CS255: Cryptography and Computer Security Winter 2005

Assignment #2

Due: Wednesday, February 16th, 2005.

Problem 1 Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message M one uses the following tree

construction:
ﬂ\ Hash
f
f msg-len
- - = =~ - =~ <
f f
f f f
Message | giock 1| |Block 2| |Block 3| |Block 4| " " Block 15| | Block 16

Prove that if one can find a collision for the resulting hash function then one can find
collisions for the compression function.

Problem 2 In this problem we explore the different ways of constructing a MAC out of
a non-keyed hash function. Let h : {0,1}* — {0,1}® be a hash function constructed
by iterating a collision resistant compression function using the Merkle-Damgard con-
struction.

1. Show that defining M ACy(M) = h(k || M) results in an insecure MAC. That
is, show that given a valid msg/MAC pair (M, H) one can efficiently construct
another valid msg/MAC pair (M’, H') without knowing the key k.

2. Consider the MAC defined by MACy(M) = h(M || k). Show that in expected
time O(2%?) it is possible to construct two messages M and M’ such that given
MAC(M) it is possible to construct M AC,(M') without knowing the key k.

Problem 3 Suppose Alice and Bob share a secret key k. A simple proposal for a MAC
algorithm is as follows: given a message M do: (1) compute 128 different parity bits
of M (i.e. compute the parity of 128 different subsets of the bits of M), and (2) AES
encrypt the resulting 128-bit checksum using k. Naively, one could argue that this
MAC is existentially unforgeable: without knowing k£ an attacker cannot create a valid
message-MAC pair. Show that this proposal is flawed. Note that the algorithm for
computing the 128-bit checksums is public, i.e. the only secret unknown to the attacker
is the key k. Hint: show that an attacker can carry out an existential forgery given
one valid message/MAC pair (where the message is a kilobyte long).

Problem 4 Let z4,...,x, be randomly sampled integers in the range [1, B]. The birthday
paradox says that when n = |1.2v/B] the probability that there is a collision (i.e. exists

i # j such that x; = x;) is a constant (greater than 1/2). How many samples z1, ..., z,
do we need until the probability that we get k collisions (i.e. exist i1, ji, .. ., ig, Jx sSuch
that x;, = xj,,...,x; = x;,) is some non-zero constant? Justify your answer.

Hint: define the indicator random variable I, to be 1 if x; = x,, and zero otherwise.
Then the expected number of collisions is » 7 _; E[l;,]. When is this expectation
greater than k7

Problem 5 Suppose user A is broadcasting packets to n recipients By, ..., B,. Privacy is
not important but integrity is. In other words, each of By,..., B, should be assured
that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and By, ..., B, all share a secret key k. User A MAC’s every packet
she sends using k. Each user B; can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user B is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {ki, ..., ky} of m secret keys. Each user B; has some
subset S; C S of the keys. When A transmits a packet she appends m MAC’s
to it by MACing the packet with each of her m keys. When user B; receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in S; are
valid. What property should the sets S, ..., S, satisfy so that the attack from
part (a) does not apply? We are assuming all users By, ..., B, are sufficiently far
apart so that they cannot collude.

c. Show that when n = 6 (i.e. six recipients) the broadcaster A need only append
4 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
Si,...,8 C{ki,...,ks} you would use.

Problem 6 In this problem, we see why it is a really bad idea to choose a prime p = 2% +1
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p. Let g be a generator of Z;.

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = ¢* (with x unknown), show how to determine whether z is even or odd
by computing /2 mod p.

b. If z is even, show how to compute the 2nd least significant bit of x.
Hint: consider y®~1/* mod p.

c. Generalize part (b) and show how to compute all of .

d. Briefly explain why your algorithm does not work for a random prime p.

