
Programming Project # 2

cs155
Due 5/5/05, 11:59 pm

Elizabeth Stinson
(Some material from Priyank Patel)

Background – context

• Unix permissions model
– Prof Mitchell will cover during OS security

(next week – come to class!)
– Many basic admin functions require root

privileges
– Problem: no way to assume SOME root

privileges but not all
• Coarse granularity

Problem

• How to provide root privileges for *certain tasks*
to certain users
– How to give bob root privileges so that he can kill

arbitrary zombie processes but NOT edit /etc/passwd

• Who do we give the root password to? How do
we log what people do while logged in as root?
What happens if we don’t give people the
access they need? How to deal with changing
the root password (distribution, revocation…)?

Solutions – I

• Operator Shell – Michael Neuman (LANL)
– Not to be confused with the Old shell (OSH) which is

essentially the starter code for josh

• Setuid root : so call seteuid(), setresuid(), … to
elevate or depress current privilege level

• Limit access of commands and files to users
who actually need that specific access
– Granularity at a group level: consultants can do X,

ALL can do Y; also can configure for a specific user
– Specify a command matrix

• Maintain audit records (who touched what when)

Solutions – II

• Sudo: Jeff Nieusma
• “Sudo is a program designed to allow a

sysadmin to give limited root privileges to users
and log root activity.”

• So you run sudo to execute a single command
as root, e.g.; /etc/sudoers says who can do what

• Doesn’t do access control for files
• Granularity of grant: able to execute a command

or not; NOT able to control whether certain
options with a command used

http://www.sudo.ws/sudo/man/sudo.html

Solutions – III (yours!)

• josh

• Start with OSH – Gunnar Ritter’s Old Shell
– Only 837 lines of code (C)

• To test this, you can put josh in boxes
[use closedbox (on myths, vines)] – even
create users whose default shell is josh

• When you’re done: will have program
access controls, file access controls,
logging, a safe ‘edit’ command, …

High bits

• Do a security audit of existing simple shell:
make security bug (the type of which you
exploited in pp1) fixes as necessary

• Add functionality to this shell:
– Which would allow finer granularity of permissions

granting (for execution of certain programs) vs. the
Unix permissions model

– Do likewise for certain file permissions
– Add an editor
– Add journaling – keep record of users’ activities

More detailed – step 1
[Secure the Perimeter]

(You don’t have to do these steps in this order)

• Buffer overflows (not just strcpy()’s) etc.
• OSH currently searches the working

directory for a program before searching
the PATH for the program;
– So malicious user could put bad version of

‘ls’ in /tmp dir so if another user exec’s ‘ls’
while in that dir, would be using corrupt code

OSH program execution

/* try cwd first */
execv(args[0], args);

/* try $PATH */
if (errno == ENOENT)
execvp(args[0], args);

Instead, try cwd only if ‘.’ in $PATH
PATH=/bin:.:/sbin

or empty path
PATH=/bin/sbin::/usr/bin

More detailed – step 2
[Executables]

• Create a file: /etc/josh_exec
• Will contain entries of the form:
userid:progpath

• userid : user’s login name
• progpath: abs path to a program
• E.g. alice:/bin/kill
• Any program listed in josh_exec for a particular user

should be executed as root when that user invokes it
• Of course just because alice has root privileges for
/bin/kill doesn’t mean that alice has root
privileges for any executable named kill

A bit more on step 2
[Executables cont.]

/etc/josh_exec and /etc/josh_access
• Should be installed in mode 600;
if (writable by anyone besides root)

then abort on startup;
else

your choice
• Users should be able to run programs *not*

listed in josh_exec (that those users would
otherwise have access to) just not to run as root

• Users should, like normal, be able to run
programs via an abs path, relative path, …

More detailed – step 3
[File access]

• An admin may need to read some files not
readable by all users and/or write some
files not writable by all users

• /etc/josh_access has entries of the
type userid:filepath:perms

• userid: again the user’s login
• filepath: again an abspath to a file
• perms: of the form [+-](r|w|rw)

More detailed – step 3
[File access cont.]

• perms
+ grants positive right
- takes away a previously granted right

- Entries are cumulative
- Most specific wins (regardless of order)
- In equal specificity but contrary prescriptions

(one is a +r, the other is a –r), most recent wins
- Can only take away rights granted by josh; that

is, if a user has e.g. some read privileges in the
OS, josh should not take these away

More detailed – step 3
[File access cont.]

alice:/etc/motd:+w

• gives alice permission to write motd file
• Everyone has read privileges on that file

bob:/etc/ssh/ssh_host_key:+r

bob:/etc/ssh/ssh_host_key:+w

• bob can read & write ssh_host_key file

More detailed – step 3
[File access cont.]

alice:/etc:+r

alice:/etc/shadow:-r

• If the filepath specifies a directory, the
grant applies recursively to all files in that
directory, except in the case that there is a
more specific rule for such a file or subdir
canceling that grant (remember,
cancellations are only meaningful when
overlapping previous grants exist)

More detailed – step 3
[File access cont.]

• Your access matrix should be used for
redirection, too
– To execute gunzip < some_file, the

executing user must have read privileges on
some_file

– Likewise, to execute ls –l > oth_file,
user must have write access to oth_file

• But doesn’t need to be used when files are
used as arguments to commands; e.g.
cat /etc/ssh_host_key

Generally about the josh_* files

• Can read in on startup and thus not
consult before every access decision
– So if some superuser changed josh_access

while alice was logged in, it’s okay for
alice to have the original privilege set that
she had when she first logged in and got the
josh shell

More detailed – step 4
[editor]

• Implement a shell built-in ‘edit’
edit /etc/rc.d/rc2.d/inetd_script

• Copy that file to /tmp
• Allow alice to modify the file in /tmp
• On exit from vi, copy back the file from /tmp to

the original location
• Why doing this? Because there may be files for

which a user doesn’t have native access (e.g.
Unix file permissions) but for which josh grants
read and write permissions to; we need a way to
allow that user to edit such a file

More detailed – step 5
[logging]

• josh maintains 3 types of log events
– OK : everything is fine
– FAILED : exec call failed (file is non-

executable or non-existent)
– DENIED: tried to edit without sufficient

privileges in Unix and josh

• Logging unit: single pipeline (the argument
to ppipe())

Extra credit

• alice creates josh_* in home directory
• Grants access to other users for files

which are readable and writable by alice
• Other users can access/execute with

same privileges as alice

Generally

• Follow principle of least privilege
• Make reasonable checks on user input
• The original shell terminates on several errors;

it’s OK if josh does the same; be sure to fail
safe even if you have to fail stop.

• Short functions good; promote program
correctness (what you can see on one screen).

• Document your design in the README
• Start early.

Resources
• Michael Neuman’s paper (Osh) linked to on site; is short,

concrete and helpful
• W. Richard Stevens : Advanced Programming in the

UNIX Environment – a great book, well worth your
money
– Good dets on chmod, execv*(), setuid, environment variables, …

• Setuid Demystified – linked to on site
• Old shell man page – quick tour through the starter shell

(descr. functionality supported, …)
http://jneitzel.sdf1.org/osh/man/osh.1.html

• Wheeler’s “Secure Programming for Unix…”

