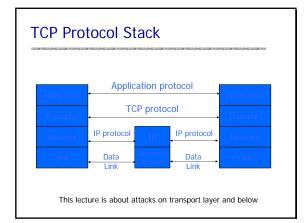
Network Denial of Service

John Mitchell

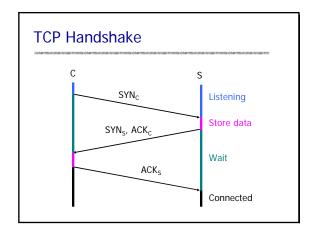
Course logistics

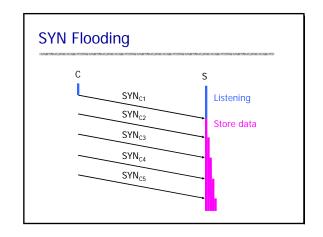
- ◆Four more lectures
 - · Today: Network denial of service
 - Tues: Firewalls, intrusion detection, traffic shapers
 - Thurs: Network security protocols
 - May 31: Paul Kocher, Guest speaker
- ◆Project: due June 2 ♦Homework: due June 2
- ♦Final exam: June 6

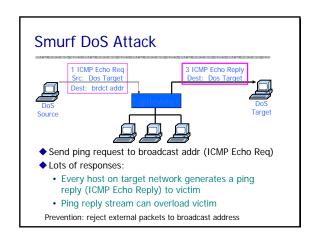

Outline

- ◆ Point-to-point network denial of service
 - Smurf, TCP syn flooding, TCP reset
 - Congestion control attack
- Distributed denial of service attacks
 - Coordinated attacks
 - Trin00, TFN, Stacheldraht, TFN2K
 - · Bot networks
- Mitigation techniques
 - Firewall
 - IP traceback - Edge Sampling techniques
 - Overlay networks

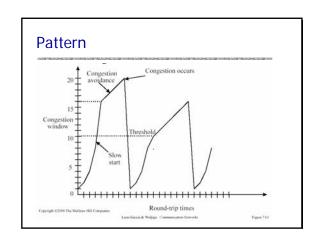
 - MigrationAuthentication


Sources


- ◆ Analysis of a Denial of Service Attack on TCP
 - Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford, Aurobindo Sundaram, Diego Zamboni, Security & Privacy 1997
- Low-Rate TCP-Targeted Denial of Service Attacks (The Shrew vs. the Mice and Elephants)
- Aleksandar Kuzmanovic and Edward W. Knightly, SIGCOM 2003
- ◆ Practical Network Support for IP Traceback
 - Stefan Savage, David Wetherall, Anna Karlin and Tom Anderson. SIGCOMM 2000
- ◆ Advanced and Authenticated Marking Schemes for IP Traceback Dawn X. Song, Adrian Perrig. Proceedings IEEE Infocomm 2001
- ◆ MOVE: An End-to-End Solution To Network Denial of Service
- A. Stavrou, A.D. Keromytis, J. Nieh, V.Misra, and D. Rubenstein


Point-to-point attacks

- ◆Attacker chooses victim
- ◆Sends network packets to isolate victim
- Goal of attacker
 - Small number of packets ⇒ big effect



TCP Reset vulnerability Attacker sends RST packet to reset connection Need to guess seq. # for an existing connection Naively, success prob. is 1/2³² for 32-bit seq. number Most systems allow for a large window of acceptable seq. #'s ⇒ much higher success probability Attack is most effective against long lived connections, e.g. BGP Block with stateful packet filtering?

TCP Congestion Control ◆Sender estimates available bandwidth • Starts slow and increases based on ACKS • Reduces rate if congestion is observed ◆Two time scales • RTT is 10-100 ms ⇒ TCP performs AIMD - Additive Increase Multiplicative Decrease - Rises slowly, drops quickly (by half) • Severe congestion ⇒ Retransmission Timeout (RTO) - Send one packet and wait for period RTO - If further loss, RTO ← 2*RTO - If packet successfully received, TCP enters slow start - Minimum value for RTO is 1 sec

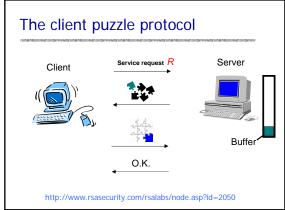
Congestion control attack • Generate TCP flow to force target to repeatedly enter retransmission timeout state Congestion Congestion Congestion RTO 2*RTO • Difficult to detect because packet rate is low • Degrade throughput significantly • Existing solutions only mitigate the attack

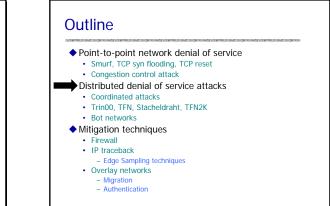
Defense against *connection depletion* attacks

Using puzzles to prevent DOS

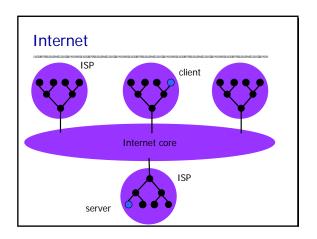
◆Basic idea

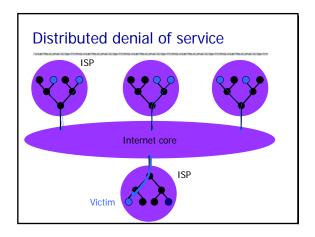
• Sender must solve a puzzle before sending

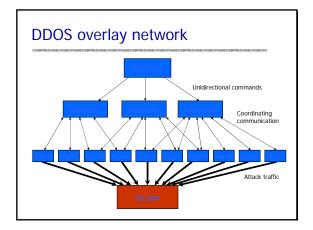

• Takes some effort to solve, but easy to confirm solution (e.g., hash collision)


◆Example use (RSA client puzzle protocol)

• Normally, server accepts any connection request


• If attack suspected, server responds with puzzle


• Allows connection only for clients that solve puzzle within some regular TCP timeout period


Distributed denial of service Attacker sets up network of machines Break in by buffer overflow, etc. Attack machines bombard victim Attacker can be off line when attack occurs

Feb 2000 Distributed DOS Attack

- ◆ Observable effect
 - · Most of Yahoo unreachable for three hours
 - Experts did not understand why
 - "An engineer at another company ... told Wired News the outage was due to misconfigured equipment"
- What happened
 - Coordinated effort from many sites
 - · Attacking sites were compromised
 - According to Dittrich's DDOS analysis, trinoo and tfn daemons found on of Solaris 2.x systems
 - Systems compromised by exploitation of buffer overrun
 - in the RPC services statd, cmsd and ttdbserverd
 - · Compromised machines used to mount attack

Trin00

- ◆Client to Handler to Agent to Victim
 - · Multi-master support
 - · Attacks through UDP flood
- ◆Restarts agents periodically
- ◆Warns of additional connects
- ◆Passwords protect handlers and agents of Trin00 network, though sent in clear text

Attack using Trin00

- ◆In August 1999, network of > 2,200 systems took University of Minessota offline for 3 days
 - Tools found cached at Canadian firm
 - Steps:
 - scan for known vulnerabilities, then attack
 - once host compromised, script the installation of the DDoS master agents
- ◆According to the incident report
 - Took about 3 seconds to get root access
 - In 4 hours, set up > 2,200 agents

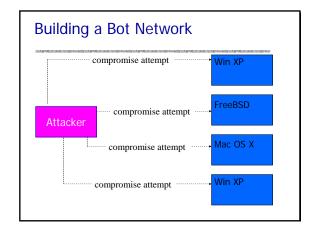
Tribal Flood Network (TFN)

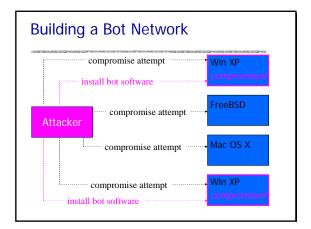
- ◆Client to Daemon to Victim
 - TCP, SYN and UDP floods
 - Fixed payload size
- ◆Client-Daemon communication only in ICMP
 - · No passwords for client
 - Does not authenticate incoming ICMP

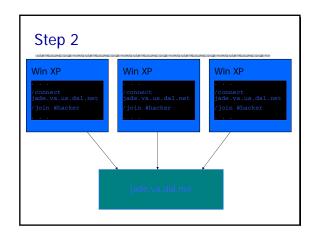
Stacheldraht

- ◆Client to Handler to Agent to Victim
 - Like Trin00
- ◆Combines Trin00 and TFN features
 - · Authenticates communication
 - · Communication encrypted by symmetric key
 - · Able to upgrade agents on demand

Traffic Characteristics


- ◆Trinoo
 - Port 1524 tcp Port 27665 tcp
 - Port 27444 udp Port 31335 udp
- ◆TFN
 - ICMP ECHO and ICMP ECHO REPLY packets.
- ◆ Stacheldraht


 - ICMP ECHO and ICMP ECHO REPLY
- ◆TFN2K
 - · Ports supplied at run time or chosen randomly
 - Combination of UDP, ICMP and TCP packets.


BOT Networks

- What is a bot network?
 - Group of compromised systems with software installed on them to allow simple remote control
 - Software on zombies upgradeable via IRC or P2P
- Used as attack base for various activities
 - DDoS attacks
 - Spam forwarding
 - Launching pad for new exploits/worms
 - Install keylogger to capture passwords and product activation codes

Thanks: Alissa Cooper

Step 3

```
(12:59:27pm) -- A9-pcgbdv (A9-pcgbdv@140.134.36.124) has joined (#owned) Users : 1646
(12:59:27pm) (@Attacker) .ddos.synflood 216.209.82.62
(12:59:27pm) -- A6-bpxufrd (A6-bpxufrd@wp95-
81.introweb.nl) has joined (#owned) Users : 1647
(12:59:27pm) -- A9-nzmpah (A9-nzmpah@140.122.200.221)
has left IRC (Connection reset by peer)
(12:59:28pm) (@Attacker) .scan.enable DCOM
(12:59:28pm) -- A9-tzrkeasv (A9-tzrkeas@220.89.66.93)
has joined (#owned) Users : 1650
```

Outline

- ◆ Point-to-point network denial of service
 - · Smurf, TCP syn flooding, TCP reset
 - Congestion control attack
- Distributed denial of service attacks

 - Coordinated attacksTrin00, TFN, Stacheldraht, TFN2K
 - Bot networks
- Mitigation techniques
 - Firewall
 - · IP traceback
 - Edge Sampling techniquesOverlay networks
 - - Migration
 - Authentication

Mitigation efforts

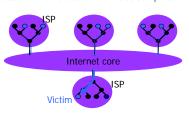
- Firewall
 - · Protect server, not ISP
 - · (More about firewalls next lecture)
- ◆Find source of attack
 - Used to shut down attack
 - · Sometimes possible to find culprit
- ◆Overlay techniques
 - · Preserve service to authenticating clients

Possible firewall actions

- Only allow packets from known hosts
- ◆Check for reverse path
 - Block packets from IP addr X at the firewall if there is no reverse connection going out to addr X
- ◆Ingress/egress filtering
 - Packets in must have outside source destination
 - Packets out must have inside source destination
- Rate limiting
 - Limit rate of ICMP packets and/or SYN packets

All of these steps may interfere with legitimate traffic

Can you find source of attack?


- ◆Hard to find BadGuy
 - Originator of attack compromised the handlers
 - · Originator not active when DDOS attack occurs
- ◆Can try to find agents
 - · Source IP address in packets is not reliable
 - · Need to examine traffic at many points, modify traffic, or modify routers

Methods for finding agents

- ◆Manual methods using current IP routing
 - · Link testing
 - · Input debugging
 - · Controlled flooding
 - Logging
- Changing router software
 - · Instrument routers to store path
 - · Can provide automated IP traceback

Link Testing

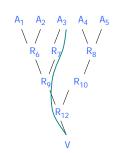
- ◆Start from victim and test upstream links
- ◆ Recursively repeat until source is located
 - · Assume attack remains active until trace complete

Input Debugging

- ◆Victim determines attack signature
- ◆Install filter on upstream router
- Pros
 - · May use software to help coordinate
- **△**Cons
 - · Require cooperation between ISPs
 - · Considerable management overhead

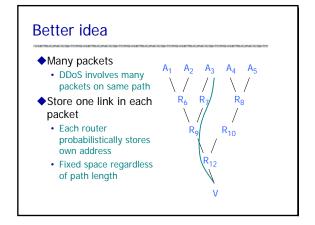
Controlled Flooding

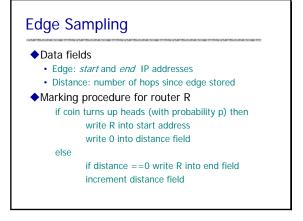
- ◆Flooding link during attack
 - Add large bursts of traffic
 - Observe change in packet rate at victim
- Pros
 - Eventually works if attack continues
- **♦**Cons
 - Add denial of service to denial of service

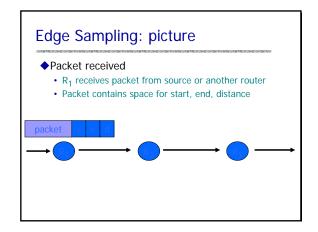

Logging

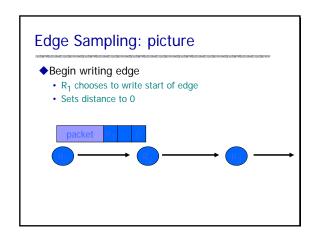
- ◆Critical routers log packets
- ◆Use data mining to find path
- Pros
 - Post mortem works after attack stops
- **◆**Cons
 - · High resource demand

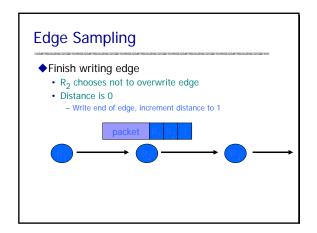
Modify routers to allow IP traceback

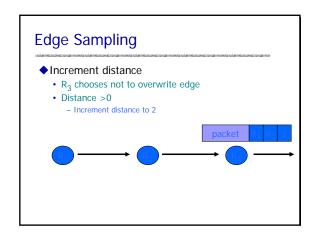

Traceback problem

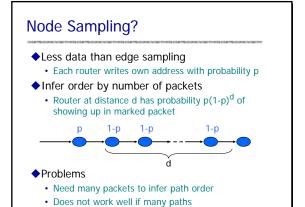

- ◆Goal
 - · Given set of packets
 - Determine path
- Assumptions
 - Most routers remain uncompromised
 - Attacker sends many packets
 - Route from attacker to victim remains relatively stable




Simple method

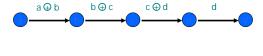

- ◆Write path into network packet
 - Each router adds IP address to packet
 - Victim reads path from packet
- ◆Problem
 - Requires space in packet
 - Path can be long
 - No extra fields in current IP format
 - Changes to packet format are not practical



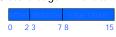

Path reconstruction

- ◆Extract information from attack packets
- ◆Build graph rooted at victim
 - Each (start,end,distance) tuple provides an edge
 - · Eliminate edges with inconsistent distance
 - · Traverse edges from root to find attack paths
- ◆# packets needed to reconstruct path

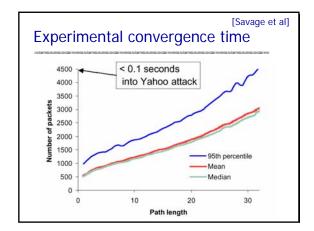
$$E(X) < \frac{\ln(d)}{p(1-p)^{d-1}}$$


where p is marking probability, d is length of path

Optimal p is 1/d ... can vary probability by distance


Reduce Space Requirement

- ◆XOR edge IP addresses
 - Store edge as start ⊕ end
 - Work backwards to get path: (start ⊕ end) ⊕ end = start
- ◆Sample attack path


Details: where to store edge

- ◆Identification field
 - Used for fragmentation
 - Fragmentation is rare
 - 16 bits
- ◆Store edge in 16 bits?

- Break into chunks
- Store start ⊕ end

Summary of Edge Sampling

- ◆Benefits
 - Practical algorithm for tracing anonymous attacks
 - Can reduce per-packet space overhead (at a cost)
 - · Potential encoding into current IP packet header
- ◆Weaknesses
 - · Path validation/authentication
 - Robustness in highly distributed attacks
 Both addressed nicely in [Song&Perrig00]
 - Compatibility issues (IPsec AH, IPv6)
 - Origin laundering (reflectors, tunnels, etc)

Song and Perrig

Advanced Marking Schemes

- Assumption
 - · Map of upstream routers is known (www.caida.org)
- - 11 bit for the XOR of hashes of the IP addresses
 - 5 bits for the distance
- ◆Improvement
 - use two sets of independent hash functions to minimize collision

Marking and detection

◆Marking procedure for router R

if coins flip is heads (with probability p) write h(R) into address field write 0 into distance field

else

if distance ==0 set field = field \oplus h'(R) increment distance field

- Reconstruction
 - Use upstream router map
 - · Guess last router, confirm by computing hash
 - · Otherwise, same as before

Authenticated Marking Schemes

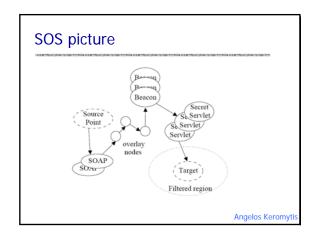
- ◆Packets not authenticated
 - · Attacker can forge markings and mislead victim
- ◆Possible solutions
 - · Digital signatures: too expensive
 - Use message authentication codes (MACs)
 - Each router shares secret keys with the victim
 - Key management complex; Scheme impractical
 - Use time-released keys
 - Each router has sequence of keys
 - Publishes first key in digital certificate
 - Changes key periodically

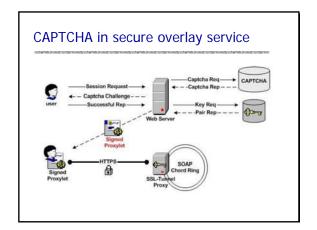
Similar to S/Key passwords..

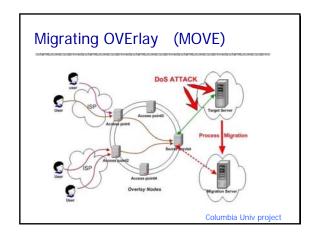
Time-Release Keys

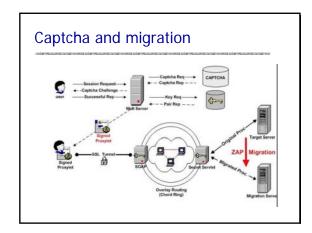
- ◆Router creates chain of keys K₀, K₁, ... ,K_{N-1}
 - Selects a random key K_N
 - Using hash function, let K_i = hash(K_{i+1})
- ◆Router publishes K₀ in public certificate
- ◆Properties
 - Given K_j, cannot predict K_i for i>j
 - Given K_j, can compute K₀ and check
- ◆Keys will be used in order K₁, K₂, ...

Outline


- ◆ Point-to-point network denial of service
 - · Smurf, TCP syn flooding, TCP reset
 - Congestion control attack
- Distributed denial of service attacks
 - Coordinated attacks
 - Trin00, TFN, Stacheldraht, TFN2K
 - · Bot networks
- Mitigation techniques
 - Firewall
 - IP traceback
 - Edge Sampling techniques


- - MigrationAuthentication


Secure Overlay Services (SOS)


- ◆Maintain access in face of DDOS attack
 - · Move site to another location on overlay network
 - Forward "good" traffic to new location
- ◆Separate good from bad/unknown traffic
 - · Authenticate users for entering the overlay
 - · Route good traffic through overlay
- ◆Assumptio
 - · Attackers cannot saturate Internet core

Outline ◆ Point-to-point network denial of service • Smurf, TCP syn flooding, TCP reset • Congestion control attack ◆ Distributed denial of service attacks • Coordinated attacks • Trin00, TFN, Stacheldraht, TFN2K • Bot networks ◆ Mitigation techniques • IP traceback • Edge Sampling techniques • Overlay networks • Migration • Authentication