
1

CS155: Computer and
Network Security

Programming Project 3 – Spring 2005
Shayan Guha

sguha05@stanford.edu
(with many slides “borrowed” from Matt Rubens)

Project Overview
1) Use standard network monitoring tools to

examine different networking protocols
2) Use a packet capture library to

automatically detects and records FTP
transfers

3) Write a program to perform an injection
attack on the RLOGIN protocol

4) Write a simple intrusion detection system to
identify SYN floods and port scans

Goals of the assignment
Get some hands- on networking experience
Learn how secure different protocols are
Learn about common attacks on clear- text
protocols
See what goes into building a basic network
intrusion detection system
DON’T end up in jail

Never test your code outside of the boxes
environment!

Setup
You are given four cow images corresponding to
three separate machines on the network

Client, server, and attacker, monitor
There are a number of users on the client sending
network requests to services on the server
First, the attacker (you!) is trying to perform different
attacks (the first 3 parts) on the client and server
Later, you as the monitor are trying to detect SYN
floods and port scans from the attacker

Setup (2)
All four boxes are located on the same Ethernet hub
Ethernet is a broadcast medium

Every machine sees every packet, regardless of address!
Normally, packets not intended for a host are discarded by the
network card
But in promiscuous mode all packets are available!

Client Attacker Server Monitor

Setup (3)

To start up the boxes for the first 3 parts,
follow these steps

xterm –e ./string &
Make sure to use the copy of string included with the cow
images!

Otherwise the attacker will not be to see the network traffic.

xterm –e [open|closed]box clientcow 10.64.64.64 &
xterm –e [open|closed]box servercow 10.64.64.65 &
xterm –e [open|closed]box attackcow 10.64.64.66 &

You must use these exact IP addresses!

2

Setup (4)
You are NOT given an account on the client
and server machines

If you’re good you might get one soon!
Once you have a password, you can remotely shutdown
the client and server with

ssh [username]@[ipaddr] /sbin/halt
We installed halt as setuid-root (bad idea in general!)

But until then, you won’t be able to do a clean
shutdown on clientcow and servercow

So keep a backup of the original images to avoid fscking

Quick TCP/IP Review

TCP/IP Overview

On this assignment, we are only dealing with
protocols that run over TCP/IP (except for
ICMP echo requests in part 4)
We assume a basic knowledge on the level of
packets and ports

If you’re not that comfortable with this, stop by
office hours

Relevant Network Layers

From http://www.erg.abdn.ac.uk/users/gorry/course/images/ftp-tcp-enet.gif

Cliffs Notes Version
Each TCP packet that you see is actually
a TCP packet wrapped inside of an IP
packet wrapped inside of an Ethernet
packet.

Ethernet Header
IP Header

TCP Header
Application Data

TCP Flags
Synchronize flag [SYN]

Used to initiate a TCP connection

Acknowledgement flag [ACK]
Used to confirm received data

Finish flag [FIN]
Used to shut down the connection

3

TCP Flags (2)
Push flag [PSH]

Do not buffer data on receiver side – send directly
to application level

Urgent flag [URG]
Used to signify data with a higher priority than the
other traffic

I.e Ctrl+C interrupt during an FTP transfer

Reset flag [RST]
Tells receiver to tear down connection
immediately

Connection setup
“Three-way handshake”

From http://www.cs.colorado.edu/~tor/sadocs/tcpip/3way.png

Connection termination

Either side
can initiate
termination

Note that the
first FIN
packet may
still contain
data!

From http://homepages.feis.herts.ac.uk/~cs2_sn2/sn2-img62.png

The actual assignment (finally!)

Phase 1: Sniffing
Goal: observe network traffic, learn about different
protocols

Also: gain access to client and server machines in order to
make Phases 2 and 3 easier!

Installed tools (must be run as root):
Tcpdump

Old faithful, just gives raw packet info
Tethereal

Like tcpdump, but with more smarts about protocols
Tcpflow

Focuses on the payload of the packets
Great for examining application level data (i.e passwords)!

Tcpdump options

All three network monitoring tools take
similar command line options

Can filter packets by address, port, protocol,
length, TCP flags, etc.

Make sure to read the tcpdump manpage closely!

For your submission, we want you to list the
options that you used to isolate the packets
containing username/password information.

4

Phase 2: File Eavesdropping

Manual packet sniffing is an interesting
exercise, but programmatically capturing
packets is much more powerful
In this part of the assignment, you will write
a program to reconstruct a sniffed FTP file
transfer

Libpcap
Libpcap is a packet capture library written in C

It allows you to write code to automate packet sniffing attacks.

The library is fairly simple to use
Pseudocode:

while (true) {
packet = pcap_next();
// do something with the packet

}

We give you starter code in /home/user/pp3/sniff.c on
the attackcow image.

What to do
Figure out which packets correspond to
an FTP file transfer
Detect when a transfer starts and
create a local file to store the data
Extract data from packets and write
them to the file
Figure out when the transfer completes,
close the file, and exit the program

What to do (2)
The hard part is figuring out how to parse the
various layers of headers.

You can find the header definitions at:
Ethernet: /usr/include/net/ethernet.h
IP: /usr/include/netinet/ip.h
TCP: /usr/include/netinet/tcp.h

You’ll also need to figure out how FTP data
transfers work

Using the techniques you learned in Phase 1 might
be more productive than poring over protocol docs

Phase 3: Packet Injection
RLOGIN - allows remote login session

Very similar to Telnet
Does not ask for password if the client
machine is mentioned in /etc/hosts.equiv or
~/.rhosts

(big convenience.... even bigger vulnerability)
After authentication - the rest of the traffic is
in the clear!
Uses one TCP channel for communication

Attacks

Can spoof an entire TCP connection
If the spoofed sender is present in
/etc/hosts.equiv or ~/.rhosts, server won't ask for
password

Already established session can be hijacked
by spurious injections (what you will do)

You can run any command on the server with the
permissions of the client

i.e. /sbin/halt (if halt is setuid-root), rm –rf, etc.

5

Libnet

Packet injection library
Allows you to modify each and every field of
packet
Build packets from top to bottom : TCP -> IP ->
Ethernet
Automatically calculates correct checksums - no
need to worry about them

Starter code is provided for you in
/home/user/pp3/inject.c on the attackcow

What to do
Observe traffic generated by an ongoing rlogin
session

for each interactive action, 3 packets will be generated
client -> server : with the data (for eg: "ls\r\n")
server -> client : echo the data - ack the previous packet

(also send results of command)
client -> server : ack the server packet

Find out the correct sequence number (and other
fields) to put in your malicious packet
Let server know he was h4x0r’ed – touch a file on
the server with the same name as your SUNet id

What to do (2)
Other information to take care of :

TCP header
TCP options - contain timestamps of the packet being acked
port numbers
window size

IP header
source/destination IP addresses
TOS : type of service
IP flags
IP ID

Ethernet header
source/destination Ethernet addresses

Phase 4: Intrusion Detection
System

For this part, launch the monitorcow
xterm –e [open|closed]box clientcow 10.64.64.67 &

You’ll be writing a program on the
monitorcow that will detect TCP SYN
floods and port scans!
These attacks can be run from the
attackcow using pre-installed tools

SYN floods
SYN floods are Denial of Service attack used
to make certain services unavailable on the
target machine
Attacker sets up numerous connections to the
victim machine using a specific port.
When a SYN packet is received, the victim
allocates resources to this new connection –
since these resources are finite, a large
number of connections will make the port on
the target unusable

SYN floods – con’t
Attacker spoofs the source IP for the
SYN packets to be an invalid host so
that the victim machine will never
receive a RST to close a connection
Why does the source IP of the SYN
packet have to be to an unreachable
host?

6

SYN floods – con’t
Attacker spoofs the source IP for the
SYN packets to be an invalid host so
that the victim machine will never
receive a RST to close a connection
Why does the source IP of the SYN
packet have to be invalid?

so that the target machine never receives
a RST which would free up its resources

What to do
Run the neptune program on the attackcow
(installed in /usr/bin)
USAGE: neptune
-s unreachable_host (host that you want to pretend the SYN

packets are
coming from that isn't actually up and running so that a RST
isn't sent in
reply)
-t target_host
-p port
-a amount_of_SYNs

What to do(2)
On the monitorcow, write code that will

Take in two threshold parameters from the user –
number of the SYN packets, and number of
seconds for an attack to occur
Once an attack is detected, log which machine,
port was the victim and the arrival time of each
participating SYN packet

Make sure you figure out a way to distinguish
between regular TCP traffic and SYN floods

Briefly describe your strategy in your README

Port Scans
Port scans are used by attackers to see
what ports and services are running on
target machines

e.g. use port scans to find that the victim
machine is running the notorious sendmail
program!

Consist of any packet that would
generate a response from a receiver –
ICMP echo requests, TCP packets

What to do
Run nmap from the attackcow to generate a
portscan

Go to http://www.insecure.org/nmap/data/nmap_manpage.html to
figure out the appropriate parameters

On monitorcow, detect a port scan occuring
in the virtual network parameterized against
by the number of packets and elapsed time
Again, in your README, make sure you
document how you distinguish between
legitimate traffic and maliscious traffic

Simplifying Assumptions
Can rely on the fact that there are only
4 hosts on the network – and you know
all their IPs
Only ICMP echo and TCP packets can
be part of a port scan
Your intrusion detection system will be
running in EITHER SYN flood detection
mode OR port scan detection mode.

7

Appropriate Title
Stub code for the monitoring system is
provided in ids.c in ~user/pp3 on the
monitorcow

Usage: box:/mnt# ./ids -h
Intrusion Detection System
Format: ./ids [-h] [-t tcp_syn_thresh] [-s tcp_syn_time]

[-p port_scan_thresh] [-S port_scan_time]
[-f tcp_syn_filename] [-F port_scan_filename]

Caveats
Don’t compile on the myths – compile in boxes
Even though all programs are in the ~user/pp3 directory they
must be run as root to go into promiscuous ethernet mode
Be aware of byte ordering

Network byte ordering is Big Endian (Most Significant Byte First)
Linux byte ordering is Little Endian (Least Significant Byte First)
Use ntohl() ntohs() to convert from network to host byte ordering
and htonl() and htons() to go the other way around
"man byteorder" for more details
Great (and simple) example: Stevens "Unix Network
Programming," page 78

Wrapup

This whole assignment shouldn’t take more
than a couple hundred lines of code

However, it requires a good understanding of
what’s happening on the network
The programs seem simple, but they can take
more time than anticipated (remember pp1?)
This assignment is due in 20 days – use them all!
No late days…

