
A few introductory remarks

• Most courses teach things we know how to do

- E.g., build an operating system, network, VLSI chip, etc.

• But we can’t teach you how to achieve security

- Security is a property of systems, algorithms

- Worse yet, security is a negative property—the absence of attacks

• In fact, computer security is largely an open problem

- Very few systems have adequate security

- Really secure systems tend not to see widespread use

• But we do hope to achieve at least 2 things w. CS155

- Give you and arsenal of security techniques you can use

- Help you achieve a security “mindset”

(by developing your intuition of where things go wrong)

– p.1/39

CS155 Goals

• Developing an arsenal of techniques

- Learn about prevalent mechanisms and techniques

- Also look at more esoteric systems with good ideas

• Developing a security mindset

- Vulnerabilities often arise in unexpected places

- Can concentrate on better door, but attacker will use window

- Learn to be suspicious of any reasoning

• My lectures intentionally contain false statements!

- Don’t fall asleep or tune out during lecture

- Try to find the flaws in what I’m saying and point them out

- We learn the most from our mistakes

– p.2/39

View access control as a matrix

• Subjects (processes/users) access objects (e.g., files)

• Each cell of matrix has allowed permissions
– p.3/39

Specifying policy
• Manually filling out matrix would be tedious

• Use tools such as groups or role-based access control:

– p.4/39

Two ways to slice the matrix

• Along columns:

- Kernel stores list of who can access object along with object

- Most systems you’ve used probably do this

- Examples: Unix file permissions, Access Control Lists (ACLs)

• Along rows:

- Capability systems do this

- More on these later. . .

– p.5/39

Example: Unix protection

• Each process has a User ID & one or more group IDs

• System stores with each file:

- User who owns the file and group file is in

- Permissions for user, any one in file group, and other

• Shown by output of ls -l command:- user
︷︸︸︷rwx group

︷︸︸︷r-x other
︷︸︸︷r-x owner

︷︸︸︷dm group
︷ ︸︸ ︷
s155 ... index.html

- User permissions apply to processes with same user ID

- Else, group permissions apply to processes in same group

- Else, other permissions apply

– p.6/39

Unix continued

• Directories have permission bits, too

- Need write perm. on directory to create or delete a file

• Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)

• Example:

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /et

- Directory writable only by root, readable by everyone

- Means non-root users can never delete files in /et

– p.7/39

Unix continued

• Directories have permission bits, too

- Need write perm. on directory to create or delete a file

• Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)

• Example:

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /et

- Directory writable only by root, readable by everyone

- Means non-root users can never delete files in /et

Wrong: Just need to convince root-owned process to do it

– p.7/39

Clearing old files in /tmp
• Root deletes unused files in /tmp nightlyfind /tmp -atime +3 -exe
 rm -f -- {} \;
• find identifies files not accessed in 3 days

- executes rm, replacing {} with file name

• rm -f -- path deletes file path

- Note “--” prevents path from being parsed as option

• What’s wrong here?

– p.8/39

An attack

find/rm Attacker

creat (“/tmp/etc/passwd”)

readdir (“/tmp”) → “etc”

lstat (“/tmp/etc”) → DIRECTORY

readdir (“/tmp/etc”) → “passwd”

rename (“/tmp/etc” → “/tmp/x”)

symlink (“/etc”, “/tmp/etc”)

unlink (“/tmp/etc/passwd”)

• Time-of-check-to-time-of-use (TOCTTOU) bug

- find checks that /tmp/et
 is not symlink

- But meaning of file name changes before it is used

– p.9/39

Problem exacerbated by setuid

• Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?

- Stored in root-owned /et
/passwd & /et
/shadow files

• Solution: Setuid/setgid programs

- Run with privileges of file’s owner or group

- Each process has real and effective UID/GID

- real is user who launched setuid program

- effective is owner/group of file, used in access checks

• Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait

for once a day find job of last example)

- Attacker controls many aspects of program’s environment

– p.10/39

xterm command
• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file

if (a

ess (logfile, W_OK) < 0)return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);/* ... */

a

ess

– p.11/39

xterm command
• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to fileif (a

ess (logfile, W_OK) < 0)return ERROR;fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);/* ... */
• a

ess call avoids dangerous security hole

- Does permission check with real, not effective UID

– p.11/39

xterm command
• Provides a terminal window in X-windows

• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to fileif (a

ess (logfile, W_OK) < 0)return ERROR;fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);/* ... */
• a

ess call avoids dangerous security hole

Wrong: Another TOCTTOU bug

– p.11/39

An attack

xterm Attacker

creat (“/tmp/X”)

access (“/tmp/X”) → OK

unlink (“/tmp/X”)

symlink (“/tmp/X” → “/etc/passwd”)

open (“/tmp/X”)

• Attacker changes /tmp/X between check and use

- xterm unwittingly overwrites /et
/passwd

- Time-of-check-to-time-of-use (TOCTTOU) bug

• OpenBSD man page: “CAVEATS: access() is a

potential security hole and should never be used.”

– p.12/39

SSH configuration files

• SSH 1.2.12 – secure login program, runs as root

- Needs to bind TCP port under 1,024 (privileged operation)

- Needs to read client private key (for host authentication)

• Also needs to read & write files owned by user

- Read configuration file ~/.ssh/
onfig
- Record server keys in ~/.ssh/known_hosts

• Author wanted to avoid TOCTTOU bugs:

- First binds socket & reads root-owned secret key file

- Then drops all privileges before accessing user files

- Idea: avoid using any user-controlled arguments/files until

you have no more privileges than the user

– p.13/39

Trick question: ptrace bug

• Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several were vulerable

• Once in debugger

- Could use privileged port to connect anywhere

- Could read secret host key from memory

- Could overwrite local user name to get privs of other user

• The fix: restructure into 3 processes!

- Perhaps overkill, but really wanted to avoid problems

– p.14/39

Non-file permissions

• When can you send a process a signals?

- Need to kill processes you started, so should allow if real UIDs

match, even if effective don’t

- But should restrict to certain signals (e.g., SIGALARM might

mean something to application)

• What about Ptrace (debugger system call)

- Ptrace lets one process modify another’s memory

- Setuid gives a program more privilege than invoking user

- Don’t let process ptrace more privileged process

- But also must disable setuid if execing process ptraced

– p.15/39

A linux security hole

• Some programs acquire then release privileges

- E.g., su user setuid, becomes user if password correct

• Consider the following:

- A and B unprivileged processes owned by attacker

- A ptraces B

- A executes “su user” to its own identity

- While su is superuser, B execs su root
(A is superuser, so this is not disabled)

- A types password, gets shell, and is attached to su root

- Can manipulate su root’s memory to get root shell

– p.16/39

Editorial

• Previous examples show two limitations of Unix

• Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?

- Rules for non-file operations somewhat incoherent

- Even some file rules weird (Creating hard links to files)

• Correct code is much harder to write than incorrect

- Delete file without traversing symbolic link

- Read SSH configuration file (requires 3 processes??)

- Write mailbox owned by user in dir owned by root/mail

• Don’t just blame the application writers

- Must also blame the interfaces they program to

– p.17/39

Another security problem [Hardy]

• Setting: A multi-user time sharing system

- This time it’s not Unix

• Wanted fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

- Gave compiler “home files license”—allows writing to

anything in /sysx (kind of like Unix setuid)

• What’s wrong here?

– p.18/39

A confused deputy

• Attacker could overwrite any files in /sysx
- System billing records kept in /sysx/bill got wiped

- Probably command like fort -o /sysx/bill file.f
• Is this a compiler bug?

- Original implementors did not anticipate extra rights

- Can’t blame them for unchecked output file

• Compiler is a “confused deputy”

- Inherits privileges from invoking user (e.g., read file.f)

- Also inherits from home files license

- Which master is it serving on any given system call?

- OS doesn’t know if it just sees open ("/sysx/bill", ...)

– p.19/39

Capabilities

• Slicing matrix along rows yields capabilities

- E.g., For each process, store a list of objects it can access

- Process explicitly invokes particular capabilities

• Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the

output file and conveys the capability to write the file

(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

• Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)

- Kernel-enforced (Hydra, KeyKOS)

- Self-authenticating capabilities (like Amoeba)

– p.20/39

Hydra

• Machine & programing env. built at CMU in ’70s

• OS enforced object modularity with capabilities

- Could only call object methods with a capability

• Agumentation let methods manipulate objects

- A method executes with the capability list of the object, not the

caller

• Template methods take capabilities from caller

- So method can access objects specified by caller

– p.21/39

KeyKOS

• Capability system developed in the early 1980s

• Goal: Extreme security, reliability, and availability

• Structured as a “nanokernel”

- Kernel proper only 20,000 likes of C, 100KB footprint

- Avoids many problems with traditional kernels

- Traditional OS interfaces implemented outside the kernel

(including binary compatibility with existing OSes)

• Basic idea: No privileges other than capabilities

- Partition system into many processes akin to objects

- Capabilities like pointers to objects in OO languages

– p.22/39

Unique features of KeyKOS

• Single-level store

- Everything is persistent: memory, processes, . . .

- System periodically checkpoints its entire state

- After power outage, everything comes back up as it was

(may just lose the last few characters you typed)

• “Stateless” kernel design only caches information

- All kernel state reconstructible from persistent data

• Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation

- No message queues, etc. in kernel

- Run out of memory? Just checkpoint system

– p.23/39

KeyKOS capabilities

• Refered to as “keys” for short

• Types of keys:

- devices – Low-level hardware access

- pages – Persistent page of memory (can be mapped)

- nodes – Container for 16 capabilities

- segments – Pages & segments glued together with nodes

- meters – right to consume CPU time

- domains – a thread context

• Anyone possessing a key can grant it to others

- But creating a key is a privileged operation

- E.g., requires “prime meter” to divide it into submeters

– p.24/39

Capability details

• Each domain has a number of key “slots”:

- 16 general-purpose key slots

- address slot – contains segment with process VM

- meter slot – contains key for CPU time

- keeper slot – contains key for exceptions

• Segments also have an associated keeper

- Process that gets invoked on invalid reference

• Meter keeper (allows creative scheduling policies)

• Calls generate return key for calling domain

- (Not required–other forms of message don’t do this)

– p.25/39

KeyNIX: UNIX on KeyKOS

• “One kernel per process” architecture

- Hard to crash kernel

- Even harder to crash system

• Proc’s kernel is it’s keeper

- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper

• Of course, kernels need to share state

- Use shared segment for process and file tables

– p.26/39

KeyNIX overview

– p.27/39

Keynix I/O

• Every file is a different process

- Elegant, and fault isolated

- Small files can live in a node, not a segment

- Makes the namei() function very expensive

• Pipes require queues

- This turned out to be complicated and inefficient

- Interaction with signals complicated

• Other OS features perform very well, though

- E.g., fork is six times faster than Mach 2.5

– p.28/39

Self-authenticating capabilities

• Every access must be accompanied by a capability

- For each object, OS stores random check value

- Capability is: {Object, Rights, MAC(check, Rights)}

• OS gives processes capabilities

- Process creating resource gets full access rights

- Can ask OS to generate capability with restricted rights

• Makes sharing very easy in distributed systems

• To revoke rights, must change check value

- Need some way for everyone else to reacquire capabilities

• Hard to control propagation

– p.29/39

Limitations of capabilities

• IPC performance a losing battle with CPU makers

- CPUs optimized for “common” code, not context switches

- Capability systems usually involve many IPCs

• Capability programming model never took off

- Requires changes throughout application software

- Call capabilities “file descriptors” or “Java pointers” and

people will use them

- But discipline of pure capability system challenging so far

- People sometimes quip that capabilities are an OS concept of

the future and always will be

– p.30/39

DAC vs. MAC

• Most people familiar with discretionary access
control (DAC)

- Unix permission bits are an example

- Might set a file private so only group friends can read it

• Discretionary means anyone with access can
propagate information:

- Mail sigint�enemy.gov < private
• Mandatory access control

- Security administrator can restrict propagation

- Abbreviated MAC (NOT a message authentication code)

– p.31/39

Bell-Lapadula model

• View the system as subjects accessing objects

- The system input is requests, the output is decisions

- Objects can be organized in one or more hierarchies, H

(a tree enforcing the type of decendents)

• Four modes of access are possible:

- execute – no observation or alteration

- read – observation

- append – alteration

- write – both observation and modification

• The current access set, b, is (subj, obj, attr) tripples

• An access matrix M encodes permissible access types

(as before, subjects are rows, objects columns)
– p.32/39

Security levels

• A security level is a (c, s) pair:

- c = classification – E.g., unclassified, secret, top secret

- s = category-set – E.g., Nuclear, Crypto

• (c1, s1) dominates (c2, s2) iff c1 ≥ c2 and s2 ⊆ s1

- L1 dominates L2 sometimes written L1 ⊒ L2 or L2 ⊑ L1

- levels then form a lattice

• Subjects and objects are assigned security levels

- level(S), level(O) – security level of subject/object

- current-level(S) – subject may operate at lower level

- level(S) bounds current-level(S) (current-level(S) ⊑ level(S))

- Since level(S) is max, sometimes called S’s clearance

– p.33/39

Security properties

• The simple security or ss-property:

- For any (S, O, A) ∈ b, if A includes observation, then level(S)

must dominate level(O)

- E.g., an unclassified user cannot read a top-secret document

• The star security or *-property:

- If a subject can observe O1 and modify O2, then level(O2)

dominates level(O1)

- E.g., cannot copy top secret file into secret file

- More precisely, given (S, O, A) ∈ b:

if A = r then current-level(S) ⊒ level(O) (“no read up”)

if A = a then current-level(S) ⊑ level(O) (“no write down”)

if A = w then current-level(S) = level (O)

– p.34/39

Straw man MAC implementation

• Take an ordinary Unix system

• Put labels on all files and directories to track levels

• Each user U has a security clearance (level(U))

• Determine current security level dynamically

- When U logs in, start with lowest curent-level

- Increase current-level as higher-level files are observed

(sometimes called a floating label system)

- If U’s level does not dominate current, kill program

- If program writes to file it doesn’t dominate, kill it

• Is this secure?

– p.35/39

No: Covert channels

• System rife with storage channels

- Low current-level process executes another program

- New program reads sensitive file, gets high current-level

- High program exploits covert channels to pass data to low

• E.g., High program inherits file descriptor

- Can pass 4-bytes of information to low prog. in file offset

• Other storage channels:

- Exit value, signals, file locks, terminal escape codes, . . .

• If we eliminate storage channels, is system secure?

– p.36/39

No: Timing channels

• Example: CPU utilization

- To send a 0 bit, use 100% of CPU is busy-loop

- To send a 1 bit, sleep and relinquish CPU

- Repeat to transfer more bits

• Example: Resource exhaustion

- High prog. allocate all physical memory if bit is 1

- If low prog. slow from paging, knows less memory available

• More examples: Disk head position, processor

cache/TLB polution, . . .

– p.37/39

Reducing covert channels

• Observation: Covert channels come from sharing

- If you have no shared resources, no covert channels

- Extreme example: Just use two computers

• Problem: Sharing needed

- E.g., read unclassified data when preparing classified

• Approach: Strict partitioning of resources

- Strictly partition and schedule resources between levels

- Occasionally reapportion resources based on usage

- Do so infrequently to bound leaked information

- In general, only hope to bound bandwidth of covert channels

- Approach still not so good if many security levels possible

– p.38/39

Declassification

• Sometimes need to prepare unclassified report from

classified data

• Declassification happens outside of system

- Present file to security officer for downgrade

• Job of declassification often not trivial

- E.g., Microsoft word saves a lot of undo information

- This might be all the secret stuff you cut from document

– p.39/39

	A few introductory remarks
	CS155 Goals
	View access control as a matrix
	Specifying policy
	Two ways to slice the matrix
	Example: Unix protection
	Unix continued
	Clearing old files in 	exttt {/tmp}
	An attack
	Problem exacerbated by setuid
	xterm command
	An attack
	{}SSH configuration files
	Trick question: ptrace bug
	Non-file permissions
	A linux security hole
	
aise -.5inhbox {includegraphics [height=1in]{editorial.eps}}
	Another security problem [Hardy]
	A confused deputy
	Capabilities
	Hydra
	KeyKOS
	Unique features of KeyKOS
	KeyKOS capabilities
	Capability details
	KeyNIX: UNIX on KeyKOS
	KeyNIX overview
	Keynix I/O
	Self-authenticating capabilities
	Limitations of capabilities
	DAC vs. MAC
	Bell-Lapadula model
	Security levels
	Security properties
	Straw man MAC implementation
	No: Covert channels
	No: Timing channels
	Reducing covert channels
	Declassification

