
Malware
CS155 Spring 2009

Elie Bursztein

Welcome to the zoo

• What malware are
• How do they infect hosts
• How do they hide
• How do they propagate
• Zoo visit !
• How to detect them
• Worms

What is a malware ?

A Malware is a set of instructions that
run on your computer and make your
system do something that an attacker
wants it to do.

What it is good for ?

• Steal personal information

• Delete files

• Click fraud

• Steal software serial numbers

• Use your computer as relay

A recent illustration

• Christians On
Facebook

• Leader hacked on
march 2009

• Post Islamic
message

• Lost >10 000
members

The Malware Zoo

• Virus
• Backdoor
• Trojan horse
• Rootkit
• Scareware
• Adware
• Worm

What is a Virus ?

a program that can infect other programs by
modifying them to include a, possibly

evolved, version of itself

Fred Cohen 1983

Some Virus Type

• Polymorphic : uses a polymorphic
engine to mutate while keeping the
original algorithm intact (packer)

• Methamorpic : Change after each
infection

What is a trojan

A trojan describes the class of malware that appears
to perform a desirable function but in fact performs

undisclosed malicious functions that allow
unauthorized access to the victim computer

Wikipedia

What is rootkit

A root kit is a component that uses
stealth to maintain a persistent and

undetectable presence on the machine

Symantec

What is a worm

A computer worm is a self-replicating computer
program. It uses a network to send copies of itself

to other nodes and do so without any user
intervention.

Almost 30 years of
Malware

From Malware fighting malicious code

History

• 1981 First reported virus :
Elk Cloner (Apple 2)

• 1983 Virus get defined

• 1986 First PC virus MS DOS

• 1988 First worm : Morris
worm

• 1990 First polymorphic
virus

• 1998 First Java virus

• 1998 Back orifice

• 1999 Melissa virus

• 1999 Zombie concept

• 1999 Knark rootkit

• 2000 love bug

• 2001 Code Red Worm

• 2001 Kernel Intrusion
System

• 2001 Nimda worm

• 2003 SQL Slammer worm

Melissa spread by email and share

Knark rootkit made by creed demonstrate the first ideas

love bug vb script that abused a weakness in outlook

Kernl intrusion by optyx gui and efficent hidding

Number of malware
signatures

0

500000

1000000

1500000

2000000

2002 2003 2004 2005 2006 2007 2008

Symantec report 2009

Malware Repartition

74%

3%
1%

9%

13%

Trojan
Worm
Other
Adware
Spyware

Panda Q1 report 2009

Infection methods

Outline

• What malware are

• How do they infect hosts

• How do they propagate

• Zoo visit !

• How to detect them

• Worms

What to Infect

• Executable

• Interpreted file

• Kernel

• Service

• MBR

• Hypervisor

Overwriting malware

Targeted
Executable

MalwareMalware

prepending malware

Targeted
Executable

Malware

Infected
host

Executable
Malware

appending malware

Targeted
Executable

 Malware

Infected
host

Executable
Malware

Cavity malware

Targeted
Executable Infected

host
Executable

Malware
Malware

Multi-Cavity malware

Targeted
ExecutableMalware

Malware

Malware

Malware

Packers

Malware Infected host
Executable

Packer
Payload

Packer functionalities

• Compress

• Encrypt

• Randomize (polymorphism)

• Anti-debug technique (int / fake jmp)

• Add-junk

• Anti-VM

• Virtualization

Auto start

• Folder auto-start : C:\Documents and Settings\[user_name]\Start Menu

\Programs\Startup

• Win.ini : run=[backdoor]" or
"load=[backdoor]".

• System.ini : shell=”myexplorer.exe”

• Wininit

• Config.sys

Auto start cont.

• Assign know extension (.doc) to the
malware

• Add a Registry key such as HKCU\SOFTWARE
\Microsoft\Windows \CurrentVersion\Run

• Add a task in the task scheduler

• Run as service

Unix autostart

• Init.d

• /etc/rc.local

• .login .xsession

• crontab

• crontab -e

• /etc/crontab

Macro virus

• Use the builtin script engine

• Example of call back used (word)

• AutoExec()

• AutoClose()

• AutoOpen()

• AutoNew()

Document based
malware

• MS Office

• Open Office

• Acrobat

Userland root kit

• Perform

• login

• sshd

• passwd

• Hide activity

• ps

• netstat

• ls

• find

• du

Subverting the Kernel

Kernel task

• Process management

• File access

• Memory management

• Network management

What to hide

➡ Process
➡ Files
➡ Network traffic

Kernel rootkit

PS

KERNEL

Hardware :
HD, keyboard, mouse, NIC, GPU

P1 P2

P3 P3

rootkit

Subverting techniques

• Kernel patch

• Loadable Kernel Module

• Kernel memory patching (/dev/kmem)

Windows Kernel

P1 P2 Pn Csrss.exe

Win32 subsystem DLLs
User32.dll, Gdi32.dll and Kernel32.dll

Other Subsytems
(OS/2 Posix)

Ntdll.dll

ntoskrnl.exe

Hardware Abstraction Layer (HAL.dll)
Hardware

Underlying kernel
Executive

Kernel Device driver

P2

Win32 subsystem DLLs

Ntdll.dll

ntoskrnl.exe

Interrupt Hook

System service
dispatcher

System service
dispatch table

Driver Overwriting functions Driver Replacing Functions

New pointer

A

C

B

MBR/Bootkit

Bootkits can be used to avoid all
protections of an OS, because OS
consider that the system was in trusted
stated at the moment the OS boot loader
took control.

BIOS MBR VBS NT
Boot

SectorBOOTMGR.EXEWINLOAD.EXE

Windows 7 kernel HAL.DLL

Vboot

• Work on every Windows (vista,7)

• 3ko

• Bypass checks by letting them run and
then do inflight patching

• Communicate via ping

Hypervisor rootkit

Target OS

Hardware

AppApp

Hypervisor rootkit

Target OS

Hardware

AppApp

Virtual machine Host OS

Rogue app

Propagation
Vector

Outline

• What malware are

• How do they infect hosts

• How do they propagate

• Zoo visit !

• How to detect them

• Worms

Shared folder

Email propagation

from pandalab blog

Valentine day ...

Waledac malicious domain from pandalab blog

!"#$%&'($')*+),)-.+($%./)-)&0'$-&1#'$)+$23

2456!7689$67:;6!$:5<=585>?$@A5<4569$B$C56DE$FGGHI FJ

KKKLM.+1.'#-0N)(OL-&%

!"#$%&#' ()#(*+

!"#$%&&#'"#()"*+),-*)./#0).122%.")3%4#5%""'/%"6#78,%+97+11:"#;'3%#-"%(#<'&%.*).%4"#='8#*1
">+%'(#.-5%+1-"#5'&)7)1-"#71(%"#2+15#*;%#?'&%('7#2'5)&8#*;+1-/;#%5')&"#$)*;#5'&)7)1-"
-+&"@

A;%#!"#$%&"'()*+#, #) " #")5) &'+ #*1 #*;'* #12 #*;%#2) + " * #">'5#5%""'/%" #'(3%+*) ")./
>;'+5'7%-*)7'&"6#'"#*;%8#'+%#()"*+),-*%(#3)'#%5')&6#).#*;)"#7'"%#-")./#<'&%.*).%9+%&'*%(
5%""'/%"#).21+5)./#+%7)>)%.*"#*;'*#"15%1.%#;'"#"%.*#*;%5#'#3)+*-''+(@#A;%#5%""'/%
71.*')."#'#&).:#*;'*#)"#+%()+%7*%(#*1#'#5'&)7)1-"#(15').#).#1+(%+#*1#3)%$#*;%#7'+(@

B%&1$#)"#'.#%C'5>&%#12#'#5'&)7)1-"#(15').D

E)/-+%#FG@#H'&)7)1-"#?'&%('7#(15').@

!"#$%&$'()$&*+$%)*#,-#'#./)01#,"#$()2)3#$45)67789 6:

;;;<=>?@>ABCDEFGH<CIJ

!"#$%&#' ()#(*+

%KB)JIAG)AFL?FMFC>?G)J>NFCFIDA)CI@BA)F?)!O

!"#$%&'($)*$+&%,-&.+#+$/&$/"#$0&(12/#'$3.2/&(./)0.--4$&'$/"'&25"$2*#'$),/#'.0/)&,67
8&%#9#':$;&'$/"#$+&%,-&.+$/&$<#$*200#**;2-:$2*#'*$(2*/$.5'##$/&$)/=

>)52'#$??7$@&%,-&.+$&;$/"#$(.-)0)&2*$;)-#7

A4<#'B0'&&C*$0'#./#+$,2(#'&2*$+&(.),*$/&$+)*/')<2/#$/"#$D.-#+.0$%&'($2*),5$),&;;#,*)9#
,.(#*$*20"$.*$0.'+7#E#:$#0.'+7#E#:$-&9#7#E#:$-&9#4&27#E#:$(#.,+4&27#E#:$#/07

F&(#$&;$/"#*#$+&(.),*$%#'#$+#*)5,#+$/&$(&+);4$/"#$;)-#$/&$<#$+&%,-&.+#+$),$&'+#'$/&
+)*/')<2/#$+);;#'#,/$(.-)0)&2*$0&+#*$.,+$1'#9#,/$*#02')/4$0&(1.,)#*$;'&($+#/#0/),5$/"#(7
!")*$)+#.$&;$,2(#'&2*$*(.--$),;#0/)&,*$)*$C,&%,$.*$.$*)-#,/$#1)+#()07

!"#$)(1.0/$&;$+&(.),*$+)*/')<2/),5$(.-)0)&2*$D.-#+.0$0&+#*$%.*$*&$5'#./$/"./$*&(#
+&(.),*$%#'#$#9#,$")5"-4B'.,C#+$),$*#.'0"$#,5),#*7$!")*$0&2-+$0.2*#$2*#'*$/'4),5$/&$-&0./#
9)'/2.-$0.'+*$/&$.00#**$(.-)0)&2*$+&(.),*$<4$.00)+#,/7

Email again

Symantec 2009

Fake codec

Fake antivirus

from pandalab blog

Hijack you browser

from pandalab blog

Fake page !

from pandalab blog

P2P Files

• Popular
query

• 35.5% are
malwares
(Kalafut 2006)

Backdoor

Basic

Infected
Host AttackerTCP

Reverse

Infected
Host AttackerTCP

covert

Infected
Host AttackerICMP

Rendez vous backdoor

Infected
Host Attacker

RDV
Point

Bestiary

Outline

• What malware are

• How do they infect hosts

• How do they propagate

• Zoo visit !

• How to detect them

• Worms

Adware

BackOrifice

• Defcon 1998

• new version in 2000

Netbus

• 1998

• Used for “prank”

Symantec pcAnywhere

Browser Toolbar ...

Toolbar again

Ransomware

• Trj/SMSlock.A

• Russian
ransomware

• April 2009 To unlock you need to send an SMS with the text
4121800286

to the number
3649

Enter the resulting code:

Any attempt to reinstall the system may lead to loss of
important information and computer damage

 from pandalab blog

Detection

Outline

• What malware are

• How do they infect hosts

• How do they propagate

• Zoo visit !

• How to detect them

• Worms

Anti-virus

• Analyze system
behavior

• Analyze binary to
decide if it a virus

• Type :

• Scanner

• Real time monitor

Impossibility result

• It is not possible to build a perfect
virus/malware detector (Cohen)

Impossibility result

• Diagonal argument

• P is a perfect detection program

• V is a virus

• V can call P

• if P(V) = true -> halt

• if P(V) = false -> spread

Virus signature

• Find a string that can identify the virus

• Fingerprint like

Heuristics

• Analyze program behavior

• Network access

• File open

• Attempt to delete file

• Attempt to modify the boot sector

Checksum

• Compute a checksum for

• Good binary

• Configuration file

• Detect change by comparing checksum

• At some point there will more malware
than “goodware” ...

Sandbox analysis

• Running the executable in a VM

• Observe it

• File activity

• Network

• Memory

Dealing with Packer

• Launch the exe

• Wait until it is unpack

• Dump the memory

Worms

Outline

• What malware are

• How do they infect hosts

• How do they propagate
• Zoo visit !

• How to detect them

• Worms

79

Worm

A worm is self-replicating software designed to
spread through the network
 Typically, exploit security flaws in widely used services

 Can cause enormous damage

 Launch DDOS attacks, install bot networks

 Access sensitive information

 Cause confusion by corrupting the sensitive information

Worm vs Virus vs Trojan horse

80

Cost of worm attacks

Morris worm, 1988
Infected approximately 6,000 machines
10% of computers connected to the
Internet

cost ~ $10 million in downtime and
cleanup

Code Red worm, July 16 2001

81

Internet Worm (First major
attack)

Released November 1988
Program spread through Digital, Sun

workstations
Exploited Unix security vulnerabilities
VAX computers and SUN-3
workstations running versions 4.2 and
4.3 Berkeley UNIX code

82

Some historical worms
of note

Worm Date Distinction

Morris 11/88 Used multiple vulnerabilities, propagate to “nearby” sys

ADM 5/98 Random scanning of IP address space

Ramen 1/01 Exploited three vulnerabilities

Lion 3/01 Stealthy, rootkit worm

Cheese 6/01 Vigilante worm that secured vulnerable systems

Code Red 7/01 First sig Windows worm; Completely memory resident

Walk 8/01 Recompiled source code locally

Nimda 9/01 Windows worm: client-to-server, c-to-c, s-to-s, …

Scalper 6/02 11 days after announcement of vulnerability; peer-to-peer
network of compromised systems

Slammer 1/03 Used a single UDP packet for explosive growth

Kienzle and
Elder

83

Increasing propagation
speed

Code Red, July 2001
 Affects Microsoft Index Server 2.0,

 Windows 2000 Indexing service on Windows NT 4.0.

 Windows 2000 that run IIS 4.0 and 5.0 Web servers

 Exploits known buffer overflow in Idq.dll

 Vulnerable population (360,000 servers) infected in 14 hours

SQL Slammer, January 2003
 Affects in Microsoft SQL 2000

 Exploits known buffer overflow vulnerability

84

Code Red

Initial version released July 13, 2001
Sends its code as an HTTP request
HTTP request exploits buffer overflow
Malicious code is not stored in a file
Placed in memory and then run

When executed,
Worm checks for the file C:\Notworm

85

Code Red of July 13 and July 19

Initial release of July 13
 1st through 20th month: Spread

 via random scan of 32-bit IP addr space

 20th through end of each month: attack.
 Flooding attack against 198.137.240.91 (www.whitehouse.gov)

 Failure to seed random number generator ⇒ linear growth

Revision released July 19, 2001.
 White House responds to threat of flooding attack by changing

the address of www.whitehouse.gov

 Causes Code Red to die for date ≥ 20th of the month.
 But: this time random number generator correctly seeded

Slides: Vern
Paxson

86

Infection rate

87

Measuring activity: network
telescope

Monitor cross-section of Internet address space, measure traffic
 “Backscatter” from DOS floods
 Attackers probing blindly
 Random scanning from worms

LBNL’s cross-section: 1/32,768 of Internet

UCSD, UWisc’s cross-section: 1/256.

88

Spread of Code Red

Network telescopes estimate of # infected hosts:
360K. (Beware DHCP & NAT)
Course of infection fits classic logistic.
Note: larger the vulnerable population, faster the
worm spreads.

That night (⇒ 20th), worm dies …
 … except for hosts with inaccurate clocks!

It just takes one of these to restart the worm on
August 1st … Slides: Vern

Paxson

89

Slides: Vern
Paxson

90

Code Red 2

Released August 4, 2001.
Comment in code: “Code Red 2.”
 But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.
Bug: crashes NT, only works on Windows 2000.

Localized scanning: prefers nearby addresses.

Kills Code Red 1.

Safety valve: programmed to die Oct 1, 2001.
Slides: Vern

Paxson

91

Striving for Greater
Virulence: Nimda

Released September 18, 2001.
Multi-mode spreading:
 attack IIS servers via infected clients
 email itself to address book as a virus
 copy itself across open network shares
 modifying Web pages on infected servers w/ client

exploit
 scanning for Code Red II backdoors (!)

 worms form an ecosystem!
Leaped across firewalls. Slides: Vern

Paxson

92

Code Red 2 kills
off Code Red 1

Code Red 2 settles into
weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off as
programmed

CR 1
returns
thanks
to bad
clocks

Slides: Vern
Paxson

93

How do worms
propagate?

Scanning worms : Worm chooses “random” address

Coordinated scanning : Different worm instances scan different addresses

Flash worms
 Assemble tree of vulnerable hosts in advance, propagate along tree

 Not observed in the wild, yet

 Potential for 106 hosts in < 2 sec ! [Staniford]

Meta-server worm :Ask server for hosts to infect (e.g., Google for
“powered by phpbb”)

Topological worm: Use information from infected hosts (web server logs,
email address books, config files, SSH “known hosts”)

Contagion worm : Propagate parasitically along with normally initiated
communication

slammer

• 01/25/2003

• Vulnerability disclosed : 25 june 2002

• Better scanning algorithm

• UDP Single packet : 380bytes

Slammer propagation

Number of scan/sec

Packet loss

A server view

Consequences

• ATM systems not available

• Phone network overloaded (no 911!)

• 5 DNS root down

• Planes delayed

100

Worm Detection and Defense
Detect via honeyfarms: collections of “honeypots” fed
by a network telescope.
 Any outbound connection from honeyfarm = worm.

(at least, that’s the theory)

 Distill signature from inbound/outbound traffic.
 If telescope covers N addresses, expect detection when worm

has infected 1/N of population.

Thwart via scan suppressors: network elements that
block traffic from hosts that make failed connection
attempts to too many other hosts
 5 minutes to several weeks to write a signature
 Several hours or more for testing

101

months

days

hrs

mins

secs

Program
Viruses Macro

Viruses E-mail
Worms Network

Worms

Flash
Worms

Pre-
automation

Post-
automation

C
on

ta
gi

on
 P

er
io

d

Si
gn

at
ur

e
R

es
po

ns
e

Pe
rio

d

Need for automation
•Current threats can spread faster than defenses can reaction

•Manual capture/analyze/signature/rollout model too slow

1990 Time 2005

Contagion Period
Signature Response Period

Slide: Carey Nachenberg, Symantec

102

Signature inference

Challenge
 need to automatically learn a content “signature” for each

new worm – potentially in less than a second!

Some proposed solutions
 Singh et al, Automated Worm Fingerprinting, OSDI ’04

 Kim et al, Autograph: Toward Automated, Distributed
Worm Signature Detection, USENIX Sec ‘04

103

Signature inference

Monitor network and look for strings
common to traffic with worm-like
behavior
Signatures can then be used for content

filtering

Slide: S Savage

104

Content sifting

Assume there exists some (relatively) unique invariant
bitstring W across all instances of a particular worm (true
today, not tomorrow...)

Two consequences
 Content Prevalence: W will be more common in traffic than

other bitstrings of the same length

 Address Dispersion: the set of packets containing W will address
a disproportionate number of distinct sources and destinations

Content sifting: find W’s with high content prevalence
and high address dispersion and drop that traffic

Slide: S Savage

105

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)

Only 0.6% of the 40 byte substrings repeat more
than 3 times in a minute

106

 Address Dispersion Table
 Sources Destinations Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

107

1 (B)1 (A)

 Address Dispersion Table
 Sources Destinations

1

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

108
1 (A)1 (C)
1 (B)1 (A)

 Address Dispersion Table
 Sources Destinations

1
1

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

109
1 (A)1 (C)

2 (B,D)2 (A,B)

 Address Dispersion Table
 Sources Destinations

1
2

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

110
1 (A)1 (C)

3
(B,D,E)

3
(A,B,D)

 Address Dispersion Table
 Sources Destinations

1
3

 Prevalence Table

Detector in
network

A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

111

Challenges

Computation
 To support a 1Gbps line rate we have 12us to process each

packet, at 10Gbps 1.2us, at 40Gbps…
 Dominated by memory references; state expensive

 Content sifting requires looking at every byte in a packet

State
 On a fully-loaded 1Gbps link a naïve implementation can easily

consume 100MB/sec for table

 Computation/memory duality: on high-speed (ASIC)
implementation, latency requirements may limit state to
on-chip SRAM

(Stefan Savage, UCSD *)

