Stateless page evaluation

We begin by describing a collection of tests that work
by examining the current page only.

Url check There are various methods that attackers
can use to produce misleading urls. For example, an
@in a url causes the string to the left to be disregarded,
with the string on the right treated as the actual url for
retrieving the page. Combined with the limited size of
the browser address bar, this makes it possible to write
urls that appear legitimate within the address bar, but
actually cause the browser to retrieve a page from an ar-
bitrary site.

Image check Spoof sites usually contain images taken
from the honest site. For example, the eBay logo ap-
pears on spoofed eBay pages to give the user the im-
pression that they are communicating with eBay. If the
eBay logo appears on a login page unrelated to eBay,
that page is suspicious. The same applies to other iden-
tifiably eBay-specific images such as banners and but-
tons. We note that corporate logos often legitimately ap-
pear on many e-commerce sites (e.g., the Amazon logo
appears on sites that sell products through Amazon) and
therefore we only count this test for pages that ask for
private user input.

In order to apply this check in a stateless way, the
SpoofGuard plug-in is supplied with a fixed database of
images and their associated domains. Since attackers
generally do not have email lists for customers of spe-
cific sites, they must try to spoof sites that are used by a
significant fraction of web users. Thus SpoofGuard can
be useful even if we only account for relatively small
number of frequently spoofed domains such as eBay,
PayPal, AOL, and so on. When the browser downloads
a login page all images on the page are compared to im-
ages in the SpoofGuard database. The spoof-score for
the page is increased if a match is found but the page’s
domain is not a valid domain for the image.

What if the spoof page contains a slight modification

4

of the real image? The image comparison test might fail
to detect the spoof. Fortunately, as noted earlier, attack-
ers often directly copy or link to images on the honest
site. Nevertheless, we defend against small image mod-
ification by storing an image hash rather than the ac-
tual image. Image hashing refers to a hashing algorithm
that produces the same hash for similar images. While
present technology does not provide ideal image hashes,
there has been some progress in this area [VKJM00]. In
our case, image hashing can be strengthened by asking
e-commerce sites to use images that are especially well
suited for image hashing. For example, in many cases
we could use optical character recognition (OCR) as the
image hashing algorithm. An added benefit of image
hashing is that storing an image hash rather than the full
image reduces plug-in storage requirements. We discuss
other aspects of this test in Section 5.3.

Link check The links contained within a page are ex-
amined. The link check fails for a page if at least one-
fourth of the links fail the url check described above.

Password check Pages that request a password merit
closer scrutiny than pages that do not. If a page re-
quests a password (or other sensitive information), we
also check whether https is used and, if so, whether the
certificate check succeeded or failed.

3.3 Stateful page evaluation

In stateful page evaluation, the browser history file
and additional history stored by SpoofGuard are used to
evaluate the referring page. Since it is important to min-
imize the number of false alarms, SpoofGuard does not
issue any warnings for visiting a site that is in the user’s
history file. The rationale for this is that if the user is
warned the first time, and decides to proceed, the user is
assumed to have sufficient reason to trust the site.

Domain check If the domain of a page closely resem-
bles a standard or previously visited domain, the page
may be part of a spoof. Although crude, we currently
compare domains by Hamming (edit) distance. For ex-
ample efrade.com will raise the domain check if
etrade.com is in the file of commonly spoofed sites
or in the user history. Clearly, it is possible to improve
our comparison algorithm by studying the way people
are fooled; this is a significant direction for future work.

A related issue is that some businesses outsource some
of their web operations to contractors with different do-
main names. This poses an interesting challenge that
we believe can be addressed. However, outsourced web
activity leads to false alarms in the current version of
SpoofGuard.

Referring page When a user follows a link, the
browser maintains a record of the referring page. Since
the typical web spoofing attack begins with an email
message, a referring page from a web site where the user
may have been reading email (such as Hotmail) raises
the level of suspicion. One complication associated with
Hotmail, for example, is that Hotmail uses numeric IP
addresses instead of symbolic host names. Therefore,
when a user clicks on a link in a Hotmail message, the
browser provides a numeric IP address to SpoofGuard
as the referring page. In this situation, SpoofGuard uses
reverse DNS to find the domain name associated with a
numeric address, allowing us to identify Hotmail as the
referring site.

Image-domain associations The image check de-
scribed above (in section 3.2) relies on a database as-
sociating images such as corporate logos with domains.
The initial static database can be assembled using a web
crawler or other tool, or it can be augmented using an in-
dividual’s browsing history. An early version of Spoof-
Guard used a fixed database; the current SpoofGuard
implementation uses a hashed image history file.

3.4 Evaluating post data

Evaluating post data is a critical part of any client-side
defense against web-spoofing attacks, since the point
of any defense is to prevent malicious sites from gain-
ing confidential information from an honest web user.
When a user fills in form data, SpoofGuard intercepts
and checks the html post data, allowing the actual post
to proceed only if the spoof index is below the user-
specific threshold for posts. If a user confines pop-up
warnings to posts only, then the user will never be inter-
rupted when reading web pages, only (possibly) when
filling in forms. Note, however, that even if no warnings
are generated on pages leading up to the spoof form, the
page checks described above are used, in combination
with analysis of the post data, to determine the spoof
index associated with an html post.

Outgoing password check SpoofGuard maintains a
database of〈domain, user name, password〉 triples. If
the user reuses a password on a new domain, this
trips the password check. To avoid the possibility of
leaking sensitive information, the stored passwords are
hashed using SHA-1 and the comparison is performed
on hashed values.

Interaction with image check In our spoof index cal-
culation, the image check interacts with the outgoing
password check non-linearly. For example, if a user en-
ters her E*Trade user name and password to a site that is

5

not atetrade.com , this raise the spoof index a certain
amount (determined in part by user-selected weights).
The spoof index is raised multiplicatively higher if the
site also contains the E*Trade logo.

Check of all post data There are several ways that
a web page might request a password. For example, a
clever spoof site might use an image of the word “pass-
word” instead of html text to request the user’s pass-
word. To protect against this form of spoof attack, all
outgoing data in an html post can be hashed and checked
against a database of passwords and other information
deemed sensitive. In this way, we can still detect pass-
word leakage, even if the spoof page does not contain
the text “password.”

Exception for search engines Since a user may enter
any data into a search engine, SpoofGuard is not suspi-
cious of known search engines at known domains. It
is also possible to ignore data posted into a “search”
or “find” field in an arbitrary page. This allows for
shopping sites, for example, that allow a customer to
search the catalog by keyword or product name. Of
course, good password practice would prevent an intel-
ligent user from using a product name or other English
word as an important password, rendering this exception
unnecessary.

4 SpoofGuard architecture

SpoofGuard is an Internet Explorerbrowser helper
object,or “plug-in.” A browser helper object is a COM
component that is loaded when IE starts up; it runs
in the same memory context as the browser. In gen-
eral, a browser helper object may perform any action
on IE windows and modules, including manipulating the
browser menu and toolbar, detecting and responding to
browser events, and creating additional windows.

SpoofGuard accesses the Internet Explorer history file
and uses three additional files stored in the user profile
directory. One is a read-only file of host names of email
sites such as Hotmail and Yahoo!Mail, used in the re-
ferring page check. The other two files are the file of
hashed password history (domain, user name, and pass-
word) and the file of hashed image history. SpoofGuard
can use reverse DNS to find domain names for numeric
IP addresses, but does not otherwise send or receive any
information on the network. The browser history file
can be reset using a browser dialog box and the addi-
tional SpoofGuard histories can be reset using a button
on the SpoofGuard configuration panel.

4.1 Plug-in interface and access to browser
data

SpoofGuard consists of a COM component that ex-
tendsIDeskband, an interface that causes IE to load
SpoofGuard as a registered toolbar, and a few other
modules that run in response to actions of the toolbar
component. SpoofGuard is written in Visual C++, and
uses both Windows Template Library (WTL) 7.0 and
Microsoft Foundation Class Library (MFC). Two Spoof-
Guard window classes implement theCWindowImpl
interface to define the appearance and user interaction
of the toolbar. The interaction between the main mod-
ules, described below, is shown in Figure 1.

• WarnBar: This is a COM component that houses
the SpoofGuard toolbar. All site evaluations and
post data checks are carried out here.

• ReflectionWnd: This CWindowImpl class imple-
ments a transparent window that sits on top of the
toolbar and reflects user messages (e.g. mouse
clicks) toUWToolBar. WarnBar requestsReflec-
tionWnd to pop-up a warning message when the
user tries to send sensitive information to a suspi-
cious server.

• UWToolBar: ThisCWindowImpl class defines the
appearance of the toolbar.UWToolBar stores the
user settings (e.g. check index, threshold, etc.) dur-
ing runtime. WarnBar requestsUWToolBar for
these settings to determine the traffic lights color
and the warning messages that appear in the Cur-
rent Page Status dialog. User settings are stored in
the registry when SpoofGuard closes.

• ConfigDlg opens an Options window when the
user clicks the Options button.UWToolBar up-
dates the user settings based on the result thatCon-
figDlg returns when the window terminates.

• DomainDlg opens the Current Page Status window
when the user clicks on the traffic light icon. It con-
tains the warning messages specific to the current
page.

Browser data and events When Internet Explorer
launches, it calls theSetSite method in the IOb-
jectWithSite interface to initializeWarnBar. WarnBar
receives a pointer to the web browser object, and passes
the object to theReflectionWnd andUWToolBar, al-
lowing SpoofGuard to constantly check the browser
contents during execution. Internet Explorer’sDWeb-
BrowserEvents2 class exportsBeforeNavigate2 and
DocumentComplete event handlers, which are both
implemented inWarnBar class. ABeforeNavigate2
event occurs before navigation. This givesWarnBar the
url that the browser is attempting to navigate to, the out-
going post, and a chance to cancel the navigation. The

6

ReflectionWnd ConfigDlg

DomainDlgWarnBar

UWToolBar

Sends user messages

(e.g. button click)

Sends current user

settings (e.g. weight
values, alert level)

Requests a pop

up warning if
WarnBar shows

that a site’s total

alert value is

higher than the

user’s threshold.

Requests Options window

(user settings) to pop up.

Requests Current Page

Status window to pop up.

Figure 1. SpoofGuard architecture

7

Figure 2. SpoofGuard toolbar

url check using the history list, the domain name check,
the email referring page check and post data check are
carried out after aBeforeNavigate2 event. ADocu-
mentComplete event occurs when a web site finishes
loading completely. The image check, link check, and
password check are carried out after aDocumentCom-
plete event.

4.2 User interface

The SpoofGuard toolbar is shown in Figure 2. The
options button can be used to configure the tool, while
the traffic light (green, yellow, or red) provides an in-
dication to the user about the current page. Clicking
on the traffic light also pops up additional information
about the current page. When the spoof rating is above
the user-specified threshold, SpoofGuard will pop-up an
additional warning window that requires user consent to
send user web form input (or other http post data) out to
a web site.

The configuration pop-up, shown in Figure 3, lets the
user select a spoof rating threshold, and set independent
weights and sensitivity levels for the domain name, url,
link, password, and image checks. The user may also
disable pop-ups, set history cache, enable image hash
caching, and enable highlighting of suspicious links.

SpoofGuard has two methods to convey its analysis to
the user. To keep SpoofGuard as unobtrusive as possi-
ble, we use a traffic light symbol on the browser bar to
indicate the degree of spoof by color: red, yellow, and
green. The actual colors displayed are determined by
the user’s threshold settings. Should the user want to
read the details of SpoofGuard’s analysis, he or she can
click the traffic light, and more information appears. In
extreme situations, SpoofGuard may also halt a post and
ask the user if she wishes to continue. In combination,
the traffic light and popup provide an effective means of
alerting the user to suspicious web pages, while avoiding
the annoyance of consistent popup windows.

4.3 Implementation difficulties and solutions

Detecting whether the user has clicked on an e-mail
link A typical phisher sends unsolicited e-mails that
contain links to the spoof site. SpoofGuard therefore
attempts to determine whether the user was directed to
a site from an e-mail message. One way is to check
the referrer field against a list of host names associ-
ated with web-based e-mail providers. However, some

providers (e.g., Hotmail) provide links to other parts of
their service using numeric IP addresses instead of sym-
bolic host names. Given a numeric address, SpoofGuard
performs a reverse-DNS lookup to reveal the host name.
Another way to estimate the likelihood that an email link
was used is to see whether the referrer field is empty.
The referring page field is empty with the browser is ini-
tially started, and when the user types in a url. Although
an empty referrer field does not always imply that the
user has clicked on an e-mail link, the field is empty if
the user launches the browser through a link in his or
her e-mail software. While it is conservative to treat an
empty referrer field in the same way as a link from Hot-
mail, this may give false alarms since the referrer field
is empty whenever a new Internet Explorer window is
opened.

Different input names for usernames and passwords
Since different sites have different input field names
for usernames and passwords, twenty username and ten
password variations are predefined in SpoofGuard, and
they are used to identify sensitive information in the
obtained post data structure. These predefined names
are used by many online bank forms, commercial sites
such as Amazon and eBay, and web-based e-mail sites.
SpoofGuard currently does not recognize username and
password combinations from sites that use other input
field names.

Frames Frames have historically proven troublesome
to both web browsers and users. For simplicity, Spoof-
Guard currently treats frames as independent pages,
without parsing the frameset to determine its frames.
For example, if a frameset includes frames located on
different hosts, SpoofGuard may flag this situation as
a possible malicious redirect. Related to this is a cus-
tomizable security setting in Internet Explorer, “Navi-
gate sub-frames across different domains”, which gives
the user a choice to allow or disallow this behavior. We
expect to improve the handling of frames in a future ver-
sion of SpoofGuard.

POST data vs AutoComplete SpoofGuard compares
outgoing passwords with its database of<username,
password, domain> triples rather than with values
stored in Internet Explorer’s AutoComplete repository.
When a user submits a form, SpoofGuard obtains
the post data as a SafeArray structure, which Internet
Explorer passes to SpoofGuard via an event handler.
SpoofGuard then scans it for sensitive information, and
stores a resulting hash into a file. There are two ad-
vantages to using post data. First, post data checking
is more secure, because SpoofWatch hashes the pass-

8

Figure 3. SpoofGuard configuration pop-up

9

words, whereas AutoComplete encrypts them with a
known key that is stored on the user’s computer. Sec-
ond, many Internet Explorer users turn off AutoCom-
plete either due to frequent pop-up windows that ask for
the users permission before storing the data, or for pri-
vacy. Therefore, SpoofGuard is more secure while ef-
fectively serving a larger user base.

Redirects Currently, a page that redirects to another
page may cause SpoofGuard to flash yellow or red or
pop-up a small post data warning box, depending on
user configuration. In the next version of SpoofGuard,
we plan to recognize redirects in html pages more effec-
tively and eliminate these spurious warnings.

5 Evaluation

We evaluated the effectiveness of our plug-in using
several criteria. First, does the plug-in detect the sample
spoofs found in the wild? Second, is the false alarm rate
sufficiently small? Third, how difficult is it to write a
spoof page that is not detected by our plug-in? Finally,
how does our plug-in affect browser performance. We
discuss each of these below.

5.1 Detection of spoof attacks

In addition to debugging tests to make sure each
SpoofGuard measurement works properly, we evaluated
SpoofGuard’s overall effectiveness by testing it against
fourteen actual spoof web pages sent to us by the U.S.
Secret Service. Nine of the fourteen pages are spoofs
of eBay’s sign-in page. Two spoof pages purport to
be “identity and billing verification” pages that request
a large amount of personal information, such as eBay
username and password, residence information, credit
card information, ATM card PIN, bank account rout-
ing number, social security number, mother’s maiden
name, date of birth, and driver’s license number and is-
suing state. One spoof site states that because of “regu-
lar maintenance of our security measures, your account
has been randomly selected for this maintenance,” and
requests a username and password. The last two suggest
that the user could win a car if a username and password
are provided.

We tested SpoofGuard on all fourteen spoof pages
using the default settings and recorded all SpoofGuard
messages for each page. Since SpoofGuard does not an-
alyze html files stored locally on a user’s computer, we
set up a web server that hosted the fourteen spoof pages.
Since most spoof web sites do not use https, our server
used ordinary insecure http. Each page was retrieved
from our web server by entering the url directly into
the address bar in Internet Explorer. In order to force
SpoofGuard to analyze each page, we cleared Internet

Explorer’s history and restarted the browser before load-
ing each spoof page; this kept the history of previous
tests from biasing the analysis of another spoof page on
the same spoof server (our test server). Finally, in order
to provide SpoofGuard with some information about the
honest site, we visited eBay’s web site and navigated to
the sign-in page before each eBay spoof. At the honest
eBay sign-in, we performed a mock sign-in using ‘hello’
and ‘test’ as the username and password, respectively.
Although eBay did not accept these as a legitimate user
name and password pair, they were recorded by Spoof-
Guard, which was all that we needed for the test.

The results of our test were:

• All fourteen spoof pages have password input fields
and SpoofGuard successfully noted this. Spoof-
Guard also noted that the form submissions were
insecure because the pages were retrieved from our
web server without using secure http (https).

• All fourteen pages include inlined images, such
as the eBay logo, that are retrieved directly from
eBay servers. These images were already in Spoof-
Guard’s image file as a result of the initial naviga-
tion to the honest site. In the test, SpoofGuard cor-
rectly noted that the spoof pages with eBay images
matched those images from the honest eBay site.

• We performed a mock sign-in on the spoof pages
to test SpoofGuard’s outgoing password check. For
each page, we used ’hello’ and ’test’, the same pair
used on the honest eBay site in the initialization
part of the experiment. SpoofGuard successfully
identified the user name and password from the
honest site and popped up a warning to the user,
as shown in Figure 4.

We believe that the SpoofGuard image check and out-
going password check are important strengths, since to-
gether these checks stop outgoing data and they are not
redundant with information that may be found in the
browser address bar, status bar, or rendered html. While
the image checker’s hashing algorithm can be improved
to detect slight modifications to the images, the current
checks successfully catch spoofs observed in the wild.

5.2 False alarm rate

The false alarm rate depends in part on how frequently
the user establishes new accounts and how frequently
the user clears the browser history cache. We have used
SpoofGuard ourselves over several weeks. With de-
fault settings, there are occasional spurious yellow lights
while browsing, and sometimes the first use of a legiti-
mate site with user name and password input will trigger
a false post warning. Many of the unnecessary warnings
are the result of frame or redirection problems (noted in
section 4.3) that we expect to resolve in the next version

10

Figure 4. SpoofGuard detects honest user name and password o n spoof site.

11

of SpoofGuard. If the user opens a new account, and in-
tentionally uses the same password as another account,
this will also produce an unwanted warning. However,
second and subsequent visits (without clearing the his-
tory cache) do not lead to additional false alarms for this
situation.

5.3 Security

The solutions described in Section 3 are certainly not
fool-proof. An attacker with a reasonable understanding
of web-site construction and a day or two of time can
circumvent our current tests. For example, here are sim-
ple ways of fooling the SpoofGuard password and image
checks:

• Some of our tests compare user input on a particu-
lar page to passwords that the user used at previous
sites. An attacker could fool these tests by break-
ing the password input field on the spoof page into
two adjacent fields that would look contiguous to
the user, but would cause our password compari-
son tests to fail. Similarly, javascript on the spoof
page could encode post data sent from the page so
as to defeat our post data tests.

• Some of our checks compare images (logos) on a
spoof page to images that appear on honest pages.
An attacker could defeat these tests by slicing an
image into adjacent vertical slices and presenting
these slices one next to the other. None of the indi-
vidual slices would match images in the plug-in’s
database, but to the user the complete image would
look authentic. This would defeat some of our im-
age tests.

These limitations notwithstanding, our methods clearly
make it harder for attackers to setup effective spoof sites.
Given the extremely low level of sophistication we’ve
seen so far in actual spoof attacks, it is difficult to pre-
dict how quickly phishers would respond to deployment
of SpoofGuard or related methods. In addition, should
more sophisticated spoof sites appear, the framework we
have adopted in SpoofGuard can be extended with more
sophisticated checks and defensive password manage-
ment.

5.4 Performance

As SpoofGuard users, we have not noticed any per-
formance degradation as a result of the browser plug-in.
We attempted to confirm this subjective impression by
making rudimentary measurements. We inserted tim-
ing checks at the browserBeforeNavigate2 andDocu-
mentComplete events, measuring CPU usage and nav-
igation speed for retrieving and processing each page.
We compared performance with SpoofGuard installed

to performance with a dummy plug-in containing only
the timing checks. To try to account for the fact that net-
work latency shows up in the timing numbers, we also
ran a second round of tests with all pages in the cache.
Although the measurements do not capture SpoofGuard
timing with great accuracy, the numbers we obtained
seem to support our belief that there is no noticeable
degradation of user browsing experience.

The performance tests were carried out on TrafficMar-
ketplace’s list of 30 most visited sites, using a 1GHz
Pentium III with 128MB of RAM, connected through
a 10 Mbps Ethernet card. Retrieving pages over the net-
work, it took an average of 779 milliseconds to navigate
from one page to another without SpoofGuard installed,
and 911 milliseconds with SpoofGuard. With pages in
the cache, these numbers dropped to 484 milliseconds
and 601 milliseconds, respectively. These measure-
ments suggest that the sequence of checks carried out by
SpoofGuard take on the order of 100–250 milliseconds
on an older processor. Furthermore, the CPU usage was
30% without SpoofGuard, and 40% with SpoofGuard,
although the variance in CPU usage was high while the
variance in timing numbers was low. Overall, however,
it seems safe to conclude that SpoofGuard does not im-
pose a significant performance penalty. The non-expert
users for whom the plugin is designed are unlikely to
notice the computation overhead; they are particularly
unlikely to notice the SpoofGuard overhead if their net-
work connections are slow.

6 Server-side assistance

The techniques we have implemented and tested are
designed to detect web-spoofing attacks without any co-
operation from web sites that are spoofed. However, we
could do much more with the help of e-commerce web
sites. For example, the two methods suggested below
add simple tags to honest web pages. The additional in-
formation gathered from honest sites can be used detect
spoofs more effectively.

6.1 Mark form fields with confidentiality tags

The outgoing password check compares outgoing data
to stored (and hashed) sensitive data sent previously to
honest login pages. E-commerce sites can help Spoof-
Guard identify sensitive fields by marking them with an
additional html attribute.

We propose adding aCONFIDENTIALITY attribute to
the<INPUT> html element. For a sensitive field (pass-
word, username, creditcard) the html element would
look like

<INPUT NAME=”username”TYPE=”text”
CONFIDENTIALITY=”username”>

where CONFIDENTIALITY is one of username, pass-

12

word, creditcard, SSNand possibly other pre-specified
strings. The confidentiality attribute helps SpoofGuard
determine how to process the field. Note that we do not
use theNAME attribute to infer confidentiality so as to
give the site complete freedom over its field names.

Confidentiality tags could improve the detection rate
and reduce the false alarm rate. Specifically, if data not
currently tracked by SpoofGuard is marked confidential,
SpoofGuard will be able to warn the user when this con-
fidential data is exposed. If confidentiality tags become
widely used, then SpoofGuard could become less likely
to spuriously track information that is not confidential,
reducing the likelihood of false alarms. The proposed
html confidentiality tags may also have other uses be-
yond spoof identification. For example, a kiosk browser
could close a window and flush short-term cookies after
a certain idle time if entry to the site involved confiden-
tial data.

6.2 Image tagging

The image check described in Section 3.2 is useful
in identifying spoof login pages since these pages need
to reproduce the look-and-feel of the honest site. We
already mentioned in Section 3.2 that e-commerce sites
can help strengthen this mechanism by choosing images
that can be hashed robustly. In addition, e-commerce
sites can help make this test stateful rather than stateless.
To do so we propose adding a new attribute to theIMG

element in an html page. The attribute enables honest
sites to identify images on their login page that are not
supposed to appear on login pages outside the site. For
example, theIMG element pointing to the eBay logo on
eBay’s login page would look like:

<IMG SRC=http://ebay.com/login-logo.gif
SPOOFGUARD>

The SPOOFGUARD attribute indicates that if this image
appears on a non-ebay web page requesting sensitive
user input then it is likely the page is a spoof. Poten-
tially, the SPOOFGUARD attribute could include a value
(low, high) thus giving the site administrator some con-
trol over the score added to the total spoof score for the
page. We note that this attribute should only be used on
sensitive html pages such as a login page.

Next, we describe how the SpoofGuard plug-in would
use this attribute. The difficulty is in ensuring that this
attribute is not used for denial of service. We slightly
reorganize the plug-in’s image database. Each record in
the database is as follows (one record per image):

image-hash (d1, f1) (d2, f2) . . . (ds, fs)
wheredi is a domain on which this image was found,
and frequencyfi is the number of times the user visited
the page. The plug-in either maintains the frequency
value itself (adding one every time the page is loaded)
or uses the browser’s history file to compute it. Only

images referenced with the SPOOFGUARD attribute are
stored in the database.

When the browser downloads a login page containing
an image whose hash is in the database it does the fol-
lowing:

• Check to see if the page’s domain is in the list of
domains associated with the image. If so, letF be
the frequency for the domain. If not, setF to 0.

• Let M be the maximum frequency in the image’s
record. The test return the valuep = 1 − F/M .

To see how this works, consider the eBay login page
and consider an image marked with SPOOFGUARD on
that page. Now, consider the record in the plug-in’s im-
age database corresponding to this image. Most likely,
the eBay login page will have the highest frequency in
the image record. Consequently, the eBay login page
will have p = 0 indicating that it is not likely to be a
spoof. Other pages containing this image with a SPOOF-
GUARD attribute (either set up by an attacker or by
someone attempting to DoS eBay) will have a much
lower frequency and therefore result in ap value close
to 1. This technique prevents abuse of this test for denial
of service.

6.3 Password hashing and site-specific salt

Users often use the same password at many different
sites. For example, the same password may be used
for an E*Trade account as for a newspaper site. We
can combat this problem using site-specific password
salt. Password salt, or other improvements of the stan-
dard password mechanism, also help with other secu-
rity problems. In particular, when attackers break into
a low security site they often try the recovered user-
name/password combinations at various financial sites.
As a result, a web site implementing proper security
policies suffers when other sites do not apply recent
patches and store passwords in the clear.

Passwords at one site can be made independent of
passwords at other sites by adding a newSALT attribute
to the html<INPUT> element. This attribute lets a site
specify per-server salt; per-user salt is not possible since
it is supplied before the user is identified. With this new
attribute, password fields would look like:

<INPUT NAME=“pwd” TYPE=“password”
SALT=“E*Trade”>

where the site developers ensure that their salt is unique
to their site. For example, one could use the domain-
name as a salt.

When processing a password field the browser first
computesEpwd[salt], whereE is block cipher,pwd is
the password entered by the user, andsalt is the salt
from input html element. The browser transmits the
resulting value rather than the user’s password. If the

13

salt attribute is not present in the html page, the browser
uses0 as the salt. The main point is that with the block
cipher, it is hard to computeEpwd[X] from Epwd[Y]
for X 6= Y . Consequently, a newspaper break-in will
not compromise an E*Trade password. Note that this is
similar to challenge-response authentication, except that
each site uses a fixed and unique challenge rather than
a random challenge. This way the site need only store
in its database a hash of the submitted password value
rather than the plaintext submitted password.

One difficulty in deploying site-specific salt is that all
browsers must be simultaneously modified and web sites
must re-authenticate their users after this mechanism is
deployed. Another problem is that this mechanism it-
self is susceptible to spoofing. As presented, a spoof
site need only contact the honest site to obtain the site-
specific salt, then pass the same salt on to the victim.
This will cause the victim’s browser to send the spoof
site the exact password needed to gain access to the hon-
est site. Although we have not done a thorough study,
site-specific salt may still be useful when the request
comes over https and the certificate check establishes
a reliable association between the salt and the request-
ing domain. With this limitation, site-specific salt will
produce distinct passwords for distinct sites, and pre-
vent a phisher who sets up an insecure (i.e., non-https)
site from obtaining a password associated with a more
secure (https) site.

7 More Speculative Techniques

We describe a few techniques that might be useful in
combating spoof sites. We did not experiment with these
since we consider them to be more speculative at the
moment.

Collaborative Methods. Several projects [Bri03] use
collaborative methods to identify spam email. A similar
mechanism might apply to blocking spoof sites. Con-
sider a user who uses our plug-in, but ignores the warn-
ing issued by the plug-in when visiting a site. The user
enters his identifying information, submits the data, and
then realizes that he just entered private information on
a spoof site. At that point the user might want to alert
the authorities as well as alert other users to avoid the
site. By providing a “send alert” button in our browser
plug-in the user could notify a central server that the cur-
rent page is a spoof. If enough users identify the page
as a spoof the server could alert all plug-ins to block
the page. This might dramatically reduce the number of
users who get duped by the spoof site.

We consider this method to be speculative for two rea-
sons. First, user’s who are duped by spoof sites are also
likely to be unaware of the “send alert” button and its

function. Second, this mechanism could potentially be
used to launch a denial of service attack against an hon-
est site.

Search engines to the rescue.Spoof sites are often
direct copies of pages on the honest site. Therefore,
when viewing a sensitive page (a page that requests a
user password), our browser plug-in could do a Google
search on some key phrases or links on the page. If a
page similar to the current page is found at a different
domain, the plug-in would increase the page’s spoof-
score.

We consider this method to be speculative since pages
are often cached at various sites on the web and it would
be difficult to distinguish a spoof from a cached page.
In addition, if every browser in the world automatically
issued a Google query for every password page it en-
counters, the resulting traffic would likely overwhelm
Google. There is also no business incentive for Google
to support such a service.

Forensics. Suppose internal tests at E*Trade indicate
that a user’s password has been compromised. E*Trade
suspects that this is the result of a spoof E*Trade site.
They wish to quickly determine where the site is. One
option is to examine the user’s history file since it con-
tains all the sites the user visited recently, including the
spoof site. However, a well-minded user would likely
refuse to hand over the browser’s history file due to pri-
vacy concerns. To reduce the user’s exposure, Spoof-
Guard could keep track of sites where the user entered a
password identical to his E*Trade password. Only those
sites would be handed over to E*Trade.

We consider this method to be speculative since most
spoof sites are active for only a few days. Most likely the
process required for obtaining data from the user would
take more time than that. Nevertheless, the problem of
quickly locating spoof sites is important and deserves
attention. We may experiment with using web crawlers
for this task in the future.

8 Conclusion

Most of the $37 million increase in losses from In-
ternet fraud observed between 2001 to 2002 has been
attributed to web spoofing [Von03]. While web spoof-
ing (or phishing) may become more sophisticated in the
future, we propose a set of methods that appear effective
for the kind of simple attacks observed by law enforce-
ment and affected companies. SpoofGuard uses a com-
bination of stateless page evaluation, stateful page evalu-
ation, and examination of outgoing post data to compute
a spoof index. When a user enters a username and pass-
word on a spoof site that contains some combination of

14

suspicious url, misleading domain name, images from
an honest site, other measures discussed in section 3,
and a username and password that have previously been
used at an honest site, SpoofGuard will intercept the post
and warn the user with a pop-up that foils the attack. We
have tested SpoofGuard with actual attacks found in the
wild and found the mechanisms generally unobtrusive
and effective. While technically savvy Internet profes-
sionals probably do not need SpoofGuard themselves,
there are many less sophisticated users who may benefit
from this tool.

In order to effectively reduce the impact of Internet
fraud based on web spoofing, SpoofGuard must be dis-
tributed and deployed, or the mechanisms tested here
must be adopted by browser companies and integrated
into standard browser security mechanisms. While the
initial tests from our research effort are promising, we
expect to continue to refine SpoofGuard and subject
the components of our method to more rigorous sta-
tistical testing. Especially if some of the server-side
methods described in section 6 are adopted by compa-
nies subject to web spoofing fraud, such as EarthLink,
Citibank, Morgan Stanley’s Discover unit, eBay, Pay-
Pal, banks and state lotteries [Ber03], we believe that
SpoofGuard methods will reduce fraud. In addition to
reducing the direct loss figure mentioned above, good
protection against web spoofing would significantly re-
duce customer support costs.

A second consequence of deploying the methods de-
scribed in this paper is that phishers will have to work
harder to spoof web users into revealing sensitive infor-
mation. As discussed in section 5.3 and elsewhere, many
of our tests can be circumvented by relatively simple
modifications to spoof pages. Like virus detection and
spam filtering, we expect that any serious effort to com-
bat web spoofing will lead to more sophisticated spoofs
and the need for more sophisticated defenses. As men-
tioned throughout the paper, the methods currently im-
plemented in SpoofGuard can be improved. Individual
page tests can be improved, more page test can be added,
and the formula for computing the spoof index can be
refined. Furthermore, if e-commerce sites act on their
concern about the problem, server-side techniques offer
significant promise for combating web spoofing.

From a broader perspective, web spoofing takes ad-
vantage of the unauthenticated email and weak web-site
authentication. As a Tumbleweed Communications web
site regarding phishing [Tum03] points out, one counter-
measure is “the use of digitally signed email to protect
against phishing hacker attacks and spam email.” While
this is certainly true, digitally signed email has been
technically feasible for many years, yet the adoption rate
remains small. Strong web site authentication could also
eliminate web spoofing. If challenge-response methods,

for example, were widely deployed, then a spoof site
authenticating a user would not have any way to imper-
sonate the user on the honest site. In this sense, Spoof-
Guard helps patch over a weakness in current web prac-
tices that could be solved more effectively by stronger
known technology. However, the history of the Internet
suggests that once a convention is widely adopted, it is
very difficult to introduce new standards.

Acknowledgments

Thanks to Alissa Cooper, Greg Crabb, Tom Pageler,
Robert Rodriguez, and Chris Von Holt.

References

[Ber03] Tara Siegel Bernard. Citigroup’s
logo used in identity-theft attempt.
SmartMoney.com, August 18, 2003.
http://www.smartmoney.
com/bn/ON/index.cfm?story=
ON-20030818-000809-1407% .

[Bri03] Brightmail inc. http://www.
brightmail.com , 2003.

[CNN03] ‘phishing’ scams reel in your iden-
tity. http://www3.cnn.com/
2003/TECH/internet/07/21/
phishing.scam/ , July 22, 2003.

[Cox03] Mike Cox. Fraudulent emails - thieves
intend to steal your personal informa-
tion 6/2003, 2003. Posting from the
Michigan Attorney General, http:
//www.michigan.gov/ag/0,
1607,7-164--70494--,00.html .

[Din03] Theo Van Dinter. Spamassassin, 2003.
http://useast.spamassassin.
org/ .

[EY01] S.W. Smith E.Z. Ye, Y. Yuan. Web
spoofing revisited: Ssl and beyond, 2001.
http://www.cs.dartmouth.edu/
˜pkilab/demos/spoofing/ .

[FBDW97] Edward W. Felten, Dirk Balfanz, Drew
Dean, and Dan S. Wallach. Web spoofing:
An internet con game. InProceedings of
20th National Information Systems Security
Conference, 1997.

[FBI03] FBI web spoofing warning, 2003.
http://www.fbi.gov/pressrel/
pressrel03/spoofing072103.
htm .

15

[HF03] Katie Hafner and Laurie J. Flynn. E-mail
swindle uses false report about a swindle.
NY Times, June 21, 2003.

[Pax99] Vern Paxson. Bro: a system for detect-
ing network intruders in real-time.Com-
puter Networks (Amsterdam, Netherlands:
1999), 31(23–24):2435–2463, 1999.

[Sno03] Snort: The open source network intrusion
detection system, 2003.http://www.
snort.org/ .

[Tum03] Tumbleweed Communications. Dig-
itally signed email to protect against
phishing hacker attacks, 2003.
http://www.tumbleweed.com/
en/solutions/phishing.html .

[VKJM00] R. Venkatesan, S.-M. Koon, M. H.
Jakubowski, and P. Moulin. Robust im-
age hashing. InProceedings of the Inter-
national Conference on Image Processing,
2000.

[Von03] C. T. Von Holt. Resident Agent In Charge,
US Secret Service, San Jose, CA. Private
communication, 2003.

16

