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Motivation: communication security

• To a first approximation, attackers control network

- We will talk about how they do this in two weeks

- But imagine attackers can intercept you packets, tamper with or

suppress them, and inject arbitrary packets
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Cryptography

• Still possible to communicate securely

- Cryptography is a tool that can often help

– p. 3/54



[Symmetric] Encryption

• Encryption keeps communications secret

• An encryption algorithm has two functions: E and D

- To communicate secretly, parties share secret key K

• Given a message M, and a key K:

- M is known as the plaintext

- E(K, M)→ C (C known as the ciphertext)

- D(K, C)→M

- Attacker cannot efficiently derive M from C without K

• Note E and D take same argument K

- Thus, also sometimes called symmetric encryption
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One-time pad

• Share a completely random key K

• Encrypt M by XORing with K:

E(K, M) = M⊕ K

• Decrypt by XORing again:

D(K, C) = C⊕ K

• Advantage: Information-theoretically secure

- Given C but not K, any M of same length equally likely

• Disadvantage: K must be as long as M

- Makes distributing K for each message difficult
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Idea: Computational security

• Distribute small K securely (e.g., 128 bits)

• Use K to encrypt far larger M (e.g., 1 MByte file)

• Given C = E(K, M), may be only one possible M

- If M has redundancy

• But believed computationally intractable to find

- E.g., could try every possible K, but 2128 keys a lot of work!
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Types of encryption

• Stream ciphers – pseudo-random pad

- Generate pseudo-random stream of bits from short key

- Encrypt/decrypt by XORing as with one-time pad

- But NOT one-time PAD! (People who claim so are frauds!)

• Most common algorithm type: Block cipher

- Operates on fixed-size blocks (e.g., 64 or 128 bits)

- Maps plaintext blocks to same size ciphertext blocks

- Today should use AES; other algorithms: DES, Blowfish, . . .

– p. 7/54



Example stream cipher (RC4)

• Initialization:

- S[0 . . . 255]← permutation 〈0, . . . 255, 〉

(based on key—specifics omitted)

- i← 0; j← 0

• Generating pseudo-random bytes:

i← (i + 1) mod 256 ;

j← (j + S[i]) mod 256 ;

swap S[i]↔ S[j] ;

t← (S[i] + S[j]) mod 256 ;

return S[t] ;
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RC4 security

• Goal: be indistinguishable from random sequence

- given part of the output stream, it should be intractable to

distinguish it from a truly random string

• Problems

- Second byte of RC4 is 0 with twice expected probability [MS01]

- Bad to use many related keys (see WEP 802.11b) [FMS01]

- Recommendation: Discard the first 256 bytes of RC4 output

[RSA, MS]
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Example use of stream cipher

• Pre-arrange to share secret s with web vendor

• Exchange payment information as follows

- Send: E(s, “Visa card #3273. . . ”)

- Receive: E(s, “Order confirmed, have a nice day”)

• Now an eavesdropper can’t figure out your Visa #
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Wrong!

• Let’s say an attacker has the following:

- c1 = Encrypt(s, “Visa card #3273. . . ”)

- c2 = Encrypt(s, “Order confirmed, have a nice day”)

• Now compute:

- m← c1 ⊕ c2 ⊕ “Order confirmed, have a nice day”

• Lesson: Never re-use keys with a stream cipher

- Similar lesson applies to one-time pads

(That’s why they’re called one-time pads.)
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Example block cipher (blowfish)

F

F

F

P1

P2

P16

P17P18
32 bit 32 bit

32 bit32 bit

32 bit

Plaintext

64 bit 32 bit32 bit

64 bit
Ciphertext

13 More Iterations

“Feistel network”

• Derive F and 18 subkeys

from Key—P1 . . . P18

• Divide plaintext block into

two halves, L0 and R0

• Ri = Li−1 ⊕ Pi

Li = Ri−1 ⊕ F(Ri)

• R17 = L16 ⊕ P17

L17 = R16 ⊕ P18

• Output L17R17.

(Note: This is just to give an idea; it’s not a complete description)
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Using a block cipher
• In practice, message may be more than one block

• Encrypt with ECB (electronic code book) mode:

- Split plaintext into blocks, and encrypt separately

Enc Enc Enc

c1 c2 c3

m1 m2 m3

- Attacker can’t decrypt any of the blocks; message secure

• Note: can re-use keys, unlike stream cipher

- Every block encrypted with cipher will be secure

– p. 13/54



Wrong!

• Attacker will learn of repeated plaintext blocks

- If transmitting sparse file, will know where non-zero regions lie

• Example: Intercepting military instructions

- Most days, send encryption of “nothing to report.”

- On eve of battle, send “attack at dawn.”

- Attacker will know when battle plans are being made
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Another example [Preneel]

– p. 15/54



Cipher-block chaining (CBC)

• c1 = E(K, mi ⊕ IV), ci = E(K, mi ⊕ ci−1)

• Ensures repeated blocks are not encrypted the same

IV

Enc Enc Enc

m1 m2 m3

c1 c2 c3
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Encryption modes

• CBC, ECB are encryption modes, but there are others

• Cipher Feedback (CFB) mode: ci = mi ⊕ E(K, ci−1)

- Useful for messages that are not multiple of block size

• Output Feedback (OFB) mode:

- Repeatedly encrypt IV & use result like stream cipher

• Counter (CTR) mode: ci = mi ⊕ E(K, i)

- Useful if you want to encrypt in parallel

• Q: Given a shared key, can you transmit files securely

over net by just encrypting them in CBC mode?
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Problem: Integrity

• Attacker can tamper with messages

- E.g., corrupt a block to flip a bit in next

• What if you delete original file after transfer?

- Might have nothing but garbage at recipient

• Encryption does not guarantee integrity

- A system that uses encryption alone (no integrity check) is

often incorrectly designed.

- Exception: Cryptographic storage (to protect disk if stolen)
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Message authentication codes

• Message authentication codes (MACs)

- Sender & receiver share secret key K

- On message m, MAC(K, m)→ v

- Intractable to produce valid 〈m, v〉without K

• To send message securely, append MAC

- Send {m, MAC(K, m)} (m could be ciphertext, E(K′, M))

- Receiver of {m, v} checks v
?
= MAC(K, m)

• Careful of Replay – don’t believe previous {m, v}

– p. 19/54



Example: CBC MAC

Enc Enc Enc

m1 m2 m3

v

• Encrypt M in CBC mode, keep only last block

- Or re-encrypt last block w. different key to strengthen

• Do not use CBC MAC as encryption

- Must encrypt/MAC in two passes with two keys

- More efficient single-pass “Authenticated encryption modes”

such as OCB exist, but non-obvious; don’t roll your own
– p. 20/54



Cryptographic hashes

• Hash arbitrary-length input to fixed-size output

- Typical output size 160–512 bits

- Cheap to compute on large input (faster than network)

• Collision-resistant: Intractable to find
x 6= y, H(x) = H(y)

- Of course, many such collisions exist

- But no one has been able to find one, even after analyzing the

alrogithm

• Most popular hash SHA-1

- [Nearly] broken

- Today should use SHA-256 or SHA-512
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Applications of cryptographic hashes

• Small hash uniquely specifies large data

- Hash a file, remember the hash value

- Recompute hash later, if same value no tampering

- Hashes often published for software distribution

• Hash tree [Merkle] lets you verify check small piece

of large file/database with log number of nodes

H

m0 m1 m2 m3 m4 m5 m6 m7

– p. 22/54



HMAC

• Use cryptographic hash to produce MAC

• HMAC(K, m) = H(K ⊕ opad, H(K ⊕ ipad, m))

- H is a cryptographic hash such as SHA-1

- ipad is 0x36 repeated 64 times, opad 0x5c repeated 64 times

• Note: Don’t just use H(K,M) as a MAC

- Say you have {M, SHA-1(K, M)}, but not K

- Can produce {M′, SHA-1(K, M′)}where M′ 6= M
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Order of Encryption and MACs

• Should you Encrypt then MAC, or vice versa?

– p. 24/54



Order of Encryption and MACs

• Should you Encrypt then MAC, or vice versa?

• MACing encrypted data is always secure

• Encrypting {Data+MAC}may not be secure!

- Consider the following secure, but stupid encryption alg

- Transform m→ m′ by mapping each bit to two bits:

Map 0→ 00 (always), 1→ {10, 01} (randomly pick one)

- Now encrypt m′ with a stream cipher to produce c

- Attacker flips two bits of c—if msg rejected, was 0 bit in m

– p. 24/54



Public key encryption

• Three randomized algorithms:

- Generate – G(1k)→ K, K−1

- Encrypt – E(K, m)→ {m}K

- Decrypt – D(K−1, {m}K)→ m

• Provides secrecy, like conventional encryption

- Can’t derive m from {m}K without knowing K−1

• Encryption key K can be made public

- Can’t derive K−1 from K

- Everyone can use the same public key to encrypt messages for

one recipient.

– p. 25/54



The RSA algorithm

• Generation:

- Pick two primes, p and q, let N = pq

- Pick random e that does not divide (p− 1)(q− 1)

- Compute d such that de ≡ 1 (mod (p− 1)(q− 1))

- Public key: N, e, private key N, d

• If m ∈ Z∗

N, then (me mod N)d mod N = m.

• Fact: For large enough p, q and random m

- Given N, e, and me mod N, but not p, q, d

- No one knows practical algorithm to find m

• To encrypt a message, just treat bits as number and

compute me mod N.

– p. 26/54



Wrong!

• What if message is from a small set (yes/no)?

• What if I want to outbid you in secret auction?

- I take your encrypted bid c and submit c (101/100)
e mod n.

• What if there’s some protocol in which I can learn
other message decryptions?

- E.g., people escrow ciphertexts, and get them back under

certain circumstances (if an employee is fired or dies)

- I take your ciphertext c = me mod n, and escrow c2e mod n.

- After I’m fired, my coconspirator gets back 2m

• Many people make this mistake, including SSL

- SSL didn’t return decryptions, bur error messages had some

information

– p. 27/54



Notions of security

• How do design systems using RSA?

- You don’t want to think about interactions between your error

messages, modular exponentiation, and lattice theory.

• A PKS is adaptive chosen ciphertext secure if

- No attacker A can win the following game with probability

more than 1/2+negligible:

- A can first ask for arbitrary messages to be decrypted

- A then produces two messages, m0 and m1

- The good guy flips a coin b← {0, 1}, returns c = E(K, mb).

- A can ask for any messages except c to be decrypted

- A guesses the value of b

– p. 28/54



Achieving Adaptive CC security

• Good properties for message→ integer mapping

- Randomness: unique ciphertext even for same message

- Redundancy: make most strings invalid ciphertexts

- Entanglement: partial information about integer should reveal

nothing about message

- Invertibility: of course, need to recover message

• Note last two were achieved by Fiestel network

• Can use similar idea to construct a padding scheme

– p. 29/54



Practical solution: OAEP+ [Shoup]
• Transforms plaintext M into number M′ for RSA:

H′

G

H

M′ =

M r (random)

• Not provable, but heuristically secure
– p. 30/54



Digital signatures

• Three (randomized) algorithms:

- Generate – G(1k)→ K, K−1

- Sign – S
(

K−1, m
)

→ {m}K−1

- Verify – V (K, {m}K−1 , m)→ {true, false}

• Provides integrity, like a MAC

- Cannot produce valid 〈m, {m}K−1〉 pair without K−1

• Many keys support both signing & encryption

- But Encrypt/Decrypt and Sign/Verify different algorithms!

- Common error: Sign by “encrypting” with private key

– p. 31/54



Digital signature security

• Want signatures to be secure for all applications

- Analogous to strength of encryption definition

• Existential unforgeability against chosen message
attack =⇒ attacker has negligible chance of winning
this game:

- Attacker asks you to sign m0, m1, . . . , mn

- Attacker gets valid si after request for mi

- Attacker outputs (m′, s′), where m′ 6∈ {mi} and

Verify(K, m′, s′) = true

– p. 32/54



Example: ElGamal signatures

• Key generation:

- Chose large prime p, generator g of Z∗

p (p, g can be global)

- Select x such that 1 ≤ x ≤ p− 2, compute y← gx mod p

- Public key is (p, g, y), private key is (p, g, x)

• Signature of m is (r, s), computed as follows:

- Chose random k s.t. 1 ≤ k ≤ p− 2 and k−1 mod p− 1 exists

- Set r← gk mod p, s← k−1 (H(m)− xr) mod (p− 1)

• Verification:

- Sanity check: 1 ≤ r ≤ p− 1

- Verify: yrrs ?
≡ gH(m) (mod p)

- yrrs = (gxr)
(

gks
)

= gxr+ks = gxr+k·k−1(H(m)−xr) = gH(m)

– p. 33/54



Cost of cryptographic operations

Operation msec

Encrypt 0.18

Decrypt 6.60

Sign 6.71

Verify 0.03

[1,280-bit Rabin-Williams keys on 3 GHz Pentium IV]

• Cost of public key algorithms significant

- Encryption only on small messages (< size of key)

- Signature cost relatively insensitive to message size

• In contrast, symmetric algorithms much cheaper

- Symmetric can encrypt+MAC faster than 100Mbit/sec LAN

– p. 34/54



Hybrid schemes

• Use public key to encrypt symmetric key

- Send message symmetrically encrypted: {msg}KS
, {KS}KP

• Use PK to negotiate secret session key

- E.g., Client sends server {K1, K2, K3, K4}KP

- Client sends server: {{m1}K1
, MAC(K2, {m1}K1

)}

- Server sends client: {{m2}K3 , MAC(K4, {m2}K3)}

• Often want mutual authentication (client & server)

- Or more complex, user(s), client, & server

– p. 35/54



Server authentication

• An approach: Use public key cryptography

- Give client public key of server

- Lets client authenticate secure channel to server

• Problem: Key management problem

- How to get server’s public key?

- How to know the key is really server’s?

– p. 36/54



Danger: impersonating servers

Attacker

Client Server

• Attacker pretends to be server, gives its own pub key

• Client sends sensitive data to fake server

• Attacker sends bad data back to client

– p. 37/54



Man in the middle attacks

• Attacker might not look like server

- E.g., user might notice different web site & not send password

• Man in the middle attack foils user:

- Attacker emulates server when talking to client

- Attacker emulates client when talking to server

- Attacker passes most messages through unmodified

- Attacker substitutes own public key for client’s & server’s

- Attacker records secret data, or tampers to cause damage

– p. 38/54



Key management

• Put public keys in the phone book

- How do you know you have the real phone book?

- How is a program supposed to use phone book

www.phonebook.com? (are you talking to real web server)

• Exchange keys with people in person

• “Web of trust” – get keys from friends you trust

– p. 39/54



Certification authorities

1. PubKey, $$$

2. Certificate

3. Connection request

4. PubKey, Certificate
Client

Authority
Certification

Server

• Everybody trusts some certification authority

• Everybody knows authority’s public key

- E.g., built into web browser

– p. 40/54



SSL/TLS Overview

• SSL offers security for HTTP protocol

- That’s what the padlock means in your web browser

• Authentication of server to client

• Optional authentication of client to server

- Incompatibly implemented in different browsers

- CA infrastructure not in widespread use

• Confidentiality of communications

• Integrity protection of communications

– p. 41/54



Purpose in more detail

• Authentication based on certification authorities
(CAs)

- Certifies who belongs to a public key (domain name and real

name of company)

- Example: Verisign

• What SSL Does Not Address

- Privacy

- Traffic analysis

- Trust management

– p. 42/54



Ciphersuites: Negotiating ciphers

• Server authentication algorithm (RSA, DSS)

• Key exchange algorithm (RSA, DHE)

• Symmetric cipher for confidentiality (RC4, DES)

• MAC (HMAC-MD5, HMAC-SHA)
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Overview of SSL Handshake

Supported ciphers, client random

Client Server

Compute keysCompute keys

Chosen cipher, server random, certificate

Encrypted pre−master secret

MAC of handshake messages

MAC of handshake messages

From “SSL and TLS” by Eric Rescorla
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Simplified SSL Handshake

• Client and server negotiate on cipher selection.

• Cooperatively establish session keys.

• Use session keys for secure communication.

– p. 45/54



Client Authentication Handshake

• Server requests that client send its certificate.

• Client signs a signed digest of the handshake

messages.

– p. 46/54



SSL Client Certificate

Supported ciphers, client random

Client Server

Compute keysCompute keys
MAC of handshake messages

MAC of handshake messages

Chosen cipher, server random, certificate certificate request

Encrypted pre−master secret certificate, cert verify

From “SSL and TLS” by Eric Rescorla
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Establishing a Session Key

• Server and client both contribute randomness.

• Client sends server a “pre-master secret” encrypted

with server’s public key.

• Use randomness and pre-master secret to create
session keys:

- Client MAC

- Server MAC

- Client Write

- Server Write

- Client IV

- Server IV

– p. 48/54



Establishing a Session Key

Master secret

C
lient M

A
C

 key

S
erver M

A
C

 key

C
lient w

rite key

S
erver w

rite key

S
erver IV

C
lient IV

Key block

Client random Server randomPre−master secret

From “SSL and TLS” by Eric Rescorla
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Session Resumption

• Problem: Public key crypto expensive

• New TCP connection, reuse master secret.

- Avoids unnecessary public key cryptography.

• Combines cached master secret with new

randomness to generate new session keys.

• Works even when the client IP changes (servers cache

on session ID, clients cache on server hostname).

– p. 50/54



What does CA mean by certificate?

• That a public key belongs to someone authorized to

represent a hostname?

• That a public key belongs to someone who is

associated in some way with a hostname?

• That a public key belongs to someone who has lots

of paper trails associated to a company related to a

hostname?

• That the CA has no liability?

• >100-page Certification Practice Statement (CPS)

– p. 51/54



How to get a Verisign certificate

• Pay Verisign ($300)

• Get DBA license from city call ($20)

- No on-line check for name conflicts. . . can I do business as

Microsoft?

• Letterhead from company ($0)

• Notarized document (need driver’s license) ($0)

• Conclusions:

- Easy to get a fraudulent certificate

- Maybe not so easy to avoid prosecution afterwards

• But that’s only Verisign’s policy

- Many CAs can issue certificates

– p. 52/54



So many CAs. . .

– p. 53/54



CA Convenience vs. Security

• How convenient is a Verisign certificate?

- Need $300 + cooperation from Stanford IT to get one here

- Good for credit cards, but shuts out many other people

• How trustworthy is a Verisign certificate?

- In mid-March 2001, VeriSign, Inc., advised Microsoft that on

January 29 and 30, 2001, it issued two. . . [fraudulent]

certificates. . . . The common name assigned to both certificates

is “Microsoft Corporation.”

VeriSign has revoked the certificates. . . . However. . . it is not

possible for any browser’s CRL-checking mechanism to locate

and use the VeriSign CRL.

– Microsoft Security Bulletin MS01-017

– p. 54/54
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