Language-Based Isolation of Untrusted JavaScript

Sergio Maffeis
Department of Computing,
Imperial College London

maffeis@doc.ic.ac.uk

ABSTRACT

Web sites that incorporate untrusted content may use browser-

or language-based methods to keep such content from ma-
liciously altering pages, stealing sensitive information, or
causing other harm. We study methods for filtering and
rewriting JavaScript code, using Yahoo! ADsafe and Face-
book FBJS as motivating examples. We explain the core
problems by describing previously unknown vulnerabilities
and shortcomings, and give a foundation for improved solu-

tions based on an operational semantics of the full ECMA262-

3 language. We also discuss how to apply our analysis to
address the problems we discovered.

1. INTRODUCTION

Many contemporary web sites incorporate untrusted con-
tent. For example, many sites serve third-party advertise-
ments, allow users to post comments that are then served to
others, or allow users to add their own applications to the
site. Although advertising content can be placed in an isolat-
ing iframe [5], this is not always done because it limits the ad
to a specific section of the page and prevents higher-revenue
ads such as those that float over other parts of the host-
ing page. Similarly, social networking sites serve untrusted
content, such as applications developed by users, without
isolating this content in an iframe. Instead, a number of
current sites pre-process untrusted content, applying filters
or source-to-source rewriting before the content is served.

In this paper, we study filtering and rewriting methods
for managing untrusted JavaScript [6, 9], focusing on two
illustrative examples: Yahoo! ADsafe and Facebook FBJS.
Facebook [7] is a leading social networking site that makes
substantial use of JavaScript, allowing user-originated code
to interact with trusted libraries. Yahoo’s ADsafe [1] pro-
poses a particularly flexible model that supports rich inter-
action between advertising JavaScript code and the hosting
web page. ADsafe isolation is based on JavaScript filtering,
allowing any JavaScript code that passes a static code anal-
ysis test. Facebook also uses JavaScript rewriting to run ap-
plications in a “separate namespace” and insert certain run-
time checks. While Google Caja [3] and other approaches
offer alternatives, our two primary examples illustrate many
core issues and provide a natural context for exploring the
basic requirements for code filtering and rewriting.

We develop a formal foundation for proving isolation prop-
erties of JavaScript programs, based on our operational se-

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.

John C. Mitchell
Department of Computer
Science, Stanford University

mitchell@Qcs.stanford.edu

Ankur Taly
Department of Computer
Science, Stanford University

ataly@stanford.edu

mantics of the full ECMA-262 Standard language (3rd Edi-
tion) [10], available on the web [11] and described previously
in [12, 13]. We initially tried to use this framework to prove
isolation properties of ADsafe and FBJS, but failed because
of problems we discovered. As explained in Section 2, AD-
safe did not properly account for definitions that might oc-
cur on a hosting page, and an FBJS wrapper function could
be disabled by untrusted code; both problems have since
been addressed. Based on the subtlety of these errors, and
others that might occur in similar systems, we believe that
our detailed analysis method has significant promise as a
systematic way of investigating isolation properties.

We provide a semantic basis for JavaScript filtering and
rewriting by identifying sublanguages with certain desirable
properties. Our syntactically defined subsets provide a foun-
dation for code filtering — any JavaScript filter that only al-
lows programs in a meaningful sublanguage will guarantee
any semantic properties associated with it. We also con-
sider subsets of JavaScript with semantic restrictions, which
model the effect of rewriting JavaScript source code with
“wrapper” functions. Our main technical results are proofs
that certain subsets make it possible to identify the proper-
ties that may be accessed, make it possible to safely rename
variables used in the code, and/or make it possible to pre-
vent access to the global object. Because of the size of the
operational semantics for the full ECMA-262 language [10],
approximately 60 pages of ascii text, each of these proofs
reflects significant effort.

Related work on language-based methods for isolating the
effects of potentially malicious web content include [15], which
examines ways to inspect and cleanse dynamic HTML con-
tent, and [20], which modifies questionable JavaScript, for
a more restricted fragment of JavaScript than we consider
here. A short workshop paper [19] also gives an architec-
ture for server-side code analysis and instrumentation, with-
out exploring details or specific methods for constraining
JavaScript. Foundational studies of much more limited sub-
sets of JavaScript are reported in [4, 18, 20]; see [12].
Plan of the paper. In Section 2, we describe FBJS, AD-
safe, and vulnerabilities we discovered. Language properties
supporting filtering and rewriting are discussed in Section 3.
In Section 4, we briefly review our previous work [12] on
JavaScript operational semantics. In Section 5 we use the
operational semantics to identify safe subsets of JavaScript,
and prove their properties. In Section 6, we discuss how our
results can solve the problems found in FBJS and ADsafe,
and discuss the solutions currently adopted. Concluding re-
marks are in Section 7.



2. JavaScript ISOLATION EXAMPLES

In this Section, we summarize the Facebook and ADsafe
isolation mechanisms and explain some of the problems we
observed with them. The FBJS s vulnerability we describe
was reported to Facebook and has been repaired. Similarly,
the deficiency we observed in AdSafe,, was communicated
to Douglas Crockford and was addressed by extending the
ADsafe approach to consider properties of the hosting page.

2.1 Facebook JavaScript

Facebook [7] is a web-based social networking application.
Registered and authenticated users store private and public
information on the Facebook website in their Facebook pro-
file, which may include personal data, list of friends (among
other Facebook users), photos, and other information. Users
can share information by sending messages, directly writing
on a public portion of a user profile (called the wall), or
interacting with Facebook applications.

Facebook applications can be written by any user and can
be deployed in various ways: as desktop applications, as ex-
ternal web pages displayed inside a frame within a Facebook
page, or as integrated components of a user profile. Inte-
grated applications are by far the most common, as they
provide a richer user experience and affect the way a user
profile is displayed.

Facebook applications are written in FBML [17], a variant
of HTML designed to make it easy to write applications and
also to restrict their possible behavior. A Facebook applica-
tion is retrieved from the application publisher’s server and
embedded as a subtree of the Facebook page document. For
example, in the left image in Figure 1, the area in the box
labelled “Alpha” is owned by the Alpha application and the
“Test A” link code is written by the application publisher.
Since Facebook applications are intended to interact with
the rest of the user’s profile, they are not isolated inside an
iframe. However, the actions of a Facebook application must
be restricted so that it cannot maliciously manipulate the
rest of the Facebook display, access sensitive information or
take unauthorized actions on behalf of the user. As part of
the Facebook isolation mechanism, the scripts used by ap-
plications must be written in a subset of JavaScript called
FBJS [16] that restricts them from accessing arbitrary parts
of the DOM tree of the larger Facebook page. The source
application code is checked to make sure it contains valid
FBJS, and some rewriting is applied to limit the applica-
tion’s behavior before it is rendered in the user’s browser.

FBJS. The design of FBJS is intended to allow applica-
tion developers as much flexibility as possible, while at the
same time protecting user privacy and site integrity. While
FBJS has the same syntax as JavaScript, a preprocessor con-
sistently adds an application-specific prefix to all top-level
identifiers in the code, separating the effective namespace
of an application from the namespace of other parts of the
Facebook page. For example, a statement document.domain
may be rewritten to al2345_document.domain, where al2345_
is the application-specific prefix. Since this renaming will
prevent application code from directly accessing most of the
host and native JavaScript objects, such as the document ob-
ject, Facebook provides libraries that are accessible within
the application namespace. For example, the libraries in-
clude the object a12345_document, which mediates interaction
between the application code and the true document object.

Additional steps are used to allow FBJS code to contain

the special identifier this. Since renaming this would dras-
tically change the meaning of JavaScript code, occurrences
of this are replaced with the expression ref(this), which calls
the function ref to check what object this refers to when it
is used (see Section 6 for further discussion of ref and the
revised version $FBJS.ref now used). Without this wrap-
per, code such as (function (){return this})() could return the
window object, which would give the application access to
the full Facebook page. A similar problem arises with the
notation object[”property”], which is similarly rewritten to
a12345_object[idx("property”)]. Functions ref and idx are de-
signed to prevent this from being bound to the window ob-
ject and prevent ”property” from being a blacklisted property.
Other syntactic checks on FBJS code exclude the use of dan-
gerous constructs such as eval and with, and prevent use of
special properties of objects such as __parent__, constructor,
valueOf, and so on, which may be used in some web browsers
to access (indirectly) the window object.

Two Facebook vulnerabilities found

We initially attempted to use our operational semantics of
JavaScript [11] to prove that the subset of JavaScript used
in FBJS has certain semantic properties that provide mean-
ingful isolation between an FBJS application and the en-
closing Facebook page. In the process, we uncovered certain
problem cases that led to discovery of vulnerabilities in the
then-current version of FBJS (see Figure 1). When we con-
tacted Facebook, these vulnerabilities were repaired within
24 hours. For simplicity, we refer to the Facebook isola-
tion mechanisms that were current in early October, 2008
as FBJSys.

The nature of these vulnerabilities can be understood by
assuming that FBJS s programs can contain an expression
get_scope() which returns the current scope object; two ways
of achieving this are explained below. Once a program has a
handle to its own scope object, the F'BJS s run-time checks
could be disabled by replacing the ref or the idx functions,
such as by running get_scope().ref=function(x){return x}. With
the run-time-checking function out of the way, ref(this) refers
to the current value of this, which may be the window object
if this is the current scope. This access to the window object
allows a FBJS gs-application-based attacker to take over the
page; see Felt et al. [8] for discussion of further ramifications.

Catch this! One way to define get_scope() so that it returns
the current scope object is by the code

try {throw (function(){return this});} catch (get_scope){...}}
In FBJS s, this code is rewritten to

try {throw (function(){return ref(this)});}
catch (al2345_get_scope)q{...}}

When the code is executed, the function thrown as an excep-
tion in the try block is bound to the identifier a12345_get_scope
in a new scope object that becomes the scope for the catch
block. If we execute within the catch block the function call
al2345_get_scope(), the this identifier of the function is bound
to the enclosing scope object. But the Facebook run-time
monitor ref lets the scope object (which is different from the
window object) be returned by the a12345_get_scope function,
enabling the attack described above. In fact, the scope ob-
ject looks exactly like any other innocuous object to the ref
function.



n,
w
\“I Shane McPari
- —_— i know! i know!
Bed<_*,' Ell'ls\t‘r' _Y\‘.Jl" its better for hin
Moare Cloyd wang we want to go {
let me know son|
when i can comd
Alpha # Wall-ta-Wall - W
Test A (Frrefox and Safari) eamr
Test B {Safari, Opera ;ﬂl Chrame) nﬂa Serg'lo is wo
Marco
B I'm sur
Posted Items #
3 of 13 posted items See All Write a comme
@) smi6's photos
{4 October D5:19 i

Recurring subtleties. There is another, even more subtle
way to access the scope object, by the code

var get-window = function get_scope(x)
{if (x:: ) {return this} else {}}

Here we save a named function in a global variable. As this
function executes, the static scope of the recursive function
is a fresh scope object where the identifier get_scope is bound
to the function itself, making recursion possible. If we in-
voke get window(1) and in the else branch we recursively call
get_scope(0), then the this identifier is once again bound to
the scope object, which escapes the ref check, and can be
returned by the recursive call. Additional code can disable
ref as described above and escape from the sandbox.

If we invoke get_window(1) then in the else branch we can
enable the attack described above by using the expression
get_scope(0) to return the current scope object, because once
again the this identifier of the recursive function is bound to
its own scope object, which escapes the ref check.

Demonstration

JavaScript for the FBJS s attacks described above appears
in Figure 2; screen shots are in Figure 1. While the at-
tacks illustrate web site vulnerabilities, their effectiveness is
browser-dependent because of deviations from the ECMA262-
3 specification. Because Safari follows the specification in
handling both the try-catch construct and recursive func-
tions, it is vulnerable to both attacks. Opera and Chrome
follow the try-catch specification but depart from it on the
recursive function by binding the window object instead of
the scope object to the this identifier. Hence they are vul-
nerable to attack B only. Firefox does the opposite, binding
window to this in the try-catch case, and following the specifi-
cation in the recursive function case. Hence, it is vulnerable
to attack A only. Internet Explorer 7, as tested, departs
from the specification binding window to this in both cases,
and is therefore not vulnerable to these specific attacks.

2.2 Safe Advertising with ADsafe

Many web pages display advertisements, which typically
are produced by untrusted third parties (online advertis-
ing agencies) unknown to the publisher of the hosting page.
Even an ad as simple as an image banner is often loaded
dynamically from a remote source by running a piece of
JavaScript provided by the advertiser or some (perhaps un-
trusted) intermediary. Hence, it is important to isolate web

Figure 1: Demonstrating the FBJSys vulnerabilities in Firefox.

m - m Sha oy lqcpa“
i know! i know!
its better for hin

Bedky Kristy Yun
Moore Cloyd Wang we want to go 4
let me know son]

Alpha f .

The page at http://www.facebook.com says:
Test A {Fire

/), Hacked!

TestB (Safard sy
Posted Itel
3 of 13 postsl
@] smi&'s phatos

pages from advertising content, which may potentially con-
sist of a malicious script. As mentioned earlier, an adver-
tisement may be placed inside an HTML iframe, which is
isolated according to the browser same-origin policy [5].

The ADsafe JavaScript subset proposed by Yahoo! is de-
signed to allow advertising code to be placed directly on the
host page, limiting interaction by a combination of static
analysis and syntactic restrictions. As explained in the doc-
umentation [1], “ADsafe defines a subset of JavaScript that
is powerful enough to allow guest code to perform valuable
interactions, while at the same time preventing malicious or
accidental damage or intrusion. The ADsafe subset can be
verified mechanically by tools like JSLintso that no human
inspection is necessary to review guest code for safety.”. The
high-level goal of ADsafe is to “block a script from access-
ing any global variables or from directly accessing the DOM
or any of its elements”. The advertising code has instead
access to an ADSAFE object, provided as a library, that
mediates access to the DOM and other page services.

Using our JavaScript operational semantics [11, 12], we
tried to prove that the 2007 version of ADsafe [2] indeed
isolated ADsafe-conformant JavaScript code from the global
object.

In setting up the proof, however, we found a problem with
the ADsafe design: the page hosting a ADsafe-conformant
advertisement may unwittingly define objects or add proper-
ties to accessible objects in a way that provides access to the
global object. For example, ADsafe-validated code cannot
use the identifier this because, for example, a function such as
function f(){return this} returns the global object. If the page
hosting an advertisement adds function f to Object.prototype,
then the ADsafe-compliant code var o={};o0.f() evaluates to
the global object (because o inherits from Object.prototype),
violating the intended confinement property.

In fact, we found that a very common JavaScript library,
prototype.js [14], provides ways for ADsafe-compliant code
to access the global object. For example, an eval method is
added to String.prototype, allowing arbitrary code computed
by string manipulation to be executed. We notified the au-
thors of ADsafe about this problem, which has since been ad-
dressed by imposing restrictions on any page hosting an ad
(see Section 6). However, these restrictions are not specified
with the same precision as other ADsafe guidelines, leading
us to believe that further investigation is warranted.



Figure 2: FBJS;s exploit code.

<a href="#" onclick="a()">Test A (Firefox and Safari)</a>
<script>var get-win = function get_scope(x){
if (x==0) {return this}
else {get_scope(0).ref=function(x){return x};
return get_-win(0)}};
function a(){get-win(1).alert(”Hacked!")} < /script>

<a href="#" onclick="b()">
Test B (Safari, Opera and Chrome)</a>
<script>function b(){
try {throw (function(){return this});}
catch (get_scope){get_scope().ref=function(x){return x};
this.alert(”Hacked!”) } } < /script>

3. FILTERING AND REWRITING

We have seen two basic language-based methods for pro-
tecting sites from untrusted JavaScript in Section 2. One
method, illustrated by ADsafe, involves checking whether
the untrusted content belongs to a subset of JavaScript that
does not access portions of the page. Alternatively, as il-
lustrated by Facebook rendering of FBJS, source JavaScript
may be rewritten to constrain or isolate its effects. A very
natural JavaScript rewriting method renames variables, so
that the untrusted content is effectively run in a “sepa-
rate namespace” from other portions of the page. Another
rewriting method, also used for FBJS, involves wrapping
some constructs, such as this, with another function that
restricts the possible values of this. While these methods
may seem largely straightforward, there are a number of
subtleties related to the expressiveness and complexity of
JavaScript. Further, since organizations that have devoted
significant time and effort to deploying language-based meth-
ods have overlooked certain problems, we believe that a sys-
tematic study based on traditional programming language
foundations will be useful for improving the security of fu-
ture sites.

One basic issue is that in JavaScript, every heap access by
the program involves a property p of an object o that may be
a scope object containing the local variables of some block
(including the global scope), or a non-scope object created
and manipulated directly by the program. The problem of
determining which object-property accesses o.p are made by
a program can be divided into determining which objects o
are accessible, and which properties p are named and used.

Property names. The first technical problem we con-
sider is to determine a finite set of properties that may be
accessed by given code. This is intractable for JavaScript
in general, because property names can be computed using
string operations, as in

var o = {prop:42}; var m = "pr”; var n = "op”; o[m + n]

which returns 42. However, the problem becomes manage-
able if we eliminate operations that may convert strings to
property names, such as eval and o[ ].

We must also consider implicit access to native properties
that may not be mentioned in the code at all. For example,
the code fragment

var o = { }; "an." + o;

causes an implicit type conversion of object o to a string, by
an implicit call to the toString property of object o, returning
the string ”an_[object_Object]”. (If o does not have the toString
property, then it is inherited from its prototype). Fortu-
nately, all property names accessed implicitly come from a
finite set of native property names [13].

DerINITION 1. Let Prop,,, =

toString, toNumber, valueOf, length, prototype,
constructor, message, arguments, Object, Array

be the set of property names that are involved in implicit
properties accesses.

Note that all these involve getting the value of the property
and not setting it.
Thus the first problem we address is:

PrROBLEM 1. Define a meaningful sublanguage Jieztuar and
prove that for any program P € Jiextual, if execution of P ac-
cesses property p of some object, then either p € Prop,,,, or
p appears textually in P.

Isolating the Global object. Untrusted JavaScript should
be restricted from accessing the global object, since un-
trusted code can access data belonging to trusted code, or
untrusted code associated with a different application, if it
has access to the global object. Thus the second problem
we address is:

PROBLEM 2. Find a meaningful sublanguage Jgiopar and
prove that no Jgoba code can access the global object.

As explained in Section 5, our proposed Jgopa is a subset
of Jiextual, because the constructs that convert strings to
properties can otherwise be used to reach the global object.

We provide two solutions to Problem 2, one based on a
syntactic subset defined by a subset of the JavaScript gram-
mar. For reasons explained in Section 2 in connection with
the vulnerability we discovered in FBJSys, this syntactic
subset cannot contain the keyword this. However, the reason
why this is problematic is that it sometimes refers to a scope
object or the global object. By semantically restricting the
value of this, as may be achieved by a correct wrapper ref as
in Section 2, we can allow this in a semantically restricted
and syntactically larger sublanguage Jgj,pq;-

Identifer renaming. The final technical problem we con-
sider is the ability to rename identifiers in JavaScript code.
Syntactic renaming is difficult for full JavaScript, because
property names (and therefore variable names, if an object
variable o may refer to a scope object) may be computed by
string operations. However, we prove that the subsets Jgiopal
and Jg,p, allow variable renaming.

PRrROBLEM 3. Identify meaningful sublanguages of JavaScript
that support semantics-preserving capture-avoiding renam-
ing of identifiers.

We can also use renaming and solutions to previous prob-
lems to keep untrusted code from accessing certain critical
properties:



Figure 3: Metavariables and Syntax for Values.

H = (l:0)” % heap

| ©:= #x % object addresses
X

)

i

= foo | bar | ... % identifiers
= "{"[(i:ov)7]"}" % objects
n=m | @x % indezes
ov = va["{"a""}"] % object values
| fun”("[x"]"){"P"}" % function
a ::= ReadOnly| DontEnum | DontDelete % attributes

pvi=m | n| b | null | &undefined % primitive values
m = "foo” | "bar" | ... % strings

n = —n | &NaN | &Infinity | 0 | 1 | ... % numbers

b ::= true | false % booleans

va i:= pv | | % pure values

r = In"x"m % references

In ::= 1| null % nullable addresses

v = va | r % values

w = "<"va’">" % exception

PROBLEM 4. Given a list of properties Prow and Pnorw ,
define a subset Jp, ., P, Such that any program in the
subset cannot write to any properties in Pnow and can nei-
ther read nor write to any properties in Pnorw .

4. JAVASCRIPT SEMANTICS

In this Section we briefly summarize our formalization of
the operational semantics of JavaScript [11, 12, 13] based
on the ECMA262-3 standard [10], and introduce some aux-
iliary notation and definitions. In [12], we proved properties
of JavaScript that address the internal consistency of the
semantics itself, and memory reachability properties needed
for garbage collection, but did not address the kind isolation
properties considered in the section 5. Further discussion of
the relation between this semantics and current browsers
implementations appears in [12].

4.1 Operational Semantics

Our operational semantics consists of a set of rules writ-
ten in a conventional meta-notation suitable for rigorous
but (currently) unautomated proofs. Given the space con-
straints, we describe only the main semantic functions and
some representative axioms and rules.

Syntactic Conventions. We abbreviate t1,..., tn with t~
and tl ... tn with t* (t+ in the nonempty case). In a gram-
mar, [t] means that t is optional, t|s means either t or s, and
in case of ambiguity we escape with apices, as in escaping |
by ”[". Internal values, which are used only in the semantics
and are not part of the user syntax, are prefixed with &,
as in &NaN. For conciseness, we use short sequences of let-
ters to denote metavariables of a specific type. For example,
m ranges over strings, pv over primitive values, etc.. These
conventions are summarized in Figure 3.

Heaps and Values. Heaps map locations to objects,
which are records of pure values va or functions fun(x,...){P},
indexed by strings m or internal identifiers @x (the symbol
@ distinguishes internal from user identifiers). Values are
standard. As a convention, we append w to a syntactic cat-
egory to denote that the corresponding term may belong to
that category or be an exception. For example, lw denotes

an address or an exception. We assume a standard set of
functions to manipulate heaps. alloc(H,0) = H1,l allocates o
in H returning a fresh address | for o in H1. H(l) = o re-
trieves o from | in H. o.i = va gets the value of property i of
o. o—i = fun([x7]){P} gets the function stored in property i
of o. o:i = {[a”]} gets the possibly empty set of attributes
of property i of o. H(l.i=ov)=H1 sets the property i of | in H
to the object value ov. del(H,l,i) = H1 deletes i from | in H.
i 1< o holds if o does not have property i. i < o holds if o
has property i.

Semantic Functions. We denote by Fxpr, Stmnt and
Prog the sets of all legal JavaScript expressions, statements
and programs. We define Terms;s = Fxpr U Stmnt U Prog
as the set of all JavaScript terms. For each class of term
we have a corresponding small-step semantic relation de-

noted respectively by ——, - L, . Each semantic func-
tion transforms a heap H, a pointer in the heap to the cur-
rent scope [, and the current term being evaluated ¢ into a
new heap-scope-term triple. We call such a triple (H,,t)
a state, denoted by S. Conversely, we use the notation
heap(S), scope(S) and term(S) to denote each component
of the state. Predicate Wf(S) denotes that state S is well-
formed (see [13] for a definition of well-formedness). A state
S is initial if Wf(S) and term(S) is a user term.

DEFINITION 2. (Reduction Trace) The reduction trace of
a state S is the (possibly infinite) mazimal sequence of states
S1y...,Sn,... such that S — S1 — ...

— Sy — ...

By the progress property shown in [13], we know that for
every well-formed state S there is only one possible trace.
Given a trace 7, we denote by First(r) its first state. If
the trace is finite, we denote by Final(7) its final state.
Again by the progress property, the evaluation of expressions
returns either a value or an exception, and the evaluation
of statements and programs terminates with a completion
(explained below).

The semantics of programs depends on the semantics of
statements which in turn depends on the semantics of ex-
pressions which in turn, for example by evaluating a func-
tion, depends circularly on the semantics of programs. These
dependencies are made explicit by contextual rules, that
specify how a transition derived for a term can be used to
derive a transition for a bigger term including the former as
a sub-term. In general, the premises of each semantic rule
are predicates that must hold in order for the rule to be ap-
plied, usually built of very simple mathematical conditions
such as t < S or t!=t" or f(a) = b for set membership,
inequality and function application.

For example, the axiom H,l,(v) — H,l,v describes that
brackets can be removed when they surround a value (as
opposed to an expression, where brackets are still meaning-
ful).

Contextual rules propagate such atomic transitions. For
example, if program H,|,P evaluates to H1,l1,P1 then also
H,l,@FunExe(I’,P) (an internal expression used to evaluate the
body of a function) reduces in one step to H1,I1,@FunExe(I’,P1).
The rule below show exactly that: @FunExe(l,—) is one of the
contexts eCp for evaluating programs.

HLP 25 H1,11,P1
H,l,eCp[P] —= H1,I1,eCp[P1]

The full formal semantics [11] contains several other con-



textual rules to account for other mutual dependencies and
for all the implicit type conversions. This substantial use of
contextual rules greatly simplifies the semantics and will be
very useful in Section 5 to prove its formal properties.

Scope and Prototype Lookup. The scope and proto-
type chains are two distinctive features of JavaScript. The
stack is represented by a chain of objects whose properties
represent the binding of local variables in the scope. Since
we are not concerned with performance, our semantics needs
to know only a pointer to the head of the chain (the cur-
rent scope object). Each scope object stores a pointer to its
enclosing scope object in an internal ®Scope property. This
helps in dealing with constructs that modify the scope chain,
such as function calls and the with statement.

JavaScript follows a prototype-based approach to inheri-
tance. Each object stores in an internal property ©Prototype
a pointer to its prototype object, and inherits its properties.
At the root of the prototype tree there is @Object.prototype,
that has a null prototype. The rules below illustrate proto-
type chain lookup.

Prototype(H,null,m)=null
m!< H(I) H(l).@Prototype=In
Prototype(H,l,m)=Prototype(H,In,m)

m < H(I)
Prototype(H,l,m)=I

Function Scope(H,l,m) returns the address of the scope ob-
ject in H that first defines property m, starting from the cur-
rent scope I. It is used to look up identifiers in the semantics
of expressions. Its definition is similar to the one for proto-
type, except that the condition (H,l.@HasProperty(m)) (which
navigates the prototype chain to check if | has property m)
is used instead of the direct check m < H(l).

Types. JavaScript values are dynamically typed. Types
T€ {Undefined,Null,Boolean,String,Number,Object,Reference} are
used to determine conditions under which certain semantic
rules can be evaluated. The semantics defines straightfor-
ward predicates and functions which perform useful checks
on the type of values.

Expressions. We distinguish two classes of expressions:
internal expressions, which correspond to specification arti-
facts needed to model the intended behavior of user expres-
sions, and user expressions, which are part of the user syntax
of JavaScript. Internal expressions include addresses, refer-
ences, exceptions and functions such as @GetValue,@PutValue
used to get or set object properties, and @Call,@Construct
used to call functions or to construct new objects using con-
structor functions.

Statements. Similarly to the case for expressions, the
semantics of statements contains a certain number of in-
ternal statements, used to represent unobservable execution
steps, and user statements that are part of the user syntax
of JavaScript. A completion is the final result of evaluating
a statement.

co::="("ct,vae,xe”)"” vae::=&empty|va xe::=&empty|x
ct ::= Normal | Break | Continue | Return | Throw

The completion type indicates whether the execution flow
should continue normally, or be disrupted. The value of a
completion is relevant when the completion type is Return
(denoting the value to be returned), Throw (denoting the
exception thrown), or Normal (propagating the value to be
return during the execution of a function body). The identi-
fier of a completion is relevant when the completion type is

either Break or Continue, denoting the program point where
the execution flow should be diverted to.

Programs. Programs are sequences of statements and
function declarations.

Pu=fd[P]|s[P]  fd:= function x "("[x"]"){"[P]"}"

As usual, the execution of statements is taken care of by
a contextual rule. If a statement evaluates to a break or
continue outside of a control construct, an SyntaxError ex-
ception is thrown (rule (i)). The run-time semantics of a
function declaration instead is equivalent to a no-op (rule
(ii)). Function (and variable) declarations should in fact be
parsed once and for all, before starting to execute the pro-
gram text. In the case of the main body of a JavaScript
program, the parsing is triggered by rule (iii) which adds
to the initial heap NativeEnv first the variable and then the
function declarations (functions VD,FD).

ct < {Break,Continue}
o = new_SyntaxError() HL1,l1 = alloc(H,0)

H,l,(ct,vae,xe) [P] £, H1,I,(Throw,|1,&empty)

H, I function x ([x"]){[P]} [P1] —=

H,I,(Normal,&empty,&empty) [P1] (ii)

VD(NativeEnv,#GIobaI,{DontDeIete},P) = H1
FD(H1,#Global,{DontDelete},P) = H2

iii

P -2 H2,4:Global,P (i)
Native Objects. NativeEnv is the initial heap of core
JavaScript. It contains native objects for representing prede-
fined functions, constructors and prototypes, and the global
object ©@Global that constitutes the initial scope, and is al-
ways the root of the scope chain. For example, the global
object defines properties to store special values such as &NaN
and &undefined, functions such as eval, toString and construc-
tors to build generic objects, functions, numbers, booleans
and arrays. Since it is the root of the scope chain, its @Scope
property points to null. Its @this property points to itself.
None of the non-internal properties are read-only or enu-
merable, and most of them can be deleted.

Eval. The eval function takes a string and tries to parse
it as a legal program text. If it fails, it throws a SyntaxError
exception (rule omitted). If it succeeds, it parses the code
for variable and function declarations (respectively VD,FD)
and spawns the internal statement ©cEval (rule omitted).

Object. The ©@Object constructor is used for creating new
user objects and internally by constructs such as object liter-
als. Its prototype @ObjectProt becomes the prototype of any
object constructed in this way, so its properties are inherited
by most JavaScript objects.

The object @ObjectProt is the root of the scope proto-
type chain and, its internal prototype is null. Apart from
"constructor”, which stores a pointer to @Object, the other
public properties are native meta-functions such as toString
or valueOf (which, like user functions, always receive a value
for @this as the first parameter).

S. FORMAL ANALYSIS

In this Section, we present a formal analysis of the prob-
lems discussed in Section 3. Using only syntactic restrictions
we propose a subset Jiezwar Which solves Problem 1 — the



names of all properties not in Prop,,,, accessed during the
execution of a program must appear textually in the pro-
gram — and a smaller subset Jy,pa Which solves Problems 2
and 3 — no term returns the global object, and the mean-
ing of a well-formed term does not change after capture-
avoiding renaming of identifiers. Using a semantic restric-
tion amounting to run-time checking, we also present a sub-
set J;lobal, less restrictive than Jyi,pai, which enjoys the same
properties.

Definitions. We start adding some more notations and
definitions to the operational semantics described in Sec-
tion 4. A meta-call (f,{args)) is a pair where f is a func-
tion or predicate appearing in the premise of a reduction
rule, and (args) is the list of its actual arguments as in-
stantiated by a reduction step according to such a rule. For
every state S, we denote by Fcall1(S) the set of the meta-
calls triggered directly by a one step transition from state
S. Since each meta-call may in turn trigger other meta-
calls during its evaluation, we denote by Fcall(S) the set of
all the meta-calls involved in a reduction step. We denote
by Fu the set of functions that can read or write to the
heap: Fu = {Dot(H, I, mp), Get(H, I, mp), Update(H, I,mp),
Scope(H, I, mp), Prototype(H, I, mp)}, where mp denotes the
name of the property being accessed (using a prefix nota-
tion for the functions defined in Section 4).

DEFINITION 3. (Single step property access) For any state
S, we define Pacc(S) as the set of all property names ac-
cessed during a single step state transition. Formally,

Pacc(S) ={mp | 3f € Fu IH,1: (f,(H,l,mp)) € Feall(S)}

For any trace Tr(S), we denote by Pacc(Tr(S)) the set
Pace(S) U Usgiery(s) Pacc(Si).

A subset J of JavaScript is a subset of the terms Terms;,
that are derivable from the internal and user grammars.
(Recall that the internal grammar provides symbols only
used to define the operational semantics, not for writing
user programs.) Any subset J can be partitioned in the set
of all user and internal terms of the subset: J = J“¢"w J"t,

For a valid user-defined (non-native) program code P and
a heap H, we say that P € H iff P is contained in some
property of some object on the heap.

DEFINITION 4. (Wellformedness) For any subset J, we
define a wellformedness predicate on states Wf ;(S) by

Wf/(Halat) = WfHeap(H) A Wfscope(l) N te J
ANVYP e H P e Jwe

DEFINITION 5. A JavaScript subset J enjoys the preser-
vation property iff VS : Wf ;(S)AS — S = Wf ,(5").

In [12, 13], we showed progress and preservation for the
whole of JavaScript. Since any subset corresponds to a sub-
set of JavaScript terms, progress holds also for any subset J.
However, preservation may not hold for a subset, since there
could be a term in the subset that reduces to one outside of
the subset. We will refer to a subset enjoying preservation as
a closed subset. Closed subsets are semantically meaningful
sublanguages.

5.1 Isolating property names: J;.....

The first subset we define is Jiezual. It guarantees that all
the properties (not in Prop,,,) accessed during execution

appear textually in the code. As illustrated in Section 3, we
need to avoid certain constructs that make it possible to ac-
cess properties whose names are not present textually in the
term. As a technical mechanism, we separate out property
names, strings and identifiers in the operational semantics
and denote them respectively by mp, m and x. We make
all the implicit conversions between them explicit by adding
meta conversion functions: Id2Prop, Str2Prop, Prop2Str. The
semantics already contained explicit conversion of strings to
programs: ParseProg, ParseFunction, ParseParams.

Defining Jieztuar. Our first concern is to exclude all terms
whose reductions involves a call to either one of ParseParams,
ParseFunction, ParseProg or Str2Prop. Then, we need to ex-
clude all terms which reduce in one step to a term outside
the subset. For example the constructor property of a func-
tion points to the Function object, which calls ParseFunction
when it is invoked as a constructor. Hence, constructor must
be excluded too. After analyzing the semantics in detail we
have reached a definition for Jicztuai-

DEFINITION 6. The subset Jiczwar 15 defined as Terms;s
minus: all terms containing the identifiers eval, Function,
hasOwnProperty, propertylsEnumerable and constructor; the ezx-
pressions efe], e in e; the statement for (e in e) s; all internal
terms reachable during the reduction of the above terms.

Note that constructor € Prop,,,,, so the constructor property
may be accessed implicitly in some cases. However, we prove
(Theorem 1) that all the implicit accesses are safe and do
not return the Function object.

Formal Analysis. We begin by defining formally the prop-
erty Piestuar Which implies that the names of all properties
not in Prop,,,, accessed during the execution of a program
must appear textually in the program. Let IN(S) = {z|z €
term(S)} and PN(S) = {mp|mp € term(S)}. We define
HN(S) as the sets of identifiers present in all program code
stored on the heap (example, code from other function decla-
rations). Therefore, HN(S) = {z| « € P andP € heap(S)}.
Moreover, N(S) = IN(S) U HN(S).

DEFINITION 7. (Piestuar) For any trace T, the predicate
Piegtual(T) holds iff:

Pace(r) C Id2Prop(IN (First(r))) U Prop, .-

We now show that Piesiua holds for all traces that start
from a well-formed state. Consider a reduction step from S
to S’. First, we show that all property names accessed dur-
ing the reduction step are either present in S or in Prop,,,.

Then, we show that any property name that appears in S’,
is present either in S or in Prop,,,,.

THEOREM 1. Jieztual %5 closed under reduction.
LEMMA 1. For all well-formed states S in Jiestual
Pacc(S) C PN(term(S)) U Prop,,,;.

LEMMA 2. For all well-formed states S1,52 in Jiestual, if
Sl — S2 then IN(SQ) g IN(Sl), HN(SQ) g N(S1),

PN(S2) € PN(S1) U Id2Prop(IN(S1)) U Prop.,, ...

We assume that the heap for the initial state S;n:+ contains
only the native objects. Therefore HN (Sinit) = 0.



THEOREM 2. For all well-formed initial states S in the
subset Jiegtuar, Pacc(Tr(S)) C Id2Prop(IN(S)) U Prop,,,;-

Theorem 2, which follows from Lemma 1 and Lemma 2
above essentially says that the reduction traces of all well-
formed initial states have the desired property Piestual. As
a result, Jieztuar is a valid solution for Problem 1.

5.2 Isolating the global object: J ...

We now define the subset Jgopar which guarantees that
no term can return the global object. We assume that the
heap of the initial state defines only the global object and
the standard native objects. According to the semantics,
the global object is only accessible via the internal proper-
ties @scope and @this. These internal properties can only be
accessed as a side effect of the execution of other instruc-
tions. In particular, the @scope property is accessed during
identifier resolution, in order to search along the scope chain.
However, the contents of the @scope property are never re-
turned as the final result of a reduction step. Hence, the
@this property is the only way for a term to return the global
object. The simplest way is via the this identifier. Its seman-
tic rule is:

Scope(H,l,@this)=I1 H,I1.0Get(@this)=va
H,l,this — H,l,va

When the scope | is the global object, so is va.

Besides using this, the global object can be returned by ex-
tracting and calling in the global scope the functions concat,
sort or reverse of Array.prototype, and valueOf of Object.prototype.
For example, var f=Object.prototype.valueOf;f() evaluates to
the global object. Since it is difficult to statically deter-
mine the type of the base object whenever a property is ac-
cessed, we conservatively forbid accessing these properties
altogether. In order to do so, we define Jypa as a subset
of Jtestual, SO that we can force property names to appear
textually in the code.

Defining Jgobqi.  After analyzing the semantics in detail,
we have settled on the following definition for Jyiopar.

DEFINITION 8. The subset Jgiopar s defined as Jiextuar, mi-
nus: all terms containing the expression this; all terms con-
taining the identifiers valueOf, sort, concat and reverse; all
internal terms reachable during the evaluation of the above
terms.

Note that since valueOf € Prop,,,,, it may be accessed im-
plicitly for some objects. However, we prove (Theorem 3)
that all the implicit accesses are safe and do not return the
global object.

Formal Analysis. Let Value be a function that given a
state returns a non-null value only if the state corresponds
to a final value or an exception, that is Value(S) = vae if
term(S) = vae or term(S) = (ct, vae, ze), and Value(S) =
null otherwise. We can formally define a property Pjgiopal
which implies isolation of the global object.

DEFINITION 9. (Pgobar) For any trace T, Pgiobai(T) holds
iff Value(Final(7)) # lgiobal -

We now show that Pgiopa holds for all reduction traces start-
ing from well-formed states. First, we define a goodness
property of heaps and show that whenever good(H) holds
(where H denotes the current heap), the single step reduc-
tion of a term never returns the global object. Then, we

show that for every single step reduction, if the initial heap
is good, then the final heap is good too.

DEFINITION 10. (Heap goodness) We say that a heap is
good, denoted by Good(H), iff H is such that the global ob-
ject is only reachable via the @scope and @this properties.

Good(H) < Vi,p: H1).p = lgiobar = p = Qscope V
p = Q@Qthis

Let Hinit be the initial heap. Since the global object is only
reachable via the @scope or @this properties, H;nq: is good.

THEOREM 3. Jyobal 15 closed under reduction.

LEMMA 3. For all well-formed states S (in the subset Jgiopal),

Good(heap(S)) A S — S = Value(S/) # lgiobal
LEMMA 4. For all wellformed states S and S’,
Good(heap(S)) A S — 8" = Good(heap(S"))

THEOREM 4. For all wellformed initial states S in the
subset Jgiopar, Value(Tr(S)) # lgiobai-

Theorem 4 says that the reduction traces of all well-formed
initial states enjoy Pgiopai, therefore Jyiopa is a valid solution
for Problem 2.

5.3 A semantic subset: J;,,,,

In the subset Jyopa, we disallow the this identifier be-
cause its reduction could potentially return the global ob-
ject. However, there are several cases when the @this prop-
erty of the current scope object does not contain the global
object and therefore can be used safely. For example in

var o = {val:10, getval:function(){return this.val}}; o.f()

the this identifier is bound to object o during the execu-
tion of o.f(). Disallowing the identifier this completely may
be deemed too restrictive for certain purposes. For exam-
ple, many existing JavaScript libraries would need extensive
rewriting. Therefore, we investigate a subset containing the
identifier this, with guarantees that this cannot be used to
access the global object. For concreteness, we impose a re-
striction on the semantics of this so that it returns a harmless
value (say null) if the @this property of the current activa-
tion object contains the global object, and its proper value
otherwise.! Thus, we consider an alternative operational
semantics for the this expression:

Scope(H,l,@this)=I1 H,I1.0Get(@this)=va
IF va = |_global THEN In = null ELSE In = va
H,l,this — H,l,In

In the modified semantics, we can define the subset Jg,p4
as Jgiobar plus all terms containing this. The theorems that
we stated for Jgoba hold for J;lobal in the modified semantics.

THEOREM 5. Jj,p, 5 closed under reduction.

THEOREM 6. For all well-formed initial states S in the
subset Jyopa1, Value(Tr(S)) # lgiobat -

! In practice, the semantic restriction can be implemented
(as done by FBJS) by rewriting user code so that every
occurrence of this becomes ref(this), where ref behaves as de-
scribed above. As shown by the attacks reported in Sec-
tion 2 though one need also to make sure that the function
ref cannot be redefined by user code.



5.4 Closure under renaming

In Section 3 we discussed how renaming all the identifiers
of the code is used to effectively execute an application in a
separate namespace. We now show that the subsets Jyiopar
and Jj,p, are closed under capture-avoiding renaming of
identifiers. A corollary of Theorem 2 is that this renaming
has a semantically isolating effect.

DEFINITION 11. Given a set of identifiers S, a partial
function a from identifiers to identifiers is a capture avoid-
ing (CA) renaming compatible with S iff, for all z in the
domain of a, a(x) € S.

We extend renaming to terms, heaps and states and traces
in the obvious way. For any term ¢, a(t) denotes a new
term where all the identifiers  occurring in ¢ have been re-
named to a(z). Note that while renaming terms we only
rename identifiers and not property names. Therefore o.p
gets renamed to al2345_0.p and not al2345_0.a12345_p. For
any well-formed heap H, «(H) denotes a heap where the
property names for all the activation objects (any object
with the internal property IsActivation) and the identifiers
of each P € H have been renamed according by «. Fi-
nally, a(H,l,t) = (a(H),l,a(t)) and a(S1,...,Sn,...) =
a(S1),...,a(Sn),.... In general, we will require a CA re-
naming to be compatible with all the identifiers of the state
to which is applied, plus the identifiers in Prop,,, so to
effectively avoid accidental capture of names.

We prove that the intended meaning of a program does
not change under renaming by showing that renaming is
preserved under reduction.

DEFINITION 12. Given two states S1,S2 and an arbitrary
function a, we define the relation ~o by S1 ~a S2 iff So =
Oé(S1).

DEFINITION 13. (Pyen) The renaming property Pren states
that for all well-formed initial states S, if o is a CA renam-
ing compatible with N(S) U Prop,,., then a(Tr(S)) equals
Tr(a(S)).

The main result of this section is that ~ is preserved un-
der reduction for both subsets Jyobar and Jgop,. A direct
corollary of this result is that these subsets enjoy the renam-
ing property Pren, and are therefore solutions for Problem 3
described in Section 3.

THEOREM 7. For all well-formed states S1 and Sz both in

either Jgiobal 0T Jyiopar; and all CA renamings o compatible
with N (S1) U N(S2) U Prop,, .,

S1 ~a S2 A Sl—>51:> Sz—>S§ A SiNaSé.

5.5 Corollary : restricting access

We now use the subsets that we have defined so far to find
a solution to the final problem of restricting the untrusted
code to only have readonly access to set of properties (Pnow )
and no access at all to another set Pnorw. The solution
JPow Prorw that we propose currently works only if we have
the additional condition that Prop,,,, N Prnorw = 0. Also it
is more conservative and disallows any both read and write
access to all properties in the set Pnow U Prorw, except
those in Prop,,,,, which in any case have only implicit read
access. We formally define the subset Jp, , P,y as the
subset Jgiopa minus: all terms containing an identifier from
the set Prow U Progw. From theorem 2 and lemma 3, we
obtain the following corollaries.

COROLLARY 1. Jp, . P.oaw 5 closed under reduction.

COROLLARY 2. For all well-formed initial states S in the
subset Jp, u Propw» Pacc(Tr(S)) N (Prorw U Prorw) —
Propnat) = Q)

In the next section, we use the subset Jp, P, pw to solve
a simplified version of the ADsafe problem.

6. APPLICATIONS: FBJS AND ADsafe

In this Section we discuss how FBJS and ADsafe have
changed to address the problems we explained in Section 2,
and we compare the currently-adopted solutions with the
JavaScript subsets proposed in Section 5.

6.1 Fixing FBJS

Within hours of our disclosure to them, the Facebook
team addressed the problems discussed in Section 2 by sepa-
rating the namespace of the run-time checks ref and idx from
the namespace available to FBJS applications. They added
the functions implementing the run-time checks as proper-
ties of a private object $FBJS, and statically prevent user
code from including the $ character in an identifier. This
thwarts the attacks reported in Figure 2 because an expres-
sion like get_scope().$FBJS.ref is rewritten into the ill-formed
code al2345_get_scope()..ref.

A similar solution justified by our analysis is to use the
subset Jjpq, and perform a simple syntactic check that
$FBJS does not syntactically appear in user code. By The-
orem 2, $FBJS cannot be tampered with. By Theorem 6,
the global object cannot be accessed, and by Theorem 7
the FBJS renaming discipline preserves the meaning of pro-
grams. The alternative semantics of the this identifier is
faithfully implemented by the replacing each occurrence of
this in the code by the expression (this===window?null:this).
Hence, our theorems justify the approach behind the secu-
rity mechanism of FBJS, although currently FBJS uses more
extensive rewriting and fewer syntactic restrictions.

We also note that Jgona provides a syntactically checkable
alternative that could be useful in some Web applications.

6.2 Enforcing ADsafe

Shortly after we notified Yahoo! of the problems described
in Section 2, the ADsafe [1] documentation was amended
with an additional constraint that “None of the prototypes
of the built-in types may be augmented with methods that
can breach ADsafe’s containment”. This is only a partial
solution in that requires the editor of the hosting page to
make sure that a fairly complicated requirement is satisfied,
without providing specific guidance on how to do so.

Our analysis supports a slightly different approach, in
which we assume some aspects of the hosting page are known,
and filter ads that might access forbidden properties of the
page. More specifically, suppose that by statically analyz-
ing the hosting page libraries we can extract sets of property
names Prow and Prorw, such that all "malicious damage”
only arises from writing to a property in the set Pnow or
either reading or writing to a property in Pporw. For exam-
ple the set Prow may include the native properties toString,
toSource and those in Prop,,,,. The set Pnorw could include
security-critical properties such as eval, window, cookie, and
other properties and methods that can be invoked to reach



these. We have not developed an analysis method for exam-
ining libraries such as prototype.js, but it may be possible to
do so using the call-graph of the native functions.

Given these sets we can define the subset Jp,, 7, zw fOr
the untrusted code. Soundness of this approach essentially
follows from Corollaries 1 and 2. The level of syntactic
restriction for the subset Jp, y, P,,.n Would depend on how
large or small the sets Pnow and Pporw are. Thus, if the
hosting page contains many dangerous functions, then the
untrusted guest code that it could safely allow would be
severely restricted.

It appears natural to treat the ADsafe problem more con-
servatively than FBJS, in the following sense. In FBJS, the
browser is first augmented with the defenses provided by
Facebook libraries and then exposed to sanitized untrusted
code, whereas in ADsafe, the hosting page is provided by
an arbitrary publisher who may be subjected to cross-site
scripting or other web attacks that might contaminate the
ADsafe libraries.

7. CONCLUSIONS

We have studied methods for filtering and rewriting un-
trusted code, using Yahoo! ADsafe and Facebook FBJS as
illustrative and motivating examples. Using sublanguages
Jtestuat a0 Jgiopar, we show how to filter untrusted JavaScript
to prevent access to given properties or the global object.
Further, provable properties of sublanguage J;;,;,; show that
access to the global object can be achieved by the kind of
semantic restrictions imposed by wrapper functions (such as
$FBJS.ref. We also prove that these subsets support renam-
ing, which is not semantic-preserving for JavaScript code
outside these sublanguages. A corollary is that renaming of
global properties of Jiesuai code isolates Facebook applica-
tions from each other, effectively providing separate names-
paces. We also prove that renaming can be used to prevent
interaction between untrusted code and blacklisted objects
and properties, such as might be defined by a page hosting
untrusted content.

An alternative to code rewriting that we have not exam-
ined in detail is to simply delete or redefine potentially harm-
ful properties, such as property valueOf of Object.prototype
and properties sort, reverse and concat of Array.prototype. This
could allow additional code to be executed harmlessly. How-
ever, the effectiveness of this method requires further inves-
tigation because different browsers treat deletion of native
objects differently. For example, deleting properties works
in Safari, because deletion is permanent, but does not work
in Firefox, for example, because executing delete Array; re-
instates both Array, Array.prototype and its original property
sort, and similarly for the other cases.

Proving formal properties for a practical programming
language as extensive as JavaScript, without the help of an
automatic tool, has been possible, but very taxing. In future
work, we plan to improve the usability of our framework by
extending the coverage of our semantics to browser-specific
cases and developing a tool to partially-automate the proofs.
Indeed, many other scenarios involving the cooperation of
trusted and untrusted JavaScript code lend themselves nat-
urally to be studied following our approach.

Acknowledgments. We thank Douglas Crockford of Ya-
hoo! and Ryan McGeehan of Facebook for their helpful
comments and enthusiasm. Sergio Maffeis is supported by

EPSRC grant EP/E044956 /1. Mitchell and Taly acknowl-
edge the support of the National Science Foundation.

8. REFERENCES

[1] ADsafe: Making JavaScript safe for advertising.
http://wuw.adsafe.org/, 2008.

[2] ADsafe: Making JavaScript safe for advertising (2007
version). http://web.archive.org/web/
20071225101246/http://wuw.adsafe.org/, 2007.

[3] Google-Caja: A source-to-source translator for
securing JavaScript-based web.
http://code.google.com/p/google-caja/.

[4] C. Anderson, P. Giannini, and S. Drossopoulou.
Towards type inference for JavaScript. In Proc. of
ECOOP’05, page 429452, 2005.

[5] A. Barth, C. Jackson, and J.C. Mitchell. Securing
browser frame communication. In 17th USENIX
Security Symposium, 2008.

[6] B. Eich. JavaScript at ten years.
www.mozilla.org/js/language/ICFP-Keynote.ppt.

[7] FaceBook. Web Site. http://www.facebook.com/.

[8] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer.
Talking to strangers without taking their candy:
isolating proxied content. In SocialNets ’08, pages
25-30, 2008. ACM.

[9] D. Flanagan. JavaScript: The Definitive Guide.
O’Reilly, 2006.

[10] ECMA International. ECMAScript language
specification. Stardard ECMA-262, 3rd Edition.
http://wuw.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf, 1999.

[11] S. Maffeis, J. Mitchell, and A. Taly. Complete ECMA
262-3 operational semantics.
http://jssec.net/semantics/.

[12] S. Maffeis, J. Mitchell, and A. Taly. An operational
semantics for JavaScript. In Proc. of APLAS’08.

[13] S. Maffeis, J.C. Mitchell, and A. Taly. An operational
semantics for JavaScript. Dep. of Computing, Imperial
College London, Technical Report DTR08-13, 2008.

[14] Prototype Core Team. Prototype JavaScript
framework: Easy Ajax and DOM manipulation for
dynamic web applications.
http://www.prototypejs.org.

[15] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-driven
filtering of Dynamic HTML. ACM Transactions on
the Web, 1(3), 2007.

[16] The FaceBook Team. FBJS.

http://wiki.developers.facebook.com/index.php/FBJS.

[17] The FaceBook Team. FBML.

http://wiki.developers.facebook.com/index.php/FBML.

[18] P. Thiemann. Towards a type system for analyzing
javascript programs. In Proc. of ESOP’05, volume
3444 of LNCS, page 408422, 2005.

[19] K. Vikram and M. Steiner. Mashup component
isolation via server-side analysis and instrumentation.
In Web 2.0 Security € Privacy (W2SP), 2008.

[20] D. Yu, A. Chander, N. Islam, and I. Serikov.
JavaScript instrumentation for browser security. In
Proc. of POPL’07, pages 237-249, 2007.



