CS255: Intro. to Cryptography Winter 2023

Assignment #4

Due: Wed., Mar. 15, 2023, by Gradescope (each answer on a separate page).

Problem 1. Let’s explore why in the RSA trapdoor permutation every party has to be as-
signed a different modulus n = pqg. Suppose we try to use the same modulus n = pq
for everyone. Every party is assigned a public exponent e; € Z and a private exponent
d; € Z such that e;-d; = 1 mod ¢(n). At first this appears to work fine: to sign a message
m € M, Alice would publish the signature o, «+ H(m)% € Z, where H : M — Z is
a hash function. Similarly, Bob would publish the signature oy, <~ H(m)® € Z,. Since
Alice is the only one who knows d, € Z and Bob is the only one who knows d,, € Z, this
seems fine.

Let’s show that this is completely insecure: Bob can use his secret key dy, to sign messages
on behalf of Alice.

a. Show that Bob can use his public-private key pair (ey,, d},) to obtain a multiple of ¢(n).
Let us denote that integer by V.

b. Now, suppose Bob knows Alice’s public key e,. Show that for any message m € M,
Bob can compute o < H(m)'/¢ € Z,. In other words, Bob can invert Alice’s trapdoor
permutation and obtain her signature on m.

Hint: First, suppose e, is relatively prime to V. Then Bob can find an integer d such
that d - e, = 1 mod V. Show that d can be used to efficiently compute o. Next, show
how to make your algorithm work even if e, is not relatively prime to V.

Note: In fact, one can show that Bob can completely factor the global modulus n.

Problem 2. Consider again the RSA-FDH signature scheme. The public key is a pair (V, e)
where N is an RSA modulus, and a signature on a message m € M is defined as o :=
H(m)'¢ € Zy, where H : M — Zy is a hash function. Suppose the adversary could find
three messages my, me, mg € M such that H(m,) - H(mg) = H(ms) in Zy. Show that
the resulting RSA-FDH signature scheme is no longer existentially unforgeable under a
chosen message attack.

Problem 3. A commitment scheme enables Alice to commit a value x to Bob. The scheme
is hiding if the commitment does not reveal to Bob any information about the committed
value x. At a later time Alice may open the commitment and convince Bob that the
committed value is . The commitment is binding if Alice cannot convince Bob that the
committed value is some 2’ £ x. Here is an example commitment scheme:

Public values: A group G of prime order ¢ and two generators g, h € G.

Commitment: To commit to an element x € Z, Alice does the following: (1) she chooses
a random r € Z,, (2) she computes b = ¢g* - " € G, and (3) she sends b to Bob as
her commitment to x.

Open: To open the commitment Alice sends (x,7) to Bob. Bob verifies that b = ¢g* - h”.
Show that this scheme is hiding and binding.

a. To prove the hiding property show that b reveals no information about z. In other
words, show that given b, the committed value can be any element 2’ in Z,.
Hint: show that for any 2’ € Z, there exists a unique 7’ € Z, so that b = g* h" .

b. To prove the binding property show that if Alice can find a commitment b and two
openings (x,r) and (2/,r"), where = # 2, then Alice can compute the discrete log of
h base g. Conclude that if the discrete log problem is hard in G, and h is chosen
uniformly in G, then the commitment scheme must be binding.
Hint: use the fact that b = ¢*h" = ¢” k", where Alice knows z,r,z’,7’, to find the
discrete log of h base g.

c. Show that the commitment is additively homomorphic: given a commitment to z € Z,
and a commitment to y € Z,, Bob can construct a commitment to z = az + by, for
any a,b € Z4 of his choice.

Problem 4. Time-space tradeoff. Let f : X — X be a one-way permutation (i.e., a one-to-one
function on X). Show that one can build a table T" of size 2B elements of X (B < |X])
that enables an attacker to invert f in time O(|X|/B). More precisely, construct an
O(|X|/B)-time deterministic algorithm A that takes as input the table 7" and a y € X,
and outputs an x € X satisfying f(z) = y. This result suggests that the more memory
the attacker has, the easier it becomes to invert functions.

Hint: choose a random point z € X and compute the sequence

200=2, 2= f(2), 2= f(f(2), 2= f(f(f(2),

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that z; = z). We call the resulting sequence (2, 21,...,2;) an
f-cycle. Let t := [|X|/B]. Try storing (zo, 2, 2at, 23t, - - .) in memory. Use this table (or
perhaps, several such tables) to invert an input y € X in time O(t).

Discussion: Time-space tradeoffs of this nature can be used to attack unsalted hashed
passwords, as discussed in class. Time-space tradeoffs also exist for general one-way func-
tions (not just permutations), but their performance is not as good as your time-space

2

tradeoff above. These algorithms are called Hellman tables and discussed in Section 18.7
in the book.

Problem 5. In the lecture on identification protocols we saw a protocol called S/key that uses
an iterated one-way function. In this question we explore the security of iterated one-way
functions.

a. Let’s show that the iteration of a one-way function need not be one-way. To do so, let
f: X — X be a one-way function, where 0 € X. Let f : X2 — X? be defined as:

oo [0 ify=0
f.y) {(f(:p),O) otherwise

Show that f is one-way, but f@ (x,y) := f(f(m,y)) is not.

b. Let’s show that the iteration of a one-way permutation is also one-way (recall that a
permutation is a one-to-one function). Suppose f : X — X is a one-way permutation.
Show that f®(z) := f(f(x)) is also one-way. As usual, prove the contrapositive.

c. Explain why your proof from part (b) does not apply to a one-way function. Where
does the proof fail?

https://cryptobook.us

