
TCP and UDP port usage

• Well known services typically run on low ports < 600

• Privileged RPC servers us ports < 1, 024

- On Unix must be root to bind port numbers below 1,024

• Outgoing connections typically use high ports

- Usually just ask OS to pick an unused port number

- Some clients use low ports to “prove” they are root

E.g., NFS mount client must use reserve port

• Some applications also use high ports

- E.g., X-windows uses port 6,000, NFS port 2,049,

web proxies on port 3,128

• See file /et
/servi
es for well know ports

– p. 1/52



Insecure network services
• NFS (port 2049)

- Read/write entire FS as any non-root user given a dir. handle

- Many OSes make handles easy to guess

• Portmap (port 111)

- Relays RPC requests, making them seem to come from localhost

- E.g., old versions would relay NFS mount requests

• FTP (port 21) – server connects back to client

- Client can specify third machine for “bounce attack”

• YP/NIS – serves password file, other info

• A host of services have histories of vulnerabilities

- DNS (53), rlogin (513), rsh (514), NTP (123), lpd (515), . . .

- Many on by default—compromised before OS fully installed

– p. 2/52



Firewalls

• Separate local area net from Internet

- Prevent bad guys from interacting w. insecure services

- Perimeter-based security

– p. 3/52



Two separable topics

• Arrangement of firewall and routers

- Separate internal LAN from external Internet

- Wall off subnetwork within an organization

- Intermediate zone for web server, etc.

- Personal firewall on end-user machine

• How the firewall processes data

- Packet filtering router

- Application-level gateway

Proxy for protocols such as ftp, smtp, http, etc.

- Personal firewall

E.g., disallow telnet connection from email client

– p. 4/52



Recall protocol layering

• E.g., HTTP on TCP on IP on Ethernet

– p. 5/52



Packet filtering

• Filter packets using transport layer information

- Examine IP, and ICMP/UDP/UDP header of each packet

- IP Source, Destination address

- Protocol

- TCP/UDP source & destination ports

- TCP flags

- ICMP message type

• Example: coping with vulnerability in lpd

- Block any TCP packets with destination port 515

- Outsiders shouldn’t be printing within net anyway

– p. 6/52



Example: blocking forgeries

• Should block incoming packets “from” your net

• Egress filtering: block forged outgoing packets

– p. 7/52



Example: blocking outgoing mail

• At Stanford, all mail goes out through main servers

- Result of worm that mailed users’ files around as attachments

- Could have disclosed sensitive information

- Also reduces thread of Stanford being used to spam

• How to enforce?

– p. 8/52



Example: blocking outgoing mail

• At Stanford, all mail goes out through main servers

- Result of worm that mailed users’ files around as attachments

- Could have disclosed sensitive information

- Also reduces thread of Stanford being used to spam

• How to enforce?

• Block outgoing TCP packets

- If destination port is 25 (SMTP – mail protocol)

- And if source IP address is not a Stanford server

– p. 8/52



Blocking by default

• Often don’t know what people run on their machines

• In many environments better to be safe:

- Block all incoming TCP connections

- Explicitly allow incoming connections to particular hosts

E.g., port 80 on web server, port 25 on mail server, . . .

- But still must allow outgoing TCP connections

(users will revolt if they can’t surf the web)

• How to enforce?

– p. 9/52



Blocking by default

• Often don’t know what people run on their machines

• In many environments better to be safe:

- Block all incoming TCP connections

- Explicitly allow incoming connections to particular hosts

E.g., port 80 on web server, port 25 on mail server, . . .

- But still must allow outgoing TCP connections

(users will revolt if they can’t surf the web)

• How to enforce?

- Recall every packet in TCP flow except first has ACK

- Block incoming TCP packets w. SYN flag but not ACK flag

– p. 9/52



Fragmentation

• Recall IP fragmentation—Why might this complicate

firewalls?

– p. 10/52



Abnormal fragmentation

– p. 11/52



Fragmentation attack
• Firewall config: block TCP port 23, allow 25

• First packet

- Fragmentation Offset = 0.

- DF bit = 0 : "May Fragment"

- MF bit = 1 : "More Fragments"

- Dest Port = 25 (allowed, so firewall forwards packet)

• Second packet

- Frag. Offset = 1: (overwrites all but first byte of last pkt)

- DF bit = 0 : "May Fragment"

- MF bit = 0 : "Last Fragment."

- Destination Port = 23 (should be blocked, but sneaks by!)

• At host, packet reassembled and received at port 23

– p. 12/52



Blocking UDP traffic
• Some sites block most UDP traffic

- UDP sometimes viewed as “more dangerous”

- Easier to spoof source address

- Used by insecure LAN protocols such as NFS

• Often more convenient to block only incoming UDP

- E.g., allow internal machines to query external NTP servers

- Don’t let external actors to exploit bugs in local NTP software

(unless client specifically contacts bad/spoofed server)

• How to implement?

– p. 13/52



Blocking UDP traffic
• Some sites block most UDP traffic

- UDP sometimes viewed as “more dangerous”

- Easier to spoof source address

- Used by insecure LAN protocols such as NFS

• Often more convenient to block only incoming UDP

- E.g., allow internal machines to query external NTP servers

- Don’t let external actors to exploit bugs in local NTP software

(unless client specifically contacts bad/spoofed server)

• Must keep state in firewall

- Remember 〈local IP, local port, remote IP, remote port〉 for each

outgoing UDP packet

- Allow incoming packets that match saved flow

- Time out flows that have not been recently used

– p. 13/52



Network address translation (NAT)

[Kurose and Ross]

• NAT translates from private IP addresses to public

• Similarly must keep state for each flow

– p. 14/52



Advantages of NAT

• Motivations for NAT

- Have more machines than public IP addresses

- Easy way to get “no incoming flows” policy

- Avoid renumbering if provider changes

(Small/mid-sized LANs inherit address space from ISP)

• Hides information about internal net from server

• Can “scrub” packets to further enhance security

- Exact SYN packet format may reveal OS & version

- Map predictable TCP Seq No’s to unpredictable ones

- OpenBSD’s pf “modulate state” option good at this

– p. 15/52



How to firewall FTP protocol?

– p. 16/52



Application proxies on firewall

• Spawn proxy on firewall when connection detected

– p. 17/52



Application-level proxies

• Enforce policy for specific protocols

- E.g., Virus scanning for SMTP, must understand MIME,

encoding, Zip archives, etc.

- Flexible approach, but may introduce network delays

• Many protocols natural to proxy

- SMTP, NNTP (Net news), DNS, NTP, HTTP

• But sometimes results in weird artifacts

- E.g., caching HTTP objects unexpectedly

• Encrypted protocols typically not: SSL, SSH

• Must protect host running protocol stack

- Much more complexity than simple packet filter

- Be prepared for the system to be compromised

– p. 18/52



Virtual Private Networks (VPNs)

1 2 3 4 5 6

West branch East branch

Internet
VPNVPN

gateway gateway

• What if firewall must protect more than one office

• Extend perimeter to other physical networks by

using crypto – VPN

• Two popular VPNs: IPsec & OpenVPN [SSL-based]

– p. 19/52



IPsec ESP protocol

payload

dest IP address

source IP address

protocol

ver

Cleartext IP packet

packet len

hdr checksum

packet len

prot=ESP

source IP address

integrity tag

IPsec ESP packet

ver

dest IP address

security param index (SPI)

sequence number

pad len next hdr
padding

Encrypted data

MACed data

packet

32bits
32bits

– p. 20/52



ESP high-level view

• Encapsulates one IP packet inside another

• Each endpoint has Security Association DB (SAD)

- Is a table of Security Associations (SAs)

- Each SA has 32-bit Security Parameters Index (SPI)

- Also, source/destination IP addresses, crypto algorithm, keys

• Packets processed based on SPI, src/dest IP address

- Usually have one SA for each direction betw. two points

• SAD managed “semi-manually”

- Manually set key

- Or negotiate it using IKE protocol

– p. 21/52



ESP details

• Must avoid replays

- Keep counter for 64-bit sequence number

- Receiver must some packets out of order (e.g., up to 32)

- Only low 32 bits of sequence number in actual packet (would

be bad if you lost 4 billion packets)

• Support for traffic flow confidentiality (TFC)

- Can pad packets to fixed length

- Can send dummy packets

• Support for encryption without MAC. . . Bummer!

- Rationale: App might be SSL, which has MAC-only mode

- But then attacker can mess with destination address!

– p. 22/52



Traffic shaping

• Traditional firewall: Allow or drop each packet

• Traffic shaping:

- Limit certain kinds of traffic

- Can differentiate by host addr, protocol, etc

- Multi-Protocol Label Switching (MPLS): Label traffic flows at

the edge of the network and let core routers identify the

required class of service

• The real issue here on Campus:

- P2P file sharing takes a lot of bandwidth

- 1/3 of network bandwidth consumed by BitTorrent

(Hmm... What do you guys use BitTorrent for?)

– p. 23/52



Bro: Detecting network intruders

• Target security holes exploited over the network

- Buffer overruns in servers

- Servers with bad implementations

(“login -froot”, telnet w. LD_LIBRARY_PATH)

• Goal: Detect people exploiting such bugs

• Detect activities performed by people who’ve
penetrated server

- Setting up IRC bot

- Running particular commands, etc.

– p. 24/52



Bro model

• Attach machine running Bro to “DMZ”

- Demilitarized zone – area betw. firewall & outside world

• Sniff all packets in and out of the network

• Process packets to identify possible intruders

- Secret, per-network rules identify possible attacks

- Is it a good idea to keep rules secret?

• React to any threats

- Alert administrators of problems in real time

- Switch on logging to enable later analysis of potential attack

- Take action against attackers – E.g., filter all packets from host

that seems to be attacking

– p. 25/52



Goals of system

• Keep up with high-speed network

- No packet drops

• Real-time notification

• Separate mechanism from policy

- Avoid easy mistakes in policy specification

- So different sites can specify “secret” policies easily

• Extensibility

• Resilience to attack

– p. 26/52



Challenges

• Have to keep up with fast packet rate

• System has to be easy to program

- Every site needs different, secret rules

- Don’t want system administrators making mistakes

• Overload attacks

• Crash attacks

• Subterfuge attacks

– p. 27/52



Bro architecture

• Layered architecture:

- bpf/libpcap, Event Engine, Policy Script Interpreter

• Lowest level bpf filter in kernel

- Match interesting ports or SYN/FIN/RST packets

- Match IP fragments

- Other packets do not get forwarded to higher levels

• Event engine, written in C++

- Knows how to parse particular network protocols

- Has per-protocol notion of events

• Policy Script Interpreter

- Bro language designed to avoid easy errors

– p. 28/52



Bro picture

Network

Packet stream

Tcpdump filter Filtered packet stream

Event streamEvent control

Policy script Real−time notification
Record to disk

Event Engine

Policy Script Interpreter

libpcap

– p. 29/52



Overload and Crash attacks

• Overload goal: prevent monitor from keeping up w.
data stream

- Leave exact thresholds secret

- Shed load (e.g., HTTP packets)

• Crash goal: put monitor out of commission

- E.g., run it out of space (too much state)

- Watchdog timer kills & restarts stuck monitor

- Also starts tcpdump log, so same crash attack, if repeated, can

be analyzed

– p. 30/52



Challenges

• Dealing with FTP

- Separate pipelined requests

- Parse PORT command to detect “bounce” attacks

• Dealing with type-ahead and rejected logins with
telnet/rlogin

- Flows basically unstructured–don’t know what’s username

- Use heuristics (e.g., look for “Password:” string)

- But typeahead makes it harder to match exactly

• Network scans and port scans. . . How to detect

- Keep table of connection attempts (src, dst, bool)

- If not seen yet, increment count of distinct_peers[src]

- Trade-off between state recovery & detection of slow scans

– p. 31/52



Subterfuge attacks

• IP fragments too small to see TCP header

• Retransmitted IP fragments w. different data

• Retransmitted TCP packets w. different data

• Checksum/TTL/MTU monkeying can hide packets
from destination

- Compare TCP packet to retransmitted copy

- Assume one of two endpoints is honest (exploit ACKs)

- Bifurcating analysis

– p. 32/52



State and checkpointing

• Need to keep a lot of session state

- Open TCP connections, UDP request-response, IP fragments

- No timers to garbage collect state

• Checkpointing the system

- Start new copy of monitoring process

- Kill old copy when new copy has come up to speed

- Is this ideal?

– p. 33/52



The Kerberos authentication system

• Goal: Authentication in “open environment”

- Not all hardware under centralized control

(e.g., users have “root” on their workstations)

- Users require services from many different computers

(mail, printing, file service, etc.)

• Model: Central authority manages all resources

- Effectivaly manages human-readable names

- User names: dm, dabo, . . .

- Machine names: market, cipher, crypto, . . .

- Must be assigned a name to use the system

– p. 34/52



Kerberos principals

• Principal: Any entity that can make a statement

- Users and servers sending messages on network

- “Services” that might run on multiple servers

• Every kerberos principal has a key (password)

• Central key distribution server (KDC) knows all keys

- Coordinates authentication between other principals

– p. 35/52



Kerberos protocol

• Goal: Mutually authenticated communication

- Two principals wish to communicate

- Principals know each other by KDC-assigned name

- Kerberos establishes shared secret between the two

- Can use shared secret to encrypt or MAC communication

(but most services don’t encrypt, none MAC)

• Approach: Leverage keys shared with KDC

- KDC has keys to communicate with any principal

• Let’s abstract away broken crypto

- Assume each key K has two parts, Ke and Km.

- Read {msg}K as 〈ENC(Ke, msg), MAC(Km, ENC(Ke, msg))〉

– p. 36/52



Protocol detail

• To talk to server s, client c needs key & ticket:

- Session key: Ks,c (randomly generated key KDC)

- Ticket: T = {s, c, addr, expire, Ks,c}Ks

(KS is key s shares with KDC)

- Only server can decrypt T

• Given ticket, client creates authenticator:

- Authenticator: T, {c, addr, time}Ks,c

- Client must know Ks,c to create authenticator

- T convinces server that Ks,c was given to c

• “Kerberized” protocols begin with authenticator

- Replaces passwords, etc.

– p. 37/52



Getting tickets in Kerberos

• Upon login, user fetches “ticket-granting ticket”

- c → t: c, t (t is name of TG service)

- t → c: {Kc,t, Tc,t = {s, t, addr, expire, Kc,t}Kt
}Kc

- Client decrypts with password (Kc = H(pwd))

• To fetch ticket for server s

- c → t: s, Tc,t, {c, addr, time}Kc,t

- t → c: {Ts,c, Ks,c}Kc,t

• Applications might use Kerberos as follows:

- c → s: Ts,c, {c, addr, time, Kc→s, Ks→c}Ks,c

- Then c and s use Kc→s and Ks→c to communicate securely in

each direction.

– p. 38/52



Example application: AFS

• User logs in, fetches kerberos ticket for AFS server

• Hands ticket and session key to file system

• Requests/replies accompanied by an authenticator

- Authenticator includes CRC checksum of packets

- Note: CRC is not a valid MAC!

• What about anonymous access to AFS servers?

- User w/o account may want universe-readable files

– p. 39/52



AFS permissions

• Each directory has ACL for all its files

- Precludes cross-directory links

• ACL lists principals and permissions

- Both “positive” and “negative” access lists

• Principals: Just kerberos names

- Extra principles, system:anyuser, system:authuser

• Permissions: rwlidak

- read, write, lookup, insert, delete, administer, lock

– p. 40/52



Security issues with kerberos

– p. 41/52



Security issues with kerberos

• Protocol weaknesses:

- Weak crypto, no MAC

- Kinit might act as oracle because of bad MAC

- Replay attacks

- Off-line password guessing

- Can’t securely change compromised password

• General design problems:

- KDC vulnerability

- Hard to upgrade system (everyone relies on KDC)

– p. 41/52



Kerberos inconvenience

• Large (e.g., university-wide) administrative realms

- University-wide administrators often on the critical path

- Departments can’t add users or set up new servers

- Can’t develop new services without central admins

- Can’t upgrade software/protocols without central admins

- Central admins have monopoly servers/services

(Can’t set up your own without a principal)

• Crossing administrative realms a pain

• Ticket expirations

- Must renew tickets every 12–23 hours

- Hard to have long-running backround jobs

– p. 42/52



SSH overview

• Widely-used secure remote login program

• MACs/encrypts all data sent over the network

- Version 2 of protocol basically gets this right (should MAC

ciphertext not plaintext, but OK w. particular algorithms)

- Open to man in the middle attack on first server access

• Often sends password at start of session

- Gets sent encrypted in a single TCP packet

• Assuming crypto secure (& no MiM), how to attack?

[Material from Song et. al follows]

– p. 43/52



Packet size

• Transmitted packets rounded to multiple of 8 bytes

- Version 1 even had exact packet-size in the clear

• Can tell if user’s password is less than 7 chars

- Password sent in one packet of initial exchange

• Why do we care?

– p. 44/52



Packet size

• Transmitted packets rounded to multiple of 8 bytes

- Version 1 even had exact packet-size in the clear

• Can tell if user’s password is less than 7 chars

- Password sent in one packet of initial exchange

• Why do we care?

- Might tell you which account to try to crack

– p. 44/52



Inter-keystroke timings

• Each character typed causes a packet to be sent

- Typical inter-character times 10–300 msec

- Typical network round-trip time 10 of msec

- Can get very accurate timing information by eavesdropping

• What can you learn from this?

- Some character sequences harder to type than others

- E.g., v–b is much slower to type than v–o

- In general, characters with different hands faster

- Two characters typed with same finger are much slower

- Digits, special chars also slower

• Idea: Use timing to learn about passwords

– p. 45/52



Character latency

< 100 100−150 150−200 200−250 250−300 > 300

Latency (milliseconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

at
io

 o
f c

ha
ra

ct
er

 p
ai

rs

Two letter keys, alternating hands
A letter and a number, alternating hands
Two letters, same hand, different fingers
Two letters, same finger
A letter and a number, same hand

– p. 46/52



How to know password being typed?

– p. 47/52



How to know password being typed?

• Traffic signature

- E.g., echo turned off when password typed

• Multi-user attack

- E.g., run ps on machine to see when victim runs pgp

• Nested ssh attack

- See remote host open SSH connection to another host

– p. 47/52



Example: su command

SSH
Server B

Client
Host A "s"

20

"u"

20

20 20

20

28

Return

"Password: "

20 20 20 20 20

"i" "a""J""u""l" Return

20

N

Prompt
time

time

• “Password:” prompt – 28 char packet

• Echo turned off for password, no return packets

– p. 48/52



Modeling keystroke timings

• Assume Gaussian-like distribution of timings

- For each key pair q, mean time µq, stdev σq

- Prob. of timing y Pr[y|q] =
1√

2πσq

e
−

(y−µq)
2

2σ2
q

- Significant but far from complete overlap between key pairs

• Model keystrokes as HMM

- Each key pair is a state, timing an observation

- AI techniques allow you to get n best choices

– p. 49/52



Latency vs. probability of key pairs

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Latency (millisecond)

P
ro

ba
bi

lit
y

– p. 50/52



Results

• Experiment: Assign users random passwords

- Picked from a reduced set of characters

- Users practice typing the password before experiments

• Train on users typing individual key pairs

• Ignore pause in the middle of passwords

• Output most likely password

• Bottom line: 50× reduction in brute-force cracking

- Half the time password shows up in top 1% output

– p. 51/52



How to work around the problem

• Send dummy packets when in echo mode

- Foils traffic signature detection of passwords

• Adding random delays to packets?

- Latencies in 100s of msec, so need big random delays

- Can still get info by averaging many sessions

- Delay might get seriously annoying

• Constant bit-rate traffic

- Practical for one session over a modem

– p. 52/52


	TCP and UDP port usage
	Insecure network services
	Firewalls
	Two separable topics
	Recall protocol layering
	Packet filtering
	Example: blocking forgeries
	Example: blocking outgoing mail
	Example: blocking outgoing mail

	Blocking by default
	Blocking by default

	Fragmentation
	Abnormal fragmentation
	Fragmentation attack
	Blocking UDP traffic
	Blocking UDP traffic

	Network address translation (NAT)
	Advantages of NAT
	How to firewall FTP protocol?
	Application proxies on firewall
	Application-level proxies
	Virtual Private Networks (VPNs)
	IPsec ESP protocol
	ESP high-level view
	ESP details
	Traffic shaping
	Bro: Detecting network intruders
	Bro model
	Goals of system
	Challenges
	Bro architecture
	Bro picture
	Overload and Crash attacks
	Challenges
	Subterfuge attacks
	State and checkpointing
	The Kerberos authentication system
	Kerberos principals
	Kerberos protocol
	Protocol detail
	Getting tickets in Kerberos
	Example application: AFS
	AFS permissions
	Security issues with kerberos
	Security issues with kerberos

	Kerberos inconvenience
	SSH overview
	Packet size
	Packet size

	Inter-keystroke timings
	Character latency
	How to know password being typed?
	How to know password being typed?

	Example: su command
	Modeling keystroke timings
	Latency vs. probability of key pairs
	Results
	How to work around the problem

