CSI155 Project |

Gary Luu
Spring 2008

Setting up the Environment

® Download VMware Player

® http://www.vmware.com/products/player

® Available on PUP Cluster

® |f prompted, click “l copied it”
® Should be configured with NAT, check w/ ifconfig

® Demo

http://www.vmware.com/products/player
http://www.vmware.com/products/player

target|.c

int bar(char *arg, char *out)
{

strcpy(out, arg);

return O;

}

int foo(char *argv[])
{
char buf[128];
bar(argv[], buf);
}

int main(int argc, char *argv[])
{
if (argc != 2)
{
fprintf(stderr, "target|:argc != 2\n");
exit(EXIT _FAILURE);
}
foo(argv);
return 0;

}

Stack During Call to foo

Target the local buffer “buf” inside of foo
What'’s on the stack after the end of “buf?”
Stack layout dependent on OS and compiler

arguments to foo, then return address, then saved
frame pointer, then “buf”

Explore stack with gdb, read “Smashing the Stack”

sploit

® VWant to overwrite return address of foo()

® Need to insert shellcode in “buf”

® Distance from “buf” and return address on stack
® Remember, this is dependent on compiler/OS

® Make sure your exploits work in VM!

Address of “buf”

® How to obtain!?
® Examine stack frame using “info frame”
® Use “x buf” when in foo’s frame

® Stays the same everytime program is invoked
® Address changes when invoked from exec()

® (Get address using gdb -e sploitl -s /tmp/target|

Crafting the Exploit String

® Place shellcode at the start of the string

® Return address ($ra, or saved $eip) exists at
offset 132 on our VM

® |28 bytes of buf, 4 bytes frame pointer

® VVrite address of “buf” to $ra, Oxbffffd/8

® Remember to null terminate your string (strcpy)

® There are other ways to attack besides
overwriting the return address

® Understand what assembly instructions are doing

® README contains links to Intel x86 assembly
manuals

® Understand what registers $esp, $ebp point to
® What happens when LEAVE and RET called!?

|A-32 Review

® x86 is little endian

® Jesp: Stack Pointer: points to the top of stack
(which way does the stack grow on x86?)

® $ebp: Frame Pointer: points to fixed location
within an activation record

° Used to reference local vars and parameters since the distance from the frame pointer to these objects stays
constant, while stack pointer changes

® S$eip:instruction pointer (aka $ra) ($ebp+4)

|A-32 Review (cont’d)

® When CALL procedure foo()
Push $eip onto stack, (return address)

Copy sp into fp, $ebp = $esp

°
® Push $ebp, saving previous frame
o
o

Decrement $sp for allocations (like buffers)
® When LEAVE procedure p()
® Process is reversed
® | oad $ebp into $esp
® Restore $ebp from stack

Interaction Between $esp, $ebp, $eip

® During CALL, value of $eip register pushed onto
stack

® Before RET, programmer should make sure stack
poinlter ($esp) is pointing to saved $eip on the
stack

Move contents of $ebp into $esp
Increment $esp by 4
$esp should now point to address of saved $eip

RET will load saved $eip into $eip register, processor will execute instruction in
$eip register

® Start early, you'll need to read
® “Smashing the Stack™ - Aleph One
“Basic Integer Overflows”

“Exploiting Format String Vulnerabilities”

“How to hijack the Global Offset Table...”

“Once upon a free”

Reference 1A-32 guide (on syllabus with papers)
® Part 2 MUCH harder than Part |.

® Make a diagram of the stack using gdb

