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Running Unreliable Code                        

John Mitchell

CS155

Topic

uHow can you run code that could contain a 
dangerous bug or security vulnerability?

uExamples:
• Run web server, may have buffer overflow attack
• Run music player, may export your files to network

Several Historical Applications

uTest and debug system code
• Contain or monitor execution to find bugs

uExtensible Operating Systems
• Modern trend toward smaller kernel, more 

functionality provided by user

uUntrusted code from network
• Download from web
• Code installed by browser

uSecure System Composition
• Want to construct a secure system from mix of 

highly assured components and COTS

Many uses for extensibility

uOS Kernel
uWeb browser
uRouters, switches, active networks
uServers, repositories

Common problem:
• Give untrusted code limited access to resources, 

without compromising host integrity

untrusted
host

This lecture

uConventional OS: chroot and jail
uFour approaches for compiled code

• Code modification for run-time monitoring
• System call interposition
• Proof-carrying code
• Virtual machines (e.g., VMWare)

uNext lecture
• Browser security
• Java security

Conventional OS

uKeep processes separate
• Each process runs in separate address space
• Critical resources accessed through systems calls

– File system, network, etc.

uAdditional containment options 
• chroot
• jail
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Unix chroot

uchroot changes root directory
• Originally used to test system code “safely”
• Confines code to limited portion of file system 

uExample use
• chdir /tmp/ghostview
• chroot  /tmp/ghostview
• su tmpuser                       (or su nobody)

uCaution
• chroot changes root directory, but not current dir

– If forget chdir, program can escape from changed root

• If you forget to change UID, process could escape

Only root should execute chroot

uOtherwise, jailed program can escape
– mkdir(/temp)         /* create temp directory             */
– chroot(/temp)        /* now current dir is outside jail    */
– chdir(“ ../../../.”)    /* move current dir to true root dir */
– chroot(“.”)            /* out of jail                                 */

Note: this is implementation dependent

uOtherwise, anyone can become root
– Create bogus file /tmp/etc/passwd
– Do chroot(“/tmp”)
– Run login or su (if exists in jail)

History: In Ultrix 4.0, chroot could be executed by anyone

Free BSD jail command

uExample
• jail apache

uStronger than chroot
• Calls chroot
• Also limits what root can do

– Each jail is bound to a single IP address
• processes within the jail may not make use of any 

other IP address for outgoing or incoming 
connections

– Can only interact with other processes in same jail

Problems with chroot, jail approach

u Too coarse 
• Confine program to directory

– but this directory may not contain utilities that program 
needs to call

• Copy utilities into restricted environment 
– but then this begins to defeat purpose of restricted 

environment by providing dangerous capabilities

u Does not monitor network access
u No fine grained access control

• Want to allow access to some files but not others

Extra programs needed in jail

uFiles needed for /bin/sh
/usr/ld.so.1             shared object libraries
/dev/zero               clear memory used by shared objects
/usr/lib/libc.so.1       general C library
/usr/lib/libdl.so.1      dynamic linking access library
/usr/lib/libw.so.1  Internationalization library
/usr/lib/libintl.so.1  Internationalization library
Some others

uFiles needed for perl
• 2610 files and 192 directories 

How can we get better protection?

uGoals
• Finer-grained protection

– Enforce more sophisticated policies than “every process 
can only execute own instructions and touch own 
memory”

• More efficient fault isolation

uRelevant security principles
• Compartmentalize
• Least privilege
• Defense in depth
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Rest of lecture

uSystem Monitoring
• Software Fault Isolation

– Modify binaries to catch memory errors 

• Wrap/trap system calls
– Check interaction between application and OS

• Theoretical and practical limit: safety properties

uCheck code before execution
• Proof-carrying code

– Allow supplier to provide checkable proof

uVirtual Machines  (e.g., VMWare; JVM next lecture)
• Wrap OS with additional security layer

Software Fault Isolation (SFI)

uWahbe, Lucco, Anderson, Graham [SOSP’93]
• Collusa Software (founded ’94, bought by Microsoft ‘96)

uMultiple applications in same address space
uPrevent interference from memory read/write
uExample

• Web browser: shockwave plug-in should not be 
able to read credit-card numbers from other pages 
in browser cache

SFI is old idea in OS, made obsolete by hardware support for separate 
process address spaces, now considered for performance, extensible OS

Why software protection?

uCompartmentalize and use least privilege
More compartmentalization
⇒ More processes if each is separate process
⇒ More context switches 

and inter-process communication

uUseful to achieve OS-level protection (or better) 
without overhead of OS context switch

u Partition memory space into segments 

u Add instructions to binary executables 
• Check every jump and memory access
• Target location must be in correct segment

– All locations in segment have same high-order bits

SFI idea: 

Code segment Data segment

Code segment Data segment

Code segment Data segment

Application 1

Application 2

Application 3

Check jumps and memory access

u Consider writes (Jumps are a little simpler)

u Replace each write by the sequence:
dedicated-reg ⇐ target address
scratch-reg ⇐ (dedicated-reg >> shift-size)
scratch-reg == segment-reg
trap if not equal
store through dedicated-reg

u This requires several registers:
• Dedicated-reg holds the address being computed

– Needed in case code jumps into middle of instrumentation

• Segment-reg hold current valid segment
• Shift-size holds the size of the shift to perform

Slide credit: Alex Aiken

A Faster Approach

uSkip test; Just overwrite segment bits

dedicated-reg ⇐ target-reg & mask-reg

dedicated-reg ⇐ dedicated-reg | segment-reg
store through dedicated-reg 

uTradeoffs
• Much faster

– Only two instructions per instrumentation point

• Loses information about errors
– Program may keep running with incorrect instructions and data

• Uses five registers
– 2 for code/data segment, 2 for code/data sandboxed

addresses, 1 for segment mask
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Optimizations

uUse static analysis to omit some tests
• Writes to static variables
• Small jumps relative to program counter

uAllocate larger segments to simplify calculations 
• Some references can fall outside of segment
• Requires unused buffer regions around segments
• Example: In load w/offset, sandbox register only

– Sandboxing reg+offset requires one additional operation

When are tests added to code?

uTwo options
• Binary instrumentation

– Most portable & easily deployed
– Harder to implement

• Modified compiler
– Requires source code
– But easier to implement

uDecision: modified compiler

Results

uWorks pretty well
• Overhead · 10% on nearly all benchmarks 
• Often significantly less (4%?)

uProvides limited protection
• Protects memory of host code

– does not trap system calls that could cause problems, etc. 

• Extension code unprotected from itself

Sequoia DB benchmarks:  
2-7% overhead for SFI,  18-40% overhead for OS

More on Jumps

uPC-relative jumps are easy:
• just adjust to the new instruction’s offset.

uComputed jumps are not:
• must ensure code doesn’t jump into or around a check or 

else that it’s safe for code to do the jump.
• for SFI paper, they ensured the latter:

– a dedicated register is used to hold the address that’s going to
be written – so all writes are done using this register.

– only inserted code changes this value, and it’s always changed 
(atomically) with a value that’s in the data segment.

– so at all times, the address is “valid” for writing.
– works with little overhead for almost all computed jumps.

Slide credit: Alex Aiken

Wrap or trap system calls 

uSeveral projects, e.g., Janus (Berkeley)
uTrap system calls

• Check parameters, deny unauthorized calls
• Enforce mandatory access control in OS that does 

not provide mandatory access control

uTwo approaches in Unix and variants
• ptrace system call - register a callback that will be 

called whenever application makes a system call
• /proc virtual file system under Solaris

uSystem-independent approach
• Wrap system calls

Ptrace     (after ptrace system call)

uProblems
• Coarse: trace all calls or none
• Limited error handling

– Cannot abort system call without killing service

Monitor 
Process

Untrusted 
Application
(ghostview)

OS

open(“/etc/passwd”) wake-up

Note: Janus used ptrace initially, later discarded …
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/proc virtual file system under Solaris

uCan trap selected system calls
• obtain arguments to system calls
• can cause system call to fail with errnm = EINTR
• application can handle failed system call in 

whatever way it was designed to handle this 
condition

uParallelism (for ptrace and /proc)
• If service process forks, need to fork monitor => 

must monitor fork calls

Hard part

uDesign good policy for allow, deny, test args
• Example choice of system calls

• Example policy for file args 
path allow read, write /tmp/*
path deny  /etc/passwd
network deny all, allow XDisplay

Deny

Test
Allow

mount, setuid

open, rename, stat, kill
close, exit, fork, read, write

Counterintuitive, 
but OK if file is OK

Example: trapping X

uApplication, such as ghostscript 
• Can open X window, needs to make X windows calls
• However, X allows some attacks; 

– do not want ghostscript/ghostview to read characters you 
type in any window

uSolution
• X proxy called Xnest

– application, redirected through Xnest, only has access to 
small nested window on display

Note: Xnest usually runs in firewall

X Communication 

X-client

port 6000

X DisplayServer

Application
(ghostview)

X-server

Xnest

MonitorApplication
(ghostview)

OS

X port 6000

Xnest
X Display

App 
window

uSystem available from TIS (NAI) 1999
• wrapper description language
• easy to implement policy on system calls (policy language)

• works with many OSs

uSimilar idea: TCP wrapper

Another approach: syscall wrapper

Wrapper Layer

Operating System

Process 1 Process 2

open(“/etc/passwd”)

Check against policy
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Garfinkel: Interposition traps and pitfalls

uIncorrectly replicating OS semantics
• Incorrectly mirroring OS state
• Incorrectly mirroring OS code

uOverlooking indirect paths to resources
uRace conditions

• Symbolic link races
• Relative path races
• Argument races
• more …

uSide effects of denying system calls

Many projects on monitoring

uSFI [Wahbe et al]
• events are read, write, jump
• enforce memory safety properties

uSASI [Erlingsson & Schneider]
Naccio [Evans & Twyman]

• flexible policy languages
• not certifying compilers

uRecent workshops on run-time monitoring …

Security Automata

uGeneral mechanism for specifying policy
uSpecify any safety property 

• access control policies  
– “cannot access file /etc/passwd”

• resource bound policies  
– “allocate no more than 1M of memory”

• the Melissa policy 
– “no network send after file read” 

Example

uPolicy: No send operation after a read 

start has
read

read(f)

send read(f)

bad send

Monitor program execution

start has
read

read(f)

send read(f)

bad send

% untrusted program % s.a.: start state
send(); % ok ⇒ start
read(f); % ok ⇒ has read 
send(); % bad  security violation

Bounding Resource Use

0

malloc (i)

i n - 1

uPolicy: "allocate fewer than n bytes“
• Requires n states 

...

bad
malloc (i)

...
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Enforcing Security Autom Policy

uWrap function calls in checks:

uImprove performance using program analysis

let next_state = checksend(current_state) in
send()

send()

Limits to Run-Time Monitoring

uWhat’s a program?
• A set of possible executions

uWhat’s an execution?
• A sequence of states

uWhat’s a security policy?
• A predicate on a set of executions

Safety Policies

uMonitors can only enforce safety policies 
uSafety policy is a predicate on a prefix of 

states [Schneider98]
• Cannot depend on future

– Once predicate is false, remains false

• Cannot depend on other possible executions

Security vs Safety

uMonitoring can only check safety properties
uSecurity properties

• Can be safety properties
– One user cannot access another’s data
– Write file only if file owner

• But some are not
– Availability
– Information flow

Larger Goal

uDefine policies 
• high-level, flexible and system-independent 

specification language 

uInstrument system 
• dynamic security checks and static information

uIf this is done on source code …
• Preserve proof of security policy during compilation 

and optimization
• Verify certified compiler output to reduce TCB

Trusted Computing Base: the part of the system you rely on for security

Proof-Carrying Code

uBasic idea 
• Receiver verifies proof provided by code producer

u Important:
• finding a proof is hard
• verifying a proof is easy
• “not so apparent to systems people”

Untrusted 
Code 

Producer

Code + Proof

Receiver

V.C. Generator

Proof Checker

Execution

code

code

proof
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Example: Packet Filters

OS kernel

user process 
space

network monitoring 
application

network

packet 
filter

OS kernel

user process 
space

network monitoring 
application

network

Example: Packet Filters

An Experiment:

uSafety Policy:
• Given a packet, returns yes/no
• Packets are read only, small scratchpad
• No loops in filter code

uExperiment: [Necula & Lee, OSDI’96]
• Berkeley Packet Filter Interpreter
• Modula-3 (SPIN)
• Software Fault Isolation
• PCC

Packet Filters in PCC

host

untrusted
client

PF safety 
policyproofchecking

CPU

assembly 
code

executable 
code

proof

witness-
generating 

theorem prover

Packet Filter Summary

The PCC packet filter worked extremely well:
• BPF safety policy was easy to verify automatically.

– r0 is aligned address of network packet (read only)
– r1 is length of packet (>=64 bytes)
– r2 is aligned address of writeable 16-byte array

• Allowed hand-optimized packet filters.
– The “world’s fastest packet filters”.
– 10 times faster than BPF.

• Proof sizes and checking times were small.
– About 1ms proof checking time.
– 100%-300% overhead for attached proof.

Results: PCC wins

0
3
6
9

12
15

0 10 20 30 40 50
Thousands of packets

ms

PCC
SFI
M3
BPF
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Security using Virtual Machines

uBackground
• IBM virtual machine monitors
• VMware virtual machine 

uSecurity potential
• Isolation
• Flexible Networking
• I/O interposition
• Observation from the Host

uExamples 
• Intrusion Detection
• NSA NetTop

Slide credit: Ed Bugnion, VMware Inc.

Virtual Machine Monitors

Software layer between hardware and OS, 
virtualizes and manages hardware resources

IBM VM/370

App App App App

CMS MVS CMS CMS

IBM Mainframe

History of Virtual Machines

uIBM VM/370 – A VMM for IBM mainframe
• Multiple OS environments on expensive hardware
• Desirable when few machine around

uPopular research idea in 1960s and 1970s
• Entire conferences on virtual machine monitor
• Hardware/VMM/OS designed together

uInterest died out in the 1980s and 1990s
• Hardware got cheap
• OS became more more powerful (e.g multi-user)

VMware Virtual Machines 

VMware virtual machine is an application execution 
environment with its own operating system

VMware Virtualization Layer

Application

Windows 
2000

Windows 
NT

Linux Windows 
XP

Intel Architecture

ApplicationApplication Application

VMware Workstation: Screen shot Virtual Hardware

Floppy Disks

Parallel Ports Serial/Com Ports

Ethernet
Keyboard

Mouse

Monitor
(VMM)

IDE Controller SCSI Controller

Sound Card
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Security from virtual machine

u Strong isolation
u Flexible networking
u I/O interposition
u Observation from the host

Isolation at multiple levels

uData security
• Each VM is managed independently

– Different OS, disks (files, registry), MAC address (IP address)
– Data sharing is not possible

uFaults
• Crashes are contained within a VM

uPerformance (ESX only)
• Can guarantee performance levels for individual VMs

uSecurity claim
• No assumptions required for software inside a VM

LAN

Flexible Networking: VMnets

VM

VM

VM

VM

Host
NIC

Mandatory I/O Interposition

uTwo levels 
(1) No direct Guest I/O

– All guest I/O operations are 
mediated by VMware

(2) VMware uses host I/O
– VMware uses system calls to 

execute all I/O requests

uExamples
• Networking (shown →)
• Disk I/O

TCP

IP

Eth

vmnet

Guest

VMware

Host

(1)   I/O access

(2)  System Call

lance

vlance

Observation by Host system

u “See without being seen” advantage
• Very difficult within a computer, possible on host

uObservation points:
• Networking (through vmnet) Physical memory
• Disk I/O (read and write)          Any other I/O

uExample: Intrusion Detection

Intel Hardware

Windows 2000

Honeypot OBS
Windows 2000

Honeypot

Host

Vmware Application: Classified Networks

uInformation Assurance requirement
• Data cannot flow between diff classification networks

uConventional solution
• Military “airgap”
• Dedicate distinct computer for access to each network
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National Security Agency NetTop

Classified
VM

VPN

Internet 
VM

Firewall

SE-Linux

NetTop = SE-Linux + VMware

uSE-Linux:
• Security-Enhanced Linux
• Mandatory Access Control with flexible security policy

uVMware Workstation:
• VMs configuration limited by security policy

uNetTop:
• Locked-down SE-Linux policy
• No networking on the host itself

Effectiveness of Virtual Machines

uVM restricts memory, disk, network access
• Apps cannot interfere, cannot change host file sys
• Also prevents linking software to specific hardware 

(e.g., MS registration feature ... )

uCan software tell if running on top of VM?
• Timing? Measure time required for disk access

– VM may try to run clock slower to prevent this attack 
– but slow clock may break an application like music player

uIs VM a reliable solution to airgap problem?
• If there are bugs in VM, this could cause problems
• Covert channels (discuss later)

Summary

uRun unreliable code in protected environment
uSources of protection

• Modify application to check itself
• Monitor calls to operating system
• Put Application and OS in a VM

uGeneral issues
• Can achieve course-grained protection

– Prevent file read/write, network access

• Difficult to express, enforce fine-grained policy
– Do not let any account numbers read from file 

Employee_Accts be written into file Public_BBoard


