A few introductory remarks

Most courses teach things we know how to do
- E.g., build an operating system, network, VLSI chip, etc.

But we can’t teach you how to achieve security

- Security is a property of systems, algorithms

- Worse yet, security is a negative property—the absence of attacks
In fact, computer security is largely an open problem

- Very few systems have adequate security

- Really secure systems tend not to see widespread use

But we do hope to achieve at least 2 things w. CS155
- Give you and arsenal of security techniques you can use

- Help you achieve a security “mindset”
(by developing your intuition of where things go wrong)

~p.1/3

CS155 Goals

e Developing an arsenal of techniques
- Learn about prevalent mechanisms and techniques

- Also look at more esoteric systems with good ideas

e Developing a security mindset
- Vulnerabilities often arise in unexpected places
- Can concentrate on better door, but attacker will use window

- Learn to be suspicious of any reasoning

e My lectures intentionally contain false statements!
- Don’t fall asleep or tune out during lecture
- Try to find the flaws in what I'm saying and point them out

- We learn the most from our mistakes

~p.2/3

View access control as a matrix

Objects
(/ File 1 |File 2 |File 3 Filen\
User 1 [read |write |- : read
User 2 |write |write |write |- -
Subjects User 3 |- - : read |read
| User |read |write |read |write |read
m

e Subjects (processes/users) access objects (e.g., files)

e Each cell of matrix has allowed permissions

Specitying policy
e Manually filling out matrix would be tedious

e Use tools such as groups or role-based access control:

Individuals Roles Resources
'“'/»engineering > = Server 1
Inl / marketing = Server 2
'nl % Server 3

» human res

~p.4/3

Two ways to slice the matrix

e Along columns:
- Kernel stores list of who can access object along with object
- Most systems you’ve used probably do this

- Examples: Unix file permissions, Access Control Lists (ACLs)
e Along rows:
- Capability systems do this

- More on these later...

~p.5/3

Example: Unix protection

e Each process has a User ID & one or more group IDs

e System stores with each file:
- User who owns the file and group file is in
- Permissions for user, any one in file group, and other

¢ Shown by output of 1s -1 command:

user group other Owner group
AN AN AN TSN .
- TWX r-x r-xXx dm cs155 ... index.html

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group

- FElse, other permissions apply

~p.6/3

Unix continued

e Directories have permission bits, too

- Need write perm. on directory to create or delete a file

e Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)
e Example:

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc

- Directory writable only by root, readable by everyone

- Means non-root users can never delete files in /etc

-p.7/3

Unix continued

e Directories have permission bits, too

- Need write perm. on directory to create or delete a file

e Special user root (UID 0) has all privileges
- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)

e Example:
- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users can never delete files in /etc

Wrong: Just need to convince root-owned process to do it

-p.7/3

Clearing old files in /tmp

Root deletes unused files in /tmp nightly
find /tmp -atime +3 -exec rm -f -- {} \;

find identifies files not accessed in 3 days

- executes rm, replacing { } with file name

rm -f -- path deletes file path

- Note “--” prevents path from being parsed as option

What's wrong here?

~p.8/3

An attack

find/rm Attacker

creat (“/tmp/etc/passwd”)
readdir (“/tmp”) — “etc”

Istat (“/tmp/etc”) — DIRECTORY
readdir (*/tmp/etc”) — “passwd”
rename (“/tmp/etc” — “/tmp/x")

symlink (“/etc”, “/tmp/etc”)
unlink (“/tmp/etc/passwd”)

¢ Time-of-check-to-time-of-use (TOCTTOU) bug
- find checks that /tmp/etc is not symlink

- But meaning of file name changes before it is used

~p.9/3

Problem exacerbated by setuid

e Some legitimate actions require more privs than UID
- E.g., how should users change their passwords?

- Stored in root-owned /etc/passwd & /etc/shadow files

e Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and effective UID/GID
- real is user who launched setuid program

- effective is owner /group of file, used in access checks

e Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait
for once a day find job of last example)

- Attacker controls many aspects of program’s environment

~p.10/3

xterm command

e Provides a terminal window in X-windows

e Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user

- Also writes protected utmp /wtmp files to record users

e Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;
/* ... %/

~p.11/3

xterm command

Provides a terminal window in X-windows

Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user

- Also writes protected utmp /wtmp files to record users

Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)

return ERROR;
fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;

/% .. %/
access call avoids dangerous security hole

- Does permission check with real, not effective UID

~p.11/3

xterm command

Provides a terminal window in X-windows

Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user

- Also writes protected utmp /wtmp files to record users

Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)

return ERROR;
fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;

/*x ... x/

access call avoids dangerous security hole
Wrong: Another TOCTTOU bug

~p.11/3

An attack

xterm Attacker

creat (“/tmp/X”)
access (“/tmp/X") — OK

unlink (“/tmp/X”)

symlink (“/tmp/X" — “/etc/passwd”)
open (“/tmp/X”")

o Attacker changes /tmp/X between check and use

- xterm unwittingly overwrites /etc/passwd
- Time-of-check-to-time-of-use (TOCTTOU) bug

¢ OpenBSD man page: “CAVEATS: access() is a
potential security hole and should never be used.”

~p.12/3

SSH configuration files

e SSH 1.2.12 - secure login program, runs as root
- Needs to bind TCP port under 1,024 (privileged operation)

- Needs to read client private key (for host authentication)

e Also needs to read & write files owned by user
- Read configuration file “/.ssh/config

- Record server keys in 7/ .ssh/known_hosts

¢ Author wanted to avoid TOCTTOU bugs:

- First binds socket & reads root-owned secret key file
- Then drops all privileges before accessing user files

- Idea: avoid using any user-controlled arguments/files until
you have no more privileges than the user

~p.13/3

Trick question: ptrace bug

e Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several were vulerable

¢ Once in debugger
- Could use privileged port to connect anywhere
- Could read secret host key from memory

- Could overwrite local user name to get privs of other user

e The fix: restructure into 3 processes!

- Perhaps overkill, but really wanted to avoid problems

~p.14/3

Non-file permissions

¢ When can you send a process a signals?

- Need to kill processes you started, so should allow if real UIDs
match, even if effective don’t

- But should restrict to certain signals (e.g., SIGALARM might
mean something to application)

e What about Ptrace (debugger system call)

Ptrace lets one process modify another’s memory

Setuid gives a program more privilege than invoking user

Don’t let process ptrace more privileged process

But also must disable setuid if execing process ptraced

~p.15/3

A linux security hole

e Some programs acquire then release privileges

E.g., su user setuid, becomes user if password correct

e Consider the following:

A and B unprivileged processes owned by attacker
A ptraces B
A executes “su user” to its own identity

While su is superuser, B execs su root
(A is superuser, so this is not disabled)

A types password, gets shell, and is attached to su root

Can manipulate su root’s memory to get root shell

~p.16/3

Previous examples show two limitations of Unix

Many OS security policies subjective not objective
- When can you signal/debug process? Re-bind network port?
- Rules for non-file operations somewhat incoherent

- Even some file rules weird (Creating hard links to files)

Correct code is much harder to write than incorrect
- Delete file without traversing symbolic link
- Read SSH configuration file (requires 3 processes??)

- Write mailbox owned by user in dir owned by root/mail

Don’t just blame the application writers

- Must also blame the interfaces they program to

-p.17/3

Another security problem [Hardy]

o Setting: A multi-user time sharing system

- This time it’s not Unix

e Wanted fortran compiler to keep statistics
- Modified compiler /sysx/fort to record stats in /sysx/stat

- Gave compiler “home files license”—allows writing to
anything in /sysx (kind of like Unix setuid)

e What’s wrong here?

~p.18/3

A confused deputy

o Attacker could overwrite any files in /sysx
- System billing records kept in /sysx/bill got wiped
- Probably command like fort -o /sysx/bill file.f

o Is this a compiler bug?

- Original implementors did not anticipate extra rights

- Can’t blame them for unchecked output file

e Compiler is a “confused deputy”
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits from home files license
- Which master is it serving on any given system call?

- OS doesn’t know if it just sees open ("/sysx/bill", ...)

~p.19/3

Capabilities

e Slicing matrix along rows yields capabilities
- E.g., For each process, store a list of objects it can access

- Process explicitly invokes particular capabilities

e Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the
output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

e Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

~p.20/3

Hydra

Machine & programing env. built at CMU in "70s

OS enforced object modularity with capabilities
- Could only call object methods with a capability

Agumentation let methods manipulate objects

- A method executes with the capability list of the object, not the
caller

Template methods take capabilities from caller

- So method can access objects specified by caller

-p.21/3

KeyKOS

Capability system developed in the early 1980s

Goal: Extreme security, reliability, and availability

Structured as a “nanokernel”
- Kernel proper only 20,000 likes of C, 100KB footprint
- Avoids many problems with traditional kernels
- Traditional OS interfaces implemented outside the kernel
(including binary compatibility with existing OSes)
Basic idea: No privileges other than capabilities
- Partition system into many processes akin to objects

- Capabilities like pointers to objects in OO languages

-p.22/3

Unique features of KeyKOS

e Single-level store
- Everything is persistent: memory, processes, ...
- System periodically checkpoints its entire state
- After power outage, everything comes back up as it was
(may just lose the last few characters you typed)
o “Stateless” kernel design only caches information

- All kernel state reconstructible from persistent data

e Simplifies kernel and makes it more robust
- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel

- Run out of memory? Just checkpoint system

-p.23/3

KeyKOS capabilities

e Refered to as “keys” for short

o Types of keys:

devices — Low-level hardware access

pages — Persistent page of memory (can be mapped)
nodes — Container for 16 capabilities

segments — Pages & segments glued together with nodes
meters — right to consume CPU time

domains — a thread context

e Anyone possessing a key can grant it to others

But creating a key is a privileged operation

E.g., requires “prime meter” to divide it into submeters

~p.24/3

Capability details

Each domain has a number of key “slots”:
- 16 general-purpose key slots
- address slot — contains segment with process VM
- meter slot — contains key for CPU time

- keeper slot — contains key for exceptions
Segments also have an associated keeper
- Process that gets invoked on invalid reference
Meter keeper (allows creative scheduling policies)

Calls generate return key for calling domain

- (Not required—other forms of message don’t do this)

~p.25/3

KeyNIX: UNIX on KeyKOS

¢ “One kernel per process” architecture
- Hard to crash kernel

- Even harder to crash system

e Proc’s kernel is it’s keeper
- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper

e Of course, kernels need to share state

- Use shared segment for process and file tables

~p.26/3

KeyNIX overview

Drevice Spstem

File Spstem

dnnde
arnal

dnnde
arnal

amain

Flle

Flle

Flle

S Eeqrent

Address 5
Egme

i:EIEE!

NG

-p.27/3

Keynix I/O

e Every file is a different process
- Elegant, and fault isolated
- Small files can live in a node, not a segment

- Makes the namei () function very expensive

e Pipes require queues
- This turned out to be complicated and inefficient

- Interaction with signals complicated

e Other OS features perform very well, though
- E.g., fork is six times faster than Mach 2.5

~p.28/3

Self-authenticating capabilities

Every access must be accompanied by a capability
- For each object, OS stores random check value

- Capability is: {Object, Rights, MAC(check, Rights) }
OS gives processes capabilities

- Process creating resource gets full access rights

- Can ask OS to generate capability with restricted rights
Makes sharing very easy in distributed systems
To revoke rights, must change check value

- Need some way for everyone else to reacquire capabilities

Hard to control propagation

~p.29/3

Limitations of capabilities

o IPC performance a losing battle with CPU makers

CPUs optimized for “common” code, not context switches

Capability systems usually involve many IPCs

e Capability programming model never took off

Requires changes throughout application software

Call capabilities “file descriptors” or “Java pointers” and
people will use them

But discipline of pure capability system challenging so far

People sometimes quip that capabilities are an OS concept of
the future and always will be

~p.30/3

DAC vs. MAC

e Most people familiar with discretionary access
control (DAC)

- Unix permission bits are an example

- Might set a file private so only group friends can read it

e Discretionary means anyone with access can
propagate information:

- Mail sigint@enemy.gov < private

¢ Mandatory access control
- Security administrator can restrict propagation

- Abbreviated MAC (NOT a message authentication code)

~p.31/3

Bell-Lapadula model

View the system as subjects accessing objects
- The system input is requests, the output is decisions
- Objects can be organized in one or more hierarchies, H
(a tree enforcing the type of decendents)
Four modes of access are possible:
- execute — no observation or alteration
- read — observation
- append — alteration

- write — both observation and modification

The current access set, b, is (subj, obj, attr) tripples

An access matrix M encodes permissible access types

(as before, subjects are rows, objects columns)

-p.32/3

Security levels

o A security level is a (c, s) pair:
- ¢ = classification — E.g., unclassified, secret, top secret
- s = category-set — E.g., Nuclear, Crypto

e (c1,51) dominates (cy,s;) iff c; > cp and sp C 59
- Ly dominates L, sometimes written Ly J L, or L, T [

- levels then form a lattice

e Subjects and objects are assigned security levels
- level(S), level(O) — security level of subject/object
- current-level(S) — subject may operate at lower level
- level(S) bounds current-level(S) (current-level(S) C level(S))

- Since level(S) is max, sometimes called S’s clearance

-p.33/3

Security properties

e The simple security or ss-property:

- For any (5,0, A) € b, if A includes observation, then level(S)
must dominate level(O)

- E.g., an unclassified user cannot read a top-secret document

e The star security or *-property:

- If a subject can observe O; and modify O,, then level(O,)
dominates level(O;)

- E.g., cannot copy top secret file into secret file

- More precisely, given (S,0,A) € b:
if A = r then current-level(S) J level(O) (“no read up”)
if A = a then current-level(S) C level(O) (“no write down”)
if A = w then current-level(S) = level (O)

~p.34/3

Straw man MAC implementation

e Take an ordinary Unix system
e Put labels on all files and directories to track levels

e Each user U has a security clearance (level(U))

e Determine current security level dynamically

When U logs in, start with lowest curent-level

Increase current-level as higher-level files are observed
(sometimes called a floating label system)

If U’s level does not dominate current, kill program

If program writes to file it doesn’t dominate, kill it

e Is this secure?

-p.35/3

No: Covert channels

System rife with storage channels
- Low current-level process executes another program
- New program reads sensitive file, gets high current-level

- High program exploits covert channels to pass data to low

E.g., High program inherits file descriptor

- Can pass 4-bytes of information to low prog. in file offset

Other storage channels:

- Exit value, signals, file locks, terminal escape codes, ...

If we eliminate storage channels, is system secure?

~p.36/3

No: Timing channels

e Example: CPU utilization

- To send a 0 bit, use 100% of CPU is busy-loop
- To send a 1 bit, sleep and relinquish CPU

- Repeat to transfer more bits

e Example: Resource exhaustion
- High prog. allocate all physical memory if bit is 1

- If low prog. slow from paging, knows less memory available

e More examples: Disk head position, processor
cache/TLB polution, ...

-p.37/3

Reducing covert channels

e Observation: Covert channels come from sharing
- If you have no shared resources, no covert channels

- Extreme example: Just use two computers

e Problem: Sharing needed

- E.g., read unclassified data when preparing classified

e Approach: Strict partitioning of resources
- Strictly partition and schedule resources between levels
- Occasionally reapportion resources based on usage
- Do so infrequently to bound leaked information
- In general, only hope to bound bandwidth of covert channels

- Approach still not so good if many security levels possible

~p.38/3

Declassification

e Sometimes need to prepare unclassified report from
classified data

e Declassification happens outside of system

- Present file to security officer for downgrade

e Job of declassification often not trivial
- E.g., Microsoft word saves a lot of undo information

- This might be all the secret stuff you cut from document

~p.39/3

	A few introductory remarks
	CS155 Goals
	View access control as a matrix
	Specifying policy
	Two ways to slice the matrix
	Example: Unix protection
	Unix continued
	Clearing old files in 	exttt {/tmp}
	An attack
	Problem exacerbated by setuid
	xterm command
	An attack
	{}SSH configuration files
	Trick question: ptrace bug
	Non-file permissions
	A linux security hole
	
aise -.5inhbox {includegraphics [height=1in]{editorial.eps}}
	Another security problem [Hardy]
	A confused deputy
	Capabilities
	Hydra
	KeyKOS
	Unique features of KeyKOS
	KeyKOS capabilities
	Capability details
	KeyNIX: UNIX on KeyKOS
	KeyNIX overview
	Keynix I/O
	Self-authenticating capabilities
	Limitations of capabilities
	DAC vs. MAC
	Bell-Lapadula model
	Security levels
	Security properties
	Straw man MAC implementation
	No: Covert channels
	No: Timing channels
	Reducing covert channels
	Declassification

