
5/28/09 

1 

Project 3 – Web Security
Part 2

CS155 – Indrajit “Indy” Khare

Outline

• Administrative
•  Requirement Overview
• Attack A Defenses
• Attack B Defenses
• Attack C Defenses
• Attack D Defenses
•  Extra Fun Defenses
• Other Notes

5/28/09 

2 

Administrative

• Due Monday June 1st

• No more late days are allowed

•  Setup cgi-bin on your su network
account TODAY (linked from
instructions)

Requirements

• Defend against all known attacks from
Part 1

• Defend against all XSS an XSRF in
zoobar.org (except login)

• Make sure you read non-goals section
in assignment
– Don’t add any new files
– Don’t change DB
– Don’t edit files in includes/

5/28/09 

3 

Attack A Defenses

•  The attack is a simple XSS

•  How do defend?
–  Do output sanitization

•  From class:

•  PHP: htmlspecialchars(string)
 & → & " → " ' → '
 < → < > → >

–  htmlspecialchars(
 "Test", ENT_QUOTES);

 Outputs:
 Test

Attack B Defenses

•  Simple XSRF (CSRF)

•  How to Defend:
– Secret Token
•  Ideally you use some HMAC with a secret
• For this project you can simply hash the session

token
• Look at includes/auth.php for a lot of helpful

code

5/28/09 

4 

Attack C Defenses

•  Sniffing Login info
– Secure the one non-html file that leaks the

data
– Modify it so that it doesn’t appear to do

different things when logged in or not

Attack C Defenses

•  Phishing
– Display warning if the user has visited a

known bad page
– Sniff browser history
• Use make a hidden link to the bad url
• Check generated link color via javascript
document.defaultView.getComputedStyle(document.ge
tElementById(”linkid"),
'').getPropertyValue("color");	

5/28/09 

5 

Attack D Defenses

• Don’t use eval!

• Make sure you are not displaying
strings that can be bad

EF Defenses

• Go back and understand what the
vulnerability is
– Think quotes and event listeners

• Defense is very similar to Attack A

5/28/09 

6 

Hunting for Problems

•  Look for wherever the website takes
input

•  Look for wherever the website outputs
stuff that can be user generated

• Don’t worry about SQL Injection for this
assignment

txt-db-api

•  Third-party text file database library
•  Data can be int, string, and autoincrement
•  Need to escape strings: \' \" \\
•  Actually magic_quotes_gpc does this for us

 $recipient = $_POST[‘recipient’]; // already escaped

 $sql = "SELECT PersonID FROM Person WHERE
 Username='$recipient'";

 $rs = $db->executeQuery($sql);
 if($rs->next())
 $id = $rs->getCurrentValueByName(‘PersonID’);

Adapted from Collin Jackson 2007

5/28/09 

7 

PHP Sanitization Techniques

•  addslashes(string)
– Prepends backslash to ' " \
– Already done by magic_quotes_gpc
–  Inverse: stripslashes(string)

•  htmlspecialchars(string [, quote_style])
– Converts & < > " to HTML entities
– Use ENT_QUOTES to change ' to '

•  strip_tags(string, [, allowable_tags])
– Max tag length 1024
– Does not sanitize tag properties

•  preg_replace(pattern, replacement, subject)
•  More info: http://php.net

Adapted from Collin Jackson 2007

Questions?

