
CS155 Project 1
Gary Luu

Spring 2008

Setting up the Environment

• Download VMware Player

• http://www.vmware.com/products/player

• Available on PUP Cluster

• If prompted, click “I copied it”

• Should be configured with NAT, check w/ ifconfig

• Demo

http://www.vmware.com/products/player
http://www.vmware.com/products/player

target1.c

int bar(char *arg, char *out)
{
 strcpy(out, arg);
 return 0;
}

int foo(char *argv[])
{
 char buf[128];
 bar(argv[1], buf);
}

int main(int argc, char *argv[])
{
 if (argc != 2)
 {
 fprintf(stderr, "target1: argc != 2\n");
 exit(EXIT_FAILURE);
 }
 foo(argv);
 return 0;
}

Stack During Call to foo

• Target the local buffer “buf” inside of foo

• What’s on the stack after the end of “buf?”

• Stack layout dependent on OS and compiler

• arguments to foo, then return address, then saved
frame pointer, then “buf”

• Explore stack with gdb, read “Smashing the Stack”

sploit1

• Want to overwrite return address of foo()

• Need to insert shellcode in “buf”

• Distance from “buf” and return address on stack

• Remember, this is dependent on compiler/OS

• Make sure your exploits work in VM!

Address of “buf”

• How to obtain?

• Examine stack frame using “info frame”

• Use “x buf” when in foo’s frame

• Stays the same everytime program is invoked

• Address changes when invoked from exec()

• Get address using gdb -e sploit1 -s /tmp/target1

Crafting the Exploit String

• Place shellcode at the start of the string

• Return address ($ra, or saved $eip) exists at
offset 132 on our VM

• 128 bytes of buf, 4 bytes frame pointer

• Write address of “buf” to $ra, 0xbffffd78

• Remember to null terminate your string (strcpy)

Hints

• There are other ways to attack besides
overwriting the return address

• Understand what assembly instructions are doing

• README contains links to Intel x86 assembly
manuals

• Understand what registers $esp, $ebp point to

• What happens when LEAVE and RET called?

IA-32 Review

• x86 is little endian

• $esp: Stack Pointer: points to the top of stack
(which way does the stack grow on x86?)

• $ebp: Frame Pointer: points to fixed location
within an activation record

• Used to reference local vars and parameters since the distance from the frame pointer to these objects stays
constant, while stack pointer changes

• $eip: instruction pointer (aka $ra) ($ebp+4)

IA-32 Review (cont’d)

• When CALL procedure foo()

• Push $eip onto stack, (return address)

• Push $ebp, saving previous frame

• Copy sp into fp, $ebp = $esp

• Decrement $sp for allocations (like buffers)

• When LEAVE procedure p()

• Process is reversed

• Load $ebp into $esp

• Restore $ebp from stack

Interaction Between $esp, $ebp, $eip

• During CALL, value of $eip register pushed onto
stack

• Before RET, programmer should make sure stack
pointer ($esp) is pointing to saved $eip on the
stack
• Move contents of $ebp into $esp

• Increment $esp by 4

• $esp should now point to address of saved $eip

• RET will load saved $eip into $eip register, processor will execute instruction in
$eip register

Advice

• Start early, you’ll need to read
• “Smashing the Stack” - Aleph 0ne
• “Basic Integer Overflows”
• “Exploiting Format String Vulnerabilities”
• “How to hijack the Global Offset Table...”
• “Once upon a free”
• Reference IA-32 guide (on syllabus with papers)

• Part 2 MUCH harder than Part 1.
• Make a diagram of the stack using gdb

