
CS155: Computer Security Spring 2003

Project #2
Due: Thursday, May 15th, 2003.

Summary In this project, you will write Josh, the journaling operator shell. Josh is a
setuid-root shell that allows users to undertake a subset of root’s capabilities.

Your starting point is OSH, a minimal shell developed by Gunnar Ritter.

You may work alone, or in pairs. You should not collaborate with others outside your
group.

You will use the Boxes system again. Remember to test your Josh in a closedbox.

This assignment specification is quite long, but much of it is intended to clarify points
of confusion raised by previous years’ students. Please be sure to read it carefully
before beginning to code.

The Problem As discussed in class, the classical Unix permissions model does not manage
privilege delegation effectively. To perform routine administrative tasks (such as clean-
ing out the /tmp directory), one must possess the root password, and can therefore
perform other, undesirable actions (such as reading users’ mail).

This limitation manifests itself most acutely in large Unix installations, where there
are typically many administrators tasked with various duties.

Various systems have been devised to overcome this limitation, and allow unprivileged
users to undertake some subset of root’s capabilities. A commonly-used example is
Sudo (http://www.sudo.ws/).

We will take an approach more like that taken by OSH, the Operator Shell (http://
www.engarde.com/~mcn/osh.html, mirrored on the class Website at http://cs155/

osh.html). You might want to read the SANS III conference paper linked from the
OSH home page, and mirrored on the class Website at http://cs155/osh.sansIII.

ps.

Our Solution We will develop a new shell, called Josh — the Journaling operator shell —
which will enable privilege delegation in the Unix environment.

In Unix, the command interpreter is not part of the kernel, and is in fact modular
and interchangeable. The command interpreter program is called a shell; it reads
user requests, parses them, and makes the system calls required to fulfill the requests
on the user’s behalf. Seventh Edition Unix (Jan 1979) shipped with the Bourne Shell,
/bin/sh; 2BSD (May 1979) shipped with Bill Joy’s C Shell (/bin/csh). The KornShell
(/bin/ksh) was first released in 1983 and was for some time an at-cost add-on for Unix
System V.

1

Today, people typically use either bash, a Bourne-shell reimplementation, or tcsh, a
C Shell enhancement.

None of these shells is designed to be run setuid-root.

Starter Code Writing a shell is an excellent example of a Simple Matter of Programming
(http://tuxedo.org/jargon/html/entry/SMOP.html). Besides the fork-exec-open-
pipe infrastructure required for implementing shell pipelines, there’s a considerable
amount of parsing and bookkeeping that must be taken care of.

To keep you from having to start your project by implementing a shell — an excel-
lent CS193u project, by the way — we provide you with OSH, the Old Shell (no re-
lation to the Operator Shell). OSH is a feature-for-feature-compatible reimplementa-
tion of the Sixth Edition shell (May 1976) by Gunnar Ritter (http://omnibus.ruf.
uni-freiburg.de/~gritter).

While OSH lacks some features we expect in modern shells (notably backticks and
control structures) it packs quite a few features into 837 lines of C. (Bash is about
100,000 lines.)

Recommended Reading For some practical ideas about security dos and don’ts, read
David Wheeler’s “Secure Programming for Unix and Linux HOWTO” (http://www.
dwheeler.com/secure-programs/), which is linked from the course Website.

For Unix programming in general, there is no better source than W. Richard Stevens’
Advanced Programming in the UNIX Environment (Addison-Wesley, 1992, ISBN 0-
201-56317-7). Go buy it now.

You might also want to refer to the source of various software components with which
Josh will interact, such as the Linux kernel (http://www.kernel.org/) or the GNU
C Library (http://www.gnu.org/software/libc/).

Using Boxes We retain the Boxes distribution from pp1, as installed on the Linux machines
in Sweet Hall. Since you will be doing Unix systems programming this time, we make
available the manpages-dev package, omitted in the Boxes distribution, which contains
man pages for Linux syscalls and C library routines. You can obtain this package from
the CS 155 Website at

http://cs155/manpages-dev_1.48-2_all.deb

and install in in Boxes by saying, as root,

box:~# dpkg -i /path/to/manpages-dev_1.48-2_all.deb

(where you don’t type the root prompt “box:~#” and where the actual path to the
package replaces “/path/to”).

Note that the filesystem image contains the Expect utility (http://expect.nist.
gov/), to allow you to test your shell out non-interactively, if you wish.

2

The wrapper interface to Boxes remains the same. You should check out the FAQ in
the Boxes distribution, and the additional information posted to the newsgroup for
basic information on getting Boxes up and running.

Step One: Secure the Perimeter Now we describe the tasks you must undertake in cre-
ating Josh. Of course, you need not stick to the order in which we present them.

Though OSH, your starter shell, is good code, it was not written to be run setuid root.

You should start by familiarizing yourself with the structure of the shell, auditing it
with security in mind, and thinking about how best to extend it.

One thing to note: OSH currently searches the working directory for a program before
searching the path for the program. This is dangerous (e.g., in the case when /tmp

contains a malicious executable named “ls”). You should modify OSH so it executes
programs in the working directory only if $PATH includes “.” or an empty component,
or if a program is invoked as, e.g., “./program”.

Another thing to note: Previous years’ students have identified a buffer overflow in
substvars(), a buffer overflow in striparg(), an array overflow in pcmd(), and other
questionable code elsewhere. Be sure either to audit carefully or otherwise to take
steps to mitigate the effects of vulnerabilities in OSH.

Step Two: Executables Josh allows users to run some programs that otherwise they could
not. The file that controls this behavior is /etc/josh_exec. This file (which should
be installed root:root, mode 600) has entries, one per line, in the following format:

userid:progpath

(Without the initial indentation.) Here, “userid” is a user’s login name; progpath is
some absolute path to a program. This path must be absolute in that it must begin
with a “/”. The path could, however, contain components that are “..” or symlinks.

Any program listed in josh_exec for a particular user should be executed as root, not
as the user, whenever it is invoked. For example, if /etc/josh_exec includes the line

alice:/bin/kill

Then any /bin/kill invocation by Alice should run as root, even though Alice might
have the Unix permissions to run /bin/kill as herself, user alice. This holds however
Alice runs /bin/kill: via the absolute path, via a relative path, or via $PATH, but not
if Alice runs a different program named kill, e.g., /home/alice/local/bin/kill.

Josh should allow users to run programs not listed in josh_exec; these programs will
be run with as the user and with the user’s ordinary permissions, precisely as if Josh
had not been setuid.

Note that your Josh will have to figure out which program is actually invoked when a
user types a non-absolute file name, or relies on the value of $PATH to find the program.

3

Your Josh must, of course, allow users to name programs via a relative path, via an
absolute path, or through $PATH.

Your Josh should ignore any entries in josh_exec that do not name executable pro-
grams.

If /etc/josh_exec is writable by a user other than root, your Josh must abort on
startup. If josh_exec is writable only by root, but not root:root, mode 600, Josh’s
behavior is up to you.

Step Three: File Access An administrator will need to read some files that are not read-
able by all users, and possibly to write to other files that are not writable by all users.

Josh will open these files on behalf of the administrator.

Josh decides whether to open these files based on a configuration file, /etc/josh_access.
This file, like josh_exec, should be installed root:root, mode 600. Like josh_exec,
it must not be writable by anyone other than root; if it is, Josh must refuse to run.
The josh_access file has entries, one per line, in following format:

userid:filepath:perms

Here, userid is a user’s login name; filepath is some absolute file name; and perms

is of the form “[+-](r|w|rw)”. A “+” grants a positive right; a “-” takes away a
previously granted right. For example, the entry

alice:/etc/motd:+w

Means that Alice is allowed to write to the file /etc/motd. (Read access need not be
granted, because everyone can read /etc/motd by default.)

Entries are cumulative. Thus the two lines

bob:/etc/ssh/ssh_host_key:+r

bob:/etc/ssh/ssh_host_key:+w

Together mean that Bob can both read and write to the ssh_host_key file.

Negative rights are only meaningful in canceling a previous access grant: If a user has
read or write permissions to some file without Josh, then a negative josh_access entry
should not prevent her from accessing the file.

If multiple positive and negative entries are given on the same exact file, the last entry
should win.

If the filepath specifies a directory, then the read/write permission is to apply recur-
sively to all files under that directory. For example, the lines

alice:/etc:+r

alice:/etc/shadow:-r

4

Mean that Alice is allowed to read all files in /etc (and subdirectories thereof), except
shadow. Note that you should not allow write access to the directories themselves;
that usually is too much power to delegate.

To clarify, write access to a directory, in Unix, gives the right to add and remove files
in that directory. Your Josh should never give this right when a user does not already
possess it through her standard Unix permissions. A +w grant on a directory means
that, for each file already in that directory, the user is allowed to write to that file,
not that the user should be allowed to create new files in that directory. If a +w grant
names a file that does not exist, Josh should decline to create it. (In other words,
entries in josh_access have an effect only on regular files, not directories, and only
on regular files that already exist.)

Note that, regardless of order in josh_access, more-specific entries always override
less-specific entries. Thus the lines

bob:/home/user/bleh:+r

bob:/home/user:-rw

Mean that Bob should be granted read access to /home/user/bleh, even though the
negative /home/user wildcard comes later in the access file.

Your Josh should deal with these access permissions correctly for files named by shell
redirections. For example, files for which read access has been granted can be redirected
from (using “<”); files for which write access has been granted can be redirected to
(using “>”).

To clarify, you need only provide these extra privileges for redirections, “<” and “>”.
You need not worry about providing privileges for filenames given as arguments on the
command line. Even if josh_access includes the line “bob:/etc/ssh/ssh_host_key:+r”,
your Josh need not (and should not) grant any extra privileges to Bob when he executes
“cat /etc/ssh/ssh_host_key”.

Step Four: Editor To allow Alice to edit some system files, it would be nice simply to add
a line enabling her to run, say, vi in josh_exec. But then she could modify any file
on the system, leading to a root compromise.

Instead, we could write a shell script that invokes vi on a particular file (like the
/usr/sbin/vipw command on BSD machines), and give Alice execute permission to
that.

Unfortunately, all editors commonly available for Unix allow one to choose to write
to files other than the one originally opened; running an editor as root — even with a
specially-chosen command line — would precipitate an immediate root compromise.

So, we must go about editing files in a roundabout way. We describe one approach.
First, one copies the file to be edited to some temporary location; then, one allows
the user to edit the temporary copy of that file, without special privileges; finally, one

5

copies the edited file back into place. Note: This is not the only possible approach;
you need not implement this particular approach.

Implement a new shell builtin, “edit”, that allows secure file editing. Your edit com-
mand should launch the editor named in the $EDITOR environment variable, or, if that
variable is not defined, /usr/bin/vi.

The edit builtin should take a single argument, the name of the file to edit. The user
must have both read and write access to the file in order to edit it.

The edit builtin, if invoked on a file not mentioned in /etc/josh_access, should
allow the user to edit the file with her ordinary permissions.

Step Five: Journaling Josh is the Journaling Operator Shell because it keeps journals of
users’ activities for auditing purposes.

Your Josh should use syslog (facility authpriv, level info) to record each pipeline run
by a Josh user. Your log line should contain the user’s login name, the full command
line, and one of “OK”, “FAILED”, or “DENIED”, separated by spaces.

DENIED applies only to redirects and the edit builtin. Suppose a user attempts to use
one of these to access some file foo. Suppose further that the user doesn’t have sufficient
Unix permissions for the operation independent of josh_access. In this case, if the
file foo is mentioned in josh_access (either explicitly or implicitly through directory
wildcards), but again without sufficient privilege, then Josh should log DENIED. (If the
user doesn’t have Unix rights to foo, and foo isn’t mentioned in josh_access at all,
Josh should log FAILED; if the user does have Unix rights to foo, Josh should log OK.)

FAILED also applies when a user attempts to execute some command for which exec()

fails, e.g., a file that’s nonexistent or not executable (regardless of whether mentioned
in josh_exec), or a program to which the user doesn’t have execute permission, but
which is not mentioned in josh_exec.

OK applies when the program the user requests is exec()ed successfully, whether as
root or as the user, and all redirections are allowed and succeed.

Note that you log an entire pipeline at once, but with only a single status code. Your
log should let the administrator know the most serious error that occurred on the
pipeline, if any. That is, if any of the commands in the pipeline is denied, the log
should state DENIED; if none is denied, but any fails, the log should state FAILED; if all
succeed, the log should state OK.

To clarify, every command issued by the user, whether or not it implicates Josh control
files, should be logged. Commands separated by “;” should be logged separately;
commands combined with “|” should be logged as a single pipeline. The logging unit
is thus the argument passed to OSH’s ppipe(). The command portion of the log line
should be exactly what is passed to ppipe().

Step Six: Extra Credit Josh is not only an excellent system-administration tool, but also
a collaboration utility.

6

For extra credit, allow users to create ~/.josh_exec and ~/.josh_access, in the same
format as root’s Josh files in /etc. Programs listed in a user’s .josh_exec file should
run as that user; files listed in a user’s .josh_access file should be accessed as that
user for both redirections and the edit builtin.

Josh should look for user-granted privileges only when its working directory is the
affected user’s home directory. In other words, if Alice is running Josh, and wishes to
access one of Bob’s files, Josh should examine ~bob/.josh_access only when Alice’s
working directory is ~bob. (And exactly ~bob, not, e.g., some subdirectory of it.) As
with /etc/josh_*, Josh should refuse to act on the ~user/.josh_* files if they are
writable by someone other than user.

Root-granted positive privileges in /etc/josh* should always override user-granted
ones. That is, if /etc/josh_access says that Alice has access to ~bob/foo, Bob
cannot deny that access in ~bob/.josh_access.

Note that ~user/.josh_access can only grant read access to files user can read, and
write access to files user can write.

Restrictions Another team will audit your code. Out of consideration for them, please
keep in mind the following restrictions.

You must write Josh in C, not C++ or another language. You may not make use of
libraries not written by you (aside, of course, from OSH and libc).

You will not want to use the getlogin() function, since Expect doesn’t correctly set
it on ptys. Use getpwuid() or similar routines instead.

Simplifying Assumptions Because this is CS 155 and not CS 193u, we allow you to make
some assumptions that limit the scope of the systems-programming component of the
project.

You may choose to ignore all but the first 512 lines of all control files — /etc/josh_exec,
/etc/josh_access, ~user/.josh_exec, ~user/.josh_access.

(You may not, however, assume that there always will be at most 512 lines.)

If you find it helpful, it is okay to read /etc/josh_exec and /etc/josh_access at
startup and not reread them on every command execution.

For the editor, you may require that both read and write access are specified in
josh_access. That is, you need not worry about a case where (for example) write
access is granted to the user in josh_access and read access is available to the user
through her ordinary Unix permissions.

You may assume that /etc/josh_* are sanely formatted. (You may not, however,
make the same assumption about individual users’ ~/.josh_* files.)

You should make efforts to survive error conditions. Since OSH already terminates
on many error conditions, you need not go out of your way to handle all new Josh-
imposed error conditions without terminating. Be sure to fail-safe, however, even if
you fail-stop.

7

Deliverables As in the first programming assignment, you will use the online Leland submit
script, /usr/class/cs155/bin/submit. This is pp2.

The directory which you submit must contain the Makefile and all source files neces-
sary for building your Josh when the make command is issued.

Along with your shell, you must include file called ID which contains, on a single line
for each person in your team, the following: your SUID number; your Leland username;
and your name, in the format last name, comma, first name. An example:

$ cat ./ID

3133757 binky Clown, Binky The

$

If you work alone, ID should have exactly one line. If you work with a partner, ID
should have exactly two lines.

Do not include any identifying information in any file except ID (and TA-README, if
you choose to include one).

You may also want to include a README file with details of your design; this file will be
provided to the group that will audit your Josh, so be sure to include no identifying
information in it.

Finally, you may want to include a TA-README file with comments about your expe-
riences, or suggestions for improving the assignment; this file will not be provided to
the group that will audit your code.

How You Will Be Graded All grading will take place in a closedbox environment, with
Josh installed setuid root as /usr/local/sbin/josh.

We will run Josh interactively, using Expect. We will grade your Josh on functionality.
Why? A program that does nothing is easy to secure; the difficult task is to achieve
both functionality and security.

In the next phase, we will randomly assign to each group a Josh written by another.
(This is why it is important that you not identify yourselves in any file other than ID.)
Then, you will audit the Josh you are assigned, looking for security vulnerabilities.

What Constitutes a Security Vulnerability In an application like Josh, a security vul-
nerability is anything that allows a player in the system to obtain additional privileges.
We list some possibilities below; this is not meant to be an exhaustive list.

Obviously, if a buffer overflow in Josh allows untrusted user Alice to obtain a root
shell, that’s a vulnerability.

If Alice can obtain read or write access to a file, or execute access to a program beyond
what is granted to her by root, that’s a vulnerability.

If Alice can obtain access to more of Bob’s files than she should, that’s a vulnerability.

If Bob can configure his files so that, as Alice runs Josh, she is tricked into giving Bob
some subset of her privileges, that’s a vulnerability.

8

If the system administrator, in going over the Josh journal files, is misled about the
activities that took place on the system, or is tricked into giving up more privileges,
that’s a vulnerability.

Denial-of-service attacks may rise to the level of security vulnerabilities if they are
serious: for example, if Bob can use Josh to disable Alice’s login. (Attacks prevented
by effective use of ulimits obviously don’t count.)

In demonstrating an exploit, you may assume any reasonable configuration for the
various files Josh uses to determine access; but, obviously, an exploit that derives from
misconfiguration is not an exploit against Josh.

9

