
TCP and UDP port usage

• Well known services typically run on low ports < 600

• Privileged RPC servers us ports < 1, 024

- On Unix must be root to bind port numbers below 1,024

• Outgoing connections typically use high ports

- Usually just ask OS to pick an unused port number

- Some clients use low ports to “prove” they are root

E.g., NFS mount client must use reserve port

• Some applications also use high ports

- E.g., X-windows uses port 6,000, NFS port 2,049,

web proxies on port 3,128

• See file /et
/servi
es for well know ports
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Insecure network services
• NFS (port 2049)

- Read/write entire FS as any non-root user given a dir. handle

- Many OSes make handles easy to guess

• Portmap (port 111)

- Relays RPC requests, making them seem to come from localhost

- E.g., old versions would relay NFS mount requests

• FTP (port 21) – server connects back to client

- Client can specify third machine for “bounce attack”

• YP/NIS – serves password file, other info

• A host of services have histories of vulnerabilities

- DNS (53), rlogin (513), rsh (514), NTP (123), lpd (515), . . .

- Many on by default—compromised before OS fully installed
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Firewalls

• Separate local area net from Internet

- Prevent bad guys from interacting w. insecure services

- Perimeter-based security
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Two separable topics

• Arrangement of firewall and routers

- Separate internal LAN from external Internet

- Wall off subnetwork within an organization

- Intermediate zone for web server, etc.

- Personal firewall on end-user machine

• How the firewall processes data

- Packet filtering router

- Application-level gateway

Proxy for protocols such as ftp, smtp, http, etc.

- Personal firewall

E.g., disallow telnet connection from email client
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Recall protocol layering

• E.g., HTTP on TCP on IP on Ethernet
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Packet filtering

• Filter packets using transport layer information

- Examine IP, and ICMP/UDP/UDP header of each packet

- IP Source, Destination address

- Protocol

- TCP/UDP source & destination ports

- TCP flags

- ICMP message type

• Example: coping with vulnerability in lpd

- Block any TCP packets with destination port 515

- Outsiders shouldn’t be printing within net anyway
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Example: blocking forgeries

• Should block incoming packets “from” your net

• Egress filtering: block forged outgoing packets
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Example: blocking outgoing mail

• At Stanford, all mail goes out through main servers

- Result of worm that mailed users’ files around as attachments

- Could have disclosed sensitive information

- Also reduces thread of Stanford being used to spam

• How to enforce?
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Example: blocking outgoing mail

• At Stanford, all mail goes out through main servers

- Result of worm that mailed users’ files around as attachments

- Could have disclosed sensitive information

- Also reduces thread of Stanford being used to spam

• How to enforce?

• Block outgoing TCP packets

- If destination port is 25 (SMTP – mail protocol)

- And if source IP address is not a Stanford server
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Blocking by default

• Often don’t know what people run on their machines

• In many environments better to be safe:

- Block all incoming TCP connections

- Explicitly allow incoming connections to particular hosts

E.g., port 80 on web server, port 25 on mail server, . . .

- But still must allow outgoing TCP connections

(users will revolt if they can’t surf the web)

• How to enforce?
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Blocking by default

• Often don’t know what people run on their machines

• In many environments better to be safe:

- Block all incoming TCP connections

- Explicitly allow incoming connections to particular hosts

E.g., port 80 on web server, port 25 on mail server, . . .

- But still must allow outgoing TCP connections

(users will revolt if they can’t surf the web)

• How to enforce?

- Recall every packet in TCP flow except first has ACK

- Block incoming TCP packets w. SYN flag but not ACK flag
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Fragmentation

• Recall IP fragmentation—Why might this complicate

firewalls?
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Abnormal fragmentation
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Fragmentation attack
• Firewall config: block TCP port 23, allow 25

• First packet

- Fragmentation Offset = 0.

- DF bit = 0 : "May Fragment"

- MF bit = 1 : "More Fragments"

- Dest Port = 25 (allowed, so firewall forwards packet)

• Second packet

- Frag. Offset = 1: (overwrites all but first byte of last pkt)

- DF bit = 0 : "May Fragment"

- MF bit = 0 : "Last Fragment."

- Destination Port = 23 (should be blocked, but sneaks by!)

• At host, packet reassembled and received at port 23
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Blocking UDP traffic
• Some sites block most UDP traffic

- UDP sometimes viewed as “more dangerous”

- Easier to spoof source address

- Used by insecure LAN protocols such as NFS

• Often more convenient to block only incoming UDP

- E.g., allow internal machines to query external NTP servers

- Don’t let external actors to exploit bugs in local NTP software

(unless client specifically contacts bad/spoofed server)

• How to implement?
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Blocking UDP traffic
• Some sites block most UDP traffic

- UDP sometimes viewed as “more dangerous”

- Easier to spoof source address

- Used by insecure LAN protocols such as NFS

• Often more convenient to block only incoming UDP

- E.g., allow internal machines to query external NTP servers

- Don’t let external actors to exploit bugs in local NTP software

(unless client specifically contacts bad/spoofed server)

• Must keep state in firewall

- Remember 〈local IP, local port, remote IP, remote port〉 for each

outgoing UDP packet

- Allow incoming packets that match saved flow

- Time out flows that have not been recently used
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Network address translation (NAT)

[Kurose and Ross]

• NAT translates from private IP addresses to public

• Similarly must keep state for each flow
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Advantages of NAT

• Motivations for NAT

- Have more machines than public IP addresses

- Easy way to get “no incoming flows” policy

- Avoid renumbering if provider changes

(Small/mid-sized LANs inherit address space from ISP)

• Hides information about internal net from server

• Can “scrub” packets to further enhance security

- Exact SYN packet format may reveal OS & version

- Map predictable TCP Seq No’s to unpredictable ones

- OpenBSD’s pf “modulate state” option good at this
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How to firewall FTP protocol?
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Application proxies on firewall

• Spawn proxy on firewall when connection detected
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Application-level proxies

• Enforce policy for specific protocols

- E.g., Virus scanning for SMTP, must understand MIME,

encoding, Zip archives, etc.

- Flexible approach, but may introduce network delays

• Many protocols natural to proxy

- SMTP, NNTP (Net news), DNS, NTP, HTTP

• But sometimes results in weird artifacts

- E.g., caching HTTP objects unexpectedly

• Encrypted protocols typically not: SSL, SSH

• Must protect host running protocol stack

- Much more complexity than simple packet filter

- Be prepared for the system to be compromised
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Virtual Private Networks (VPNs)

1 2 3 4 5 6

West branch East branch

Internet
VPNVPN

gateway gateway

• What if firewall must protect more than one office

• Extend perimeter to other physical networks by

using crypto – VPN

• Two popular VPNs: IPsec & OpenVPN [SSL-based]
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IPsec ESP protocol

payload
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ESP high-level view

• Encapsulates one IP packet inside another

• Each endpoint has Security Association DB (SAD)

- Is a table of Security Associations (SAs)

- Each SA has 32-bit Security Parameters Index (SPI)

- Also, source/destination IP addresses, crypto algorithm, keys

• Packets processed based on SPI, src/dest IP address

- Usually have one SA for each direction betw. two points

• SAD managed “semi-manually”

- Manually set key

- Or negotiate it using IKE protocol
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ESP details

• Must avoid replays

- Keep counter for 64-bit sequence number

- Receiver must some packets out of order (e.g., up to 32)

- Only low 32 bits of sequence number in actual packet (would

be bad if you lost 4 billion packets)

• Support for traffic flow confidentiality (TFC)

- Can pad packets to fixed length

- Can send dummy packets

• Support for encryption without MAC. . . Bummer!

- Rationale: App might be SSL, which has MAC-only mode

- But then attacker can mess with destination address!
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Traffic shaping

• Traditional firewall: Allow or drop each packet

• Traffic shaping:

- Limit certain kinds of traffic

- Can differentiate by host addr, protocol, etc

- Multi-Protocol Label Switching (MPLS): Label traffic flows at

the edge of the network and let core routers identify the

required class of service

• The real issue here on Campus:

- P2P file sharing takes a lot of bandwidth

- 1/3 of network bandwidth consumed by BitTorrent

(Hmm... What do you guys use BitTorrent for?)
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Bro: Detecting network intruders

• Target security holes exploited over the network

- Buffer overruns in servers

- Servers with bad implementations

(“login -froot”, telnet w. LD_LIBRARY_PATH)

• Goal: Detect people exploiting such bugs

• Detect activities performed by people who’ve
penetrated server

- Setting up IRC bot

- Running particular commands, etc.
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Bro model

• Attach machine running Bro to “DMZ”

- Demilitarized zone – area betw. firewall & outside world

• Sniff all packets in and out of the network

• Process packets to identify possible intruders

- Secret, per-network rules identify possible attacks

- Is it a good idea to keep rules secret?

• React to any threats

- Alert administrators of problems in real time

- Switch on logging to enable later analysis of potential attack

- Take action against attackers – E.g., filter all packets from host

that seems to be attacking
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Goals of system

• Keep up with high-speed network

- No packet drops

• Real-time notification

• Separate mechanism from policy

- Avoid easy mistakes in policy specification

- So different sites can specify “secret” policies easily

• Extensibility

• Resilience to attack
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Challenges

• Have to keep up with fast packet rate

• System has to be easy to program

- Every site needs different, secret rules

- Don’t want system administrators making mistakes

• Overload attacks

• Crash attacks

• Subterfuge attacks
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Bro architecture

• Layered architecture:

- bpf/libpcap, Event Engine, Policy Script Interpreter

• Lowest level bpf filter in kernel

- Match interesting ports or SYN/FIN/RST packets

- Match IP fragments

- Other packets do not get forwarded to higher levels

• Event engine, written in C++

- Knows how to parse particular network protocols

- Has per-protocol notion of events

• Policy Script Interpreter

- Bro language designed to avoid easy errors
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Bro picture

Network

Packet stream

Tcpdump filter Filtered packet stream

Event streamEvent control

Policy script Real−time notification
Record to disk

Event Engine

Policy Script Interpreter

libpcap
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Overload and Crash attacks

• Overload goal: prevent monitor from keeping up w.
data stream

- Leave exact thresholds secret

- Shed load (e.g., HTTP packets)

• Crash goal: put monitor out of commission

- E.g., run it out of space (too much state)

- Watchdog timer kills & restarts stuck monitor

- Also starts tcpdump log, so same crash attack, if repeated, can

be analyzed
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Challenges

• Dealing with FTP

- Separate pipelined requests

- Parse PORT command to detect “bounce” attacks

• Dealing with type-ahead and rejected logins with
telnet/rlogin

- Flows basically unstructured–don’t know what’s username

- Use heuristics (e.g., look for “Password:” string)

- But typeahead makes it harder to match exactly

• Network scans and port scans. . . How to detect

- Keep table of connection attempts (src, dst, bool)

- If not seen yet, increment count of distinct_peers[src]

- Trade-off between state recovery & detection of slow scans
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Subterfuge attacks

• IP fragments too small to see TCP header

• Retransmitted IP fragments w. different data

• Retransmitted TCP packets w. different data

• Checksum/TTL/MTU monkeying can hide packets
from destination

- Compare TCP packet to retransmitted copy

- Assume one of two endpoints is honest (exploit ACKs)

- Bifurcating analysis
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State and checkpointing

• Need to keep a lot of session state

- Open TCP connections, UDP request-response, IP fragments

- No timers to garbage collect state

• Checkpointing the system

- Start new copy of monitoring process

- Kill old copy when new copy has come up to speed

- Is this ideal?
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The Kerberos authentication system

• Goal: Authentication in “open environment”

- Not all hardware under centralized control

(e.g., users have “root” on their workstations)

- Users require services from many different computers

(mail, printing, file service, etc.)

• Model: Central authority manages all resources

- Effectivaly manages human-readable names

- User names: dm, dabo, . . .

- Machine names: market, cipher, crypto, . . .

- Must be assigned a name to use the system
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Kerberos principals

• Principal: Any entity that can make a statement

- Users and servers sending messages on network

- “Services” that might run on multiple servers

• Every kerberos principal has a key (password)

• Central key distribution server (KDC) knows all keys

- Coordinates authentication between other principals
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Kerberos protocol

• Goal: Mutually authenticated communication

- Two principals wish to communicate

- Principals know each other by KDC-assigned name

- Kerberos establishes shared secret between the two

- Can use shared secret to encrypt or MAC communication

(but most services don’t encrypt, none MAC)

• Approach: Leverage keys shared with KDC

- KDC has keys to communicate with any principal

• Let’s abstract away broken crypto

- Assume each key K has two parts, Ke and Km.

- Read {msg}K as 〈ENC(Ke, msg), MAC(Km, ENC(Ke, msg))〉
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Protocol detail

• To talk to server s, client c needs key & ticket:

- Session key: Ks,c (randomly generated key KDC)

- Ticket: T = {s, c, addr, expire, Ks,c}Ks

(KS is key s shares with KDC)

- Only server can decrypt T

• Given ticket, client creates authenticator:

- Authenticator: T, {c, addr, time}Ks,c

- Client must know Ks,c to create authenticator

- T convinces server that Ks,c was given to c

• “Kerberized” protocols begin with authenticator

- Replaces passwords, etc.
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Getting tickets in Kerberos

• Upon login, user fetches “ticket-granting ticket”

- c → t: c, t (t is name of TG service)

- t → c: {Kc,t, Tc,t = {s, t, addr, expire, Kc,t}Kt
}Kc

- Client decrypts with password (Kc = H(pwd))

• To fetch ticket for server s

- c → t: s, Tc,t, {c, addr, time}Kc,t

- t → c: {Ts,c, Ks,c}Kc,t

• Applications might use Kerberos as follows:

- c → s: Ts,c, {c, addr, time, Kc→s, Ks→c}Ks,c

- Then c and s use Kc→s and Ks→c to communicate securely in

each direction.
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Example application: AFS

• User logs in, fetches kerberos ticket for AFS server

• Hands ticket and session key to file system

• Requests/replies accompanied by an authenticator

- Authenticator includes CRC checksum of packets

- Note: CRC is not a valid MAC!

• What about anonymous access to AFS servers?

- User w/o account may want universe-readable files
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AFS permissions

• Each directory has ACL for all its files

- Precludes cross-directory links

• ACL lists principals and permissions

- Both “positive” and “negative” access lists

• Principals: Just kerberos names

- Extra principles, system:anyuser, system:authuser

• Permissions: rwlidak

- read, write, lookup, insert, delete, administer, lock
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Security issues with kerberos
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Security issues with kerberos

• Protocol weaknesses:

- Weak crypto, no MAC

- Kinit might act as oracle because of bad MAC

- Replay attacks

- Off-line password guessing

- Can’t securely change compromised password

• General design problems:

- KDC vulnerability

- Hard to upgrade system (everyone relies on KDC)

– p. 41/52



Kerberos inconvenience

• Large (e.g., university-wide) administrative realms

- University-wide administrators often on the critical path

- Departments can’t add users or set up new servers

- Can’t develop new services without central admins

- Can’t upgrade software/protocols without central admins

- Central admins have monopoly servers/services

(Can’t set up your own without a principal)

• Crossing administrative realms a pain

• Ticket expirations

- Must renew tickets every 12–23 hours

- Hard to have long-running backround jobs
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SSH overview

• Widely-used secure remote login program

• MACs/encrypts all data sent over the network

- Version 2 of protocol basically gets this right (should MAC

ciphertext not plaintext, but OK w. particular algorithms)

- Open to man in the middle attack on first server access

• Often sends password at start of session

- Gets sent encrypted in a single TCP packet

• Assuming crypto secure (& no MiM), how to attack?

[Material from Song et. al follows]
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Packet size

• Transmitted packets rounded to multiple of 8 bytes

- Version 1 even had exact packet-size in the clear

• Can tell if user’s password is less than 7 chars

- Password sent in one packet of initial exchange

• Why do we care?
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Packet size

• Transmitted packets rounded to multiple of 8 bytes

- Version 1 even had exact packet-size in the clear

• Can tell if user’s password is less than 7 chars

- Password sent in one packet of initial exchange

• Why do we care?

- Might tell you which account to try to crack

– p. 44/52



Inter-keystroke timings

• Each character typed causes a packet to be sent

- Typical inter-character times 10–300 msec

- Typical network round-trip time 10 of msec

- Can get very accurate timing information by eavesdropping

• What can you learn from this?

- Some character sequences harder to type than others

- E.g., v–b is much slower to type than v–o

- In general, characters with different hands faster

- Two characters typed with same finger are much slower

- Digits, special chars also slower

• Idea: Use timing to learn about passwords
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Character latency
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How to know password being typed?
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How to know password being typed?

• Traffic signature

- E.g., echo turned off when password typed

• Multi-user attack

- E.g., run ps on machine to see when victim runs pgp

• Nested ssh attack

- See remote host open SSH connection to another host
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Example: su command

SSH
Server B

Client
Host A "s"

20

"u"

20

20 20

20

28

Return

"Password: "

20 20 20 20 20

"i" "a""J""u""l" Return

20

N

Prompt
time

time

• “Password:” prompt – 28 char packet

• Echo turned off for password, no return packets
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Modeling keystroke timings

• Assume Gaussian-like distribution of timings

- For each key pair q, mean time µq, stdev σq

- Prob. of timing y Pr[y|q] =
1√

2πσq

e
−

(y−µq)
2

2σ2
q

- Significant but far from complete overlap between key pairs

• Model keystrokes as HMM

- Each key pair is a state, timing an observation

- AI techniques allow you to get n best choices
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Latency vs. probability of key pairs
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Results

• Experiment: Assign users random passwords

- Picked from a reduced set of characters

- Users practice typing the password before experiments

• Train on users typing individual key pairs

• Ignore pause in the middle of passwords

• Output most likely password

• Bottom line: 50× reduction in brute-force cracking

- Half the time password shows up in top 1% output
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How to work around the problem

• Send dummy packets when in echo mode

- Foils traffic signature detection of passwords

• Adding random delays to packets?

- Latencies in 100s of msec, so need big random delays

- Can still get info by averaging many sessions

- Delay might get seriously annoying

• Constant bit-rate traffic

- Practical for one session over a modem
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