
Protecting Browsers from DNS Rebinding Attacks

Collin Jackson
Stanford University

collinj@cs.stanford.edu

Adam Barth
Stanford University

abarth@cs.stanford.edu

Andrew Bortz
Stanford University

abortz@cs.stanford.edu
Weidong Shao

Stanford University
wshao@cs.stanford.edu

Dan Boneh
Stanford University

dabo@cs.stanford.edu

ABSTRACT
DNS rebinding attacks subvert the same-origin policy of
browsers and convert them into open network proxies. We
survey new DNS rebinding attacks that exploit the inter-
action between browsers and their plug-ins, such as Flash
Player and Java. These attacks can be used to circumvent
firewalls and are highly cost-effective for sending spam e-
mail and defrauding pay-per-click advertisers, requiring less
than $100 to temporarily hijack 100,000 IP addresses. We
show that the classic defense against these attacks, called
“DNS pinning,” is ineffective in modern browsers. The pri-
mary focus of this work, however, is the design of strong
defenses against DNS rebinding attacks that protect mod-
ern browsers: we suggest easy-to-deploy patches for plug-ins
that prevent large-scale exploitation, provide a defense tool,
dnswall, that prevents firewall circumvention, and detail
two defense options, policy-based pinning and host name
authorization.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Design, Experimentation

Keywords
Same-Origin Policy, DNS, Firewall, Spam, Click Fraud

1. INTRODUCTION
Users who visit web pages trust their browser to prevent

malicious web sites from leveraging their machines to attack
others. Organizations that permit JavaScript and other ac-
tive content through their firewall rely on the browser to
protect internal network resources from attack. To achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

these security goals, modern browsers implement the same-
origin policy that attempts to isolate distinct “origins,” pro-
tecting sites from each other.

DNS rebinding attacks subvert the same-origin policy by
confusing the browser into aggregating network resources
controlled by distinct entities into one origin, effectively con-
verting browsers into open proxies. Using DNS rebinding,
an attacker can circumvent firewalls to spider corporate in-
tranets, exfiltrate sensitive documents, and compromise un-
patched internal machines. An attacker can also hijack the
IP address of innocent clients to send spam e-mail, commit
click fraud, and frame clients for misdeeds. DNS rebinding
vulnerabilities permit the attacker to read and write directly
on network sockets, subsuming the attacks possible with ex-
isting JavaScript-based botnets [24], which can send HTTP
requests but cannot read back the responses.

To mount a DNS rebinding attack, the attacker need only
register a domain name, such as attacker.com, and attract
web traffic, for example by running an advertisement. In
the basic DNS rebinding attack, the attacker answers DNS
queries for attacker.com with the IP address of his or her
own server with a short time-to-live (TTL) and serves vis-
iting clients malicious JavaScript. To circumvent a firewall,
when the script issues a second request to attacker.com, the
attacker rebinds the host name to the IP address of a tar-
get server that is inaccessible from the public Internet. The
browser believes the two servers belong to the same origin
because they share a host name, and it allows the script to
read back the response. The script can easily exfiltrate the
response, enabling the attacker to read arbitrary documents
from the internal server, as shown in Figure 1.

To mount this attack, the attacker did not compromise
any DNS servers. The attacker simply provided valid, au-
thoritative responses for attacker.com, a domain owned by
the attacker. This attack is very different from “pharm-
ing” [34], where the attacker must compromise a host name
owned by the target by subverting a user’s DNS cache or
server. DNS rebinding requires no such subversion. Conse-
quently, DNSSEC provides no protection against DNS re-
binding attacks: the attacker can legitimately sign all DNS
records provided by his or her DNS server in the attack.

DNS rebinding attacks have been known for a decade [8,
36]. A common defense implemented in several browsers is
DNS pinning : once the browser resolves a host name to an
IP address, the browser caches the result for a fixed dura-
tion, regardless of TTL. As a result, when JavaScript con-
nects to attacker.com, the browser will connect back to the
attacker’s server instead of the internal server.

Attacker
web
server

Target
server

Browser
client

attacker.com
at time t

1

attacker.com
at time t

0

Figure 1: Firewall Circumvention Using Rebinding

Pinning is no longer an effective defense against DNS re-
binding attacks in current browsers because of vulnerabil-
ities introduced by plug-ins. These plug-ins provide addi-
tional functionality, including socket-level network access,
to web pages. The browser and each plug-in maintain sep-
arate pin databases, creating a new class of vulnerabilities
we call multi-pin vulnerabilities that permit an attacker to
mount DNS rebinding attacks. We demonstrate, for exam-
ple, how to exploit the interaction between the browser and
Java LiveConnect to pin the browser to one IP address while
pinning Java to another IP address, permitting the attacker
to read and write data directly on sockets to a host and
port of the attacker’s choice despite strong pinning by each
component.

Our experiments show how an attacker can exploit multi-
pin vulnerabilities to cheaply and efficiently assemble a tem-
porary, large-scale bot network. Our findings suggest that
nearly 90% of web browsers are vulnerable to rebinding at-
tacks that only require a few hundreds of milliseconds to
conduct (see Table 1). These attacks do not require users
to click on any malicious links: users need only view an at-
tacker’s web advertisement. By spending less than $100 on
advertising, an attacker can hijack 100,000 unique IP ad-
dress to send spam, commit click fraud, or otherwise misuse
as open network proxies.

The bulk of our work focuses on designing robust defenses
to DNS rebinding attacks that protect current and future
browsers and plug-ins:

1. To combat firewall circumvention, we recommend or-
ganizations deploy DNS resolvers that prevent external
names from resolving to internal addresses. We pro-
vide an open-source implementation of such a resolver
in 300 lines of C called dnswall [15].

2. For Flash Player, Java, and LiveConnect, we suggest
specific, easy-to-deploy patches to prevent multi-pin
vulnerabilities, mitigating large-scale exploitation of
DNS rebinding for firewall circumvention and IP hi-
jacking.

Technology Attack Time
LiveConnect (JVM loaded) 47.8± 10.3 ms
Flash Player 9 192± 5.7 ms
Internet Explorer 6 (no plug-ins) 1000 ms
Internet Explorer 7 (no plug-ins) 1000 ms
Firefox 1.5 and 2 (no plug-ins) 1000 ms
Safari 2 (no plug-ins) 1000 ms
LiveConnect 1294± 37 ms
Opera 9 (no plug-ins) 4000 ms

Table 1: Time Required for DNS Rebinding Attack
by Technology (95% Confidence)

3. We propose two options for protecting browsers from
DNS rebinding: smarter pinning that provides better
security and robustness, and a backwards-compatible
use of the DNS system that fixes rebinding vulnerabil-
ities at their root (which we implemented as a 72-line
patch to Firefox 2).

The remainder of the paper is organized as follows. Sec-
tion 2 describes existing browser policy for network access.
Section 3 details DNS rebinding vulnerabilities, including
standard DNS rebinding and current multi-pin vulnerabili-
ties. Section 4 explains two classes of attacks that use these
vulnerabilities, firewall circumvention and IP hijacking, and
contains our experimental results. Section 5 proposes de-
fenses against both classes of attacks. Section 6 describes
related work. Section 7 concludes.

2. NETWORK ACCESS IN THE BROWSER
To display web pages, browsers are instructed to make

network requests by static content such as HTML and by
active content such as JavaScript, Flash Player, Java, and
CSS. Browsers restrict this network access in order to to pre-
vent web sites from making malicious network connections.

The same-origin policy provides partial resource isolation
by restricting access according to origin, specifying when
content from one origin can access a resource in another ori-
gin. The policy applies to both network access and browser
state such as the Document Object Model (DOM) interface,
cookies, cache, history, and the password database [20]. The
attacks described in this paper circumvent the same origin-
policy for network access.

Access Within Same Origin. Within the same origin,
both content and browser scripts can read and write net-
work resources using the HTTP protocol. Plug-ins, such as
Flash Player and Java, can access network sockets directly,
allowing them to make TCP connections and, in some cases,
send and receive UDP packets as well. Java does not restrict
access based on port number, but Flash Player permits ac-
cess to port numbers less than 1024 only if the machine
authorizes the connection in an XML policy served from a
port number less than 1024.

Access Between Different Origins. In general, con-
tent from one origin can make HTTP requests to servers
in another origin, but it cannot read responses, effectively
restricting access to “send-only.” Flash Player permits its
movies to read back HTTP responses from different origins,
provided the remote server responds with an XML policy
authorizing the movie’s origin. Flash Player also permits

reading and writing data on TCP connections to arbitrary
port numbers, again provided the remote server responds
with a suitable XML policy on an appropriate port.

By convention, certain types of web content are assumed
to be public libraries, such as JavaScript, CSS, Java ap-
plets, and SWF movies. These files may be included across
domains. For example, one origin can include a CSS file
from another origin and read its text. Scripts can also read
certain properties of other objects loaded across domains,
such as the height and width of an image.

Prohibited Access. Some types of network access are pro-
hibited even within the same origin. Internet Explorer 7
blocks port numbers 19 (chargen), 21 (FTP), 25 (SMTP),
110 (POP3), 119 (NNTP), and 143 (IMAP), Firefox 2 blocks
those plus 51 additional port numbers, but Safari 2 does not
block any ports. Some of these port restrictions are designed
to prevent malicious web site operators from leveraging vis-
iting browsers to launch distributed denial of service or to
send spam e-mail, whereas others prevent universal cross-
site scripting via the HTML Form Protocol Attack [41].

Origin Definition. Different definitions of “origin” are
used by different parts of the browser. For network access,
browsers enforce the same-origin policy [38] based on three
components of the Uniform Resource Locator (URL) from
which it obtained the content. A typical URL is composed
of the below components:

scheme://hostname:port/path

Current browsers treat two objects as belonging to the same
origin if, and only if, their URLs contain the same scheme,
host name, and port number (e.g., http://amazon.com/ is
a different origin than http://amazon.co.uk/, even though
the two domains are owned by the same company). Other
resources use fewer components of the URL. For example,
cookies use only the host name.

Objects on the Internet, however, are not accessed by host
name. To connect to a server, the browser must first trans-
late a host name into an IP address and then open a socket
to that IP address. If one host name resolves to multiple IP
addresses owned by multiple entities, the browser will treat
them as if they were the same origin even though they are,
from an ownership point-of-view, different.

3. DNS REBINDING VULNERABILITIES
The network access policy in web browsers is based on

host names, which are bound by the Domain Name Sys-
tem (DNS) to IP addresses. An attacker mounting a DNS
rebinding attack attempts to subvert this security policy by
binding his or her host name to both the attack and target
server’s IP addresses.

3.1 Standard Rebinding Vulnerabilities
A standard rebinding attack uses a single browser tech-

nology (e.g. JavaScript, Java, or Flash Player) to connect
to multiple IP addresses with the same host name.

Multiple A Records. When a client resolves a host name
using DNS, the authoritative server can respond with mul-
tiple A records indicating the IP addresses of the host. The
first attack using DNS rebinding [8] in 1996 leveraged this
property to confuse the security policy of the Java Virtual
Machine (JVM):

1. A client visits a malicious web site, attacker.com, con-
taining a Java applet. The attacker’s DNS server binds
attacker.com to two IP addresses: the attacker’s web
server and the target’s web server.

2. The client executes the attacker’s applet, which opens
a socket to the target. The JVM permits this connec-
tion, because the target’s IP address is contained in
the DNS record for attacker.com.

Current versions of the JVM are not vulnerable to this at-
tack because the Java security policy has been changed. Ap-
plets are now restricted to connecting to the IP address from
which they were loaded. (Current attacks on Java are de-
scribed in Section 3.2.)

In the JavaScript version of this attack, the attacker sends
some JavaScript to the browser that instructs the browser
to connect back to attacker.com. The attacker’s server
refuses this second TCP connection, forcing the browser to
switch over to the victim IP address [21]. By using a RST

packet to refuse the connection, the attacker can cause some
browsers to switch to the new IP address after one second.
Subsequent XMLHttpRequests issued by the attacker’s code
will connect to the new IP address.

Time-Varying DNS. In 2001, the original attack on Java
was extended [36] to use use time-varying DNS:

1. A client visits a malicious web site, attacker.com,
containing JavaScript. The attacker’s DNS server is
configured to bind attacker.com to the attacker’s IP
address with a very short TTL.

2. The attacker rebinds attacker.com to the target’s IP
address.

3. The malicious script uses frames or XMLHttpRequest
to connect to attacker.com, which now resolves to the
IP address of the target’s server.

Because the connection in Step 3 has the same host name
as the original malicious script, the browser permits the at-
tacker to read the response from the target.

Pinning in Current Browsers. Current browsers defend
against the standard rebinding attack by “pinning” host
names to IP address, preventing host names from referring
to multiple IP addresses.

• Internet Explorer 7 pins DNS bindings for 30 minutes.1

Unfortunately, if the attacker’s domain has multiple A

records and the current server becomes unavailable,
the browser will try a different IP address within one
second.

• Internet Explorer 6 also pins DNS bindings for 30 min-
utes, but an attacker can cause the browser to release
its pin after one second by forcing a connection to the
current IP address to fail, for example by including the
element .

1The duration is set by the registry keys DnsCacheTimeout
and ServerInfoTimeOut in
HKEY CURRENT USER\SOFTWARE\Microsoft Windows\
CurrentVersion\Internet Settings

• Firefox 1.5 and 2 cache DNS entries for between 60 and
120 seconds. DNS entries expire when the value of the
current minute increments twice. 2 Using JavaScript,
the attacker can read the user’s clock and compute
when the pin will expire. Using multiple A records, an
attacker can further reduce this time to one second.

• Opera 9 behaves similarly to Internet Explorer 6. In
our experiments, we found that it pins for approxi-
mately 12 minutes but can be tricked into releasing its
pin after 4 seconds by connecting to a closed port.

• Safari 2 pins DNS bindings for one second. Because
the pinning time is so low, the attacker may need to
send a “Connection: close” HTTP header to ensure
that the browser does not re-use the existing TCP con-
nection to the attacker.

Flash Player 9. Flash Player 9 permits SWF movies to
open TCP sockets to arbitrary hosts, provided the destina-
tion serves an XML policy authorizing the movie’s origin [2].
According to Adobe, Flash Player 9 is installed on 55.8% of
web browsers (as of December 2006) [1]; according to our
own experiments, Flash Player 9 was present in 86.9% of
browsers. Flash Player is vulnerable to the following re-
binding attack:

1. The client’s web browser visits a malicious web site
that embeds a SWF movie.

2. The SWF movie opens a socket on a port less than
1024 to attacker.com, bound to the attacker’s IP ad-
dress. Flash Player sends <policy-file-request />.

3. The attacker responds with the following XML:

<?xml version="1.0"?>

<cross-domain-policy>

<allow-access-from domain="*" to-ports="*" />

</cross-domain-policy>

4. The SWF movie opens a socket to an arbitrary port
number on attacker.com, which the attacker has re-
bound to the target’s IP address.

The policy XML provided by the attacker in step 3 in-
structs Flash Player to permit arbitrary socket access to
attacker.com. Flash Player permits the socket connections
to the target because it does not pin host names to a single
IP address. If the attacker were to serve the policy file from
a port number ≥ 1024, Flash Player would authorize only
ports ≥ 1024.

3.2 Multi-Pin Vulnerabilities
Current browsers use several plug-ins to render web pages,

many of which permit direct socket access back to their ori-
gins. Another class of rebinding attacks exploit the fact
that these multiple technologies maintain separate DNS pin
databases. If one technology pins to the attacker’s IP ad-
dress and another pins to the target’s IP address, the at-
tacker can make use of inter-technology communication to
circumvent the same-origin restrictions on network access.
Some of these attacks have been discussed previously in the
full-disclosure community [4].

Java. Java, installed on 87.6%3 of web browsers [1], can also
2The duration is set by network.dnsCacheExpiration.
3We observed 98.1% penetration in our experiment.

open TCP connections back to their origins. The Java Vir-
tual Machine (JVM) maintains DNS pins separately from
the browser, opening up the possibility of DNS rebinding
vulnerabilities. Java applets themselves are not vulnerable
because the JVM retrieves applets directly from the net-
work, permitting the JVM to pin the origin of the applet to
the correct IP address. Java is vulnerable, however, to the
following attacks.

• LiveConnect bridges JavaScript and the JVM in Fire-
fox and Opera, permitting script access to the Java
standard library, including the Socket class, without
loading an applet. The browser pins to the attacker’s
IP address, but the JVM spawned by LiveConnect
does a second DNS resolve and pins to the target’s
IP address. The attacker’s JavaScript can exploit this
pin mismatch to open and communicate on a socket
from the client machine to an arbitrary IP address on
an arbitrary destination port, including UDP sockets
with a source port number ≥ 1024.

• Applets with Proxies are also vulnerable to a multi-
pin attack, regardless of which browser the client uses.
If the client uses an HTTP proxy to access the web,
there is yet another DNS resolver involved—the proxy.
When the JVM retrieves an applet via a proxy, it re-
quests the applet by host name, not by IP address.
If the applet opens a socket, the JVM does a second
DNS resolve and pins to the target’s IP address.

• Relative Paths can cause multi-pin vulnerabilities. If
a server hosts an HTML page that embeds an applet
using a relative path with the parameter mayscript

set to true, that machine can be the target of a multi-
pin attack. The browser pins to the target, retrieves
the HTML page, and instructs the JVM to load the
applet. The JVM does a second DNS resolve, pins
to the attacker, and retrieves a malicious applet. The
applet instructs the browser, via JavaScript, to issue
XMLHttpRequests to the target’s IP address.

Flash Player. Flash Player would still be vulnerable to
multi-pin attacks even if it pinned DNS bindings. Flash
Player does not retrieve its movies directly from the net-
work. Instead, the browser downloads the movie and spawns
Flash Player, transferring the movie’s origin by host name.
When the attacker’s movie attempts to open a socket, Flash
Player does a second DNS resolution and would pin to the
target’s IP address. The URLLoader class is not vulnerable to
multi-pin attacks because it uses the browser to request the
URL and thus uses the browser’s DNS pins, but the Socket

class could still be used to read and write on arbitrary TCP
sockets.

Other Plug-ins. Other browser plug-ins permit network
access, including Adobe Acrobat and Microsoft Silverlight.
Acrobat restricts network communication to the SOAP pro-
tocol but does not restrict access by document origin. Of-
ten, the Acrobat plug-in will prompt the user before access-
ing the network. Silverlight permits network access through
BrowserHttpWebRequest, which uses the browser to make
the request (like URLLoader in Flash Player) and thus uses
the browser’s DNS pins.

4. ATTACKS USING DNS REBINDING
An attacker can exploit the DNS rebinding vulnerabilities

described in Section 3 to mount a number of attacks. For
some of these attacks, the attacker requires the direct socket
access afforded by DNS rebinding with Flash Player and
Java, whereas others require only the ability to read HTTP
responses from the target. The attacks fall into two broad
categories, according to the attacker’s goal:

• Firewall Circumvention. The attacker can use DNS re-
binding to access machines behind firewalls that he or
she cannot access directly. With direct socket access,
the attacker can interact with a number of internal
services besides HTTP.

• IP Hijacking. The attacker can also use DNS rebinding
to access publicly available servers from the client’s IP
address. This allows the attacker to take advantage of
the target’s implicit or explicit trust in the client’s IP
address.

To mount these attacks, the attacker must first induce the
client to load some active content. This can be done by a
variety of techniques discussed in Section 4.4. Once loaded
onto the client’s machine, the attacker’s code can communi-
cate with any machine reachable by the client.

4.1 Firewall Circumvention
A firewall restricts traffic between computer networks in

different zones of trust. Some examples include blocking
connections from the public Internet to internal machines
and mediating connections from internal machines to Inter-
net servers with application-level proxies. Firewall circum-
vention attacks bypass the prohibition on inbound connec-
tions, allowing the attacker to connect to internal servers
while the user is visiting the attacker’s Internet web page
(see Figure 1).

Spidering the Intranet. The attacker need not specify
the target machine by IP address. Instead, the attacker
can guess the internal host name of the target, for example
hr.corp.company.com, and rebind attacker.com to a CNAME

record pointing to that host name. The client’s own recur-
sive DNS resolver will complete the resolution and return
the IP address of the target. Intranet host names are often
guessable and occasionally disclosed publicly [30, 9]. This
technique obviates the need for the attacker to scan IP ad-
dresses to find an interesting target but does not work with
the multiple A record technique described in Section 3.1.

Having found a machine on the intranet, the attacker can
connect to the machine over HTTP and request the root
document. If the server responds with an HTML page, the
attacker can follow links and search forms on that page,
eventually spidering the entire intranet. Web servers inside
corporate firewalls often host confidential documents, rely-
ing on the firewall to prevent untrusted users from accessing
the documents. Using a DNS rebinding attack, the attacker
can leverage the client’s browser to read these documents
and exfiltrate them to the attacker, for example by submit-
ting an HTML form to the attacker’s web server.

Compromising Unpatched Machines. Network admin-
istrators often do not patch internal machines as quickly
as Internet-facing machines because the patching process is
time-consuming and expensive. The attacker can attempt

to exploit known vulnerabilities in machines on the internal
network. In particular, the attacker can attempt to exploit
the client machine itself. The attacks against the client it-
self originate from localhost and so bypass software fire-
walls and other security checks, including many designed to
protect serious vulnerabilities. If an exploit succeeds, the
attacker can establish a presence within the firewall that
persists even after clients close their browsers.

Abusing Internal Open Services. Internal networks
contain many open services intended for internal use only.
For example, network printers often accept print jobs from
internal machines without additional authentication. The
attacker can use direct socket access to command network
printers to exhaust their toner and paper supplies.

Similarly, users inside firewalls often feel comfortable cre-
ating file shares or FTP servers accessible to anonymous
users under the assumption that the servers will be avail-
able only to clients within the network. With the ability to
read and write arbitrary sockets, the attacker can exfiltrate
the shared documents and use these servers to store illicit
information for later retrieval.

Consumer routers are often installed without changing the
default password, making them an attractive target for re-
configuration attacks by web pages [40]. Firmware patches
have attempted to secure routers against cross-site scripting
and cross-site request forgery, in an effort to prevent recon-
figuration attacks. DNS rebinding attacks allow the attacker
direct socket access to the router, bypassing these defenses.

4.2 IP Hijacking
Attackers can also use DNS rebinding attacks to target

machines on the public Internet. For these attacks, the at-
tacker is not leveraging the client’s machine to connect to
otherwise inaccessible services but instead abusing the im-
plicit or explicit trust public services have in the client’s IP
address. Once the attacker has hijacked a client’s IP ad-
dress, there are several attacks he or she can perpetrate.

Committing Click Fraud. Web publishers are often paid
by web advertisers on a per-click basis. Fraudulent publish-
ers can increase their advertising revenue by generating fake
clicks, and advertisers can drain competitors’ budgets by
clicking on their advertisements. The exact algorithms used
by advertising networks to detect these “invalid” clicks are
proprietary, but the IP address initiating the click is widely
believed to be an essential input. In fact, one common use
of bot networks is to generate clicks [7].

Click fraud would appear to require only the ability to
send HTTP requests to the advertising network, but adver-
tisers defend against the send-only attacks, permitted by the
same-origin policy, by including a unique nonce with every
advertising impression. Clicks lacking the correct nonce are
rejected as invalid, requiring the attacker to read the nonce
from an HTTP response in order to generate a click.

This attack is highly cost-effective, as the attacker can
buy advertising impressions, which cost tens of cents per
thousand, and convert them into clicks, worth tens of cents
each. The attack is sufficiently cost-effective that the at-
tacker need not convert every purchased impression into a
click. Instead, the fraudster can use most of the purchased
impressions to generate fake impressions on the site, main-
taining a believable click-through rate.

Sending Spam. Many e-mail servers blacklist IP addresses
known to send spam e-mail [39]. By hijacking a client’s IP
address, an attacker can send spam from IP addresses with
clean reputations. To send spam e-mail, the attacker need
only write content to SMTP servers on port 25, an action
blocked by most browsers but permitted by Flash Player
and Java. Additionally, an attacker will often be able to use
the client’s actual mail relay. Even service providers that
require successful authentication via POP3 before sending
e-mail are not protected, because users typically leave their
desktop mail clients open and polling their POP3 servers.

Defeating IP-based Authentication. Although discour-
aged by security professionals [10], many Internet services
still employ IP-based authentication. For example, the ACM
Digital Library makes the full text of articles available only
to subscribers, who are often authenticated by IP address.
After hijacking an authorized IP address, the attacker can
access the service, defeating the authentication mechanism.
Because the communication originates from an IP address
actually authorized to use the service, it can be difficult,
or even impossible, for the service provider to recognize the
security breach.

Framing Clients. An attacker who hijacks an IP address
can perform misdeeds and frame the client. For example,
an attacker can attempt to gain unauthorized access to a
computer system using a hijacked IP address as a proxy.
As the attack originates from the hijacked IP address, the
logs will implicate the client, not the attacker, in the crime.
Moreover, if the attacker hosts the malicious web site over
HTTPS, the browser will not cache the page and no traces
will be left on the client’s machine.

4.3 Proof-of-Concept Demonstration
We developed proof-of-concept exploits for DNS rebinding

vulnerabilities in Flash Player 9, LiveConnect, Java applets
with proxy servers, and the browser itself. Our system con-
sists of a custom DNS server authoritative for dnsrebinding.net,
a custom Flash Player policy server, and a standard Apache
web server. The various technologies issue DNS queries
that encode the attacker and target host names, together
with a nonce, in the subdomain. For each nonce, the DNS
server first responds with the attacker’s IP address (with a
zero TTL) and thereafter with the target’s IP address. Our
proof-of-concept demo, http://crypto.stanford.edu/dns,
implements wget and telnet by mounting a rebinding at-
tack against the browser.

4.4 Experiment: Recruiting Browsers

Methodology. We tested DNS rebinding experimentally
by running a Flash Player 9 advertisement on a minor ad-
vertising network targeting the keywords “Firefox,” “game,”
“Internet Explorer,” “video,” and “YouTube.” The experi-
ment used two machines in our laboratory, an attacker and a
target. The attacker ran a custom authoritative DNS server
for dnsrebinding.net, a custom Flash Player policy server,
and an Apache web server hosting the advertisement. The
target ran an Apache web server to log successful attacks.
The Flash Player advertisement exploited the vulnerability
described in Section 3.1 to load an XML document from the
target server in our lab. The attack required only that the
client view the ad, not that the user click on the ad.

Vulnerability Impressions
Flash Player 9 86.9%
LiveConnect 24.4%
Java+Proxy 2.2%

Total Multi-Pin 90.6%

Table 2: Percentage of Impressions by Vulnerability

Cumulative Duration of Successful Attacks
for 75% Shortest Duration Attacks

0
10
20
30
40
50
60
70
80
90
100

0 64 128 192 256

Duration of Attack Success (secs)

Su
cc

es
sf

ul
 A

tt
ac

ks
 (p

er
ce

nt
)

Cumulative Duration of Successful Attacks

1

10

100

1,000

10,000

100,000

1 10 100 1000 10000 100000 1000000

Duration of Attack Success (secs, logscale)

Su
cc

es
sf

ul
 A

tt
ac

ks
 (l

og
sc

al
e)

Figure 2: Duration of Successful Attacks

The experiment lasted until the user navigated away from
the advertisement, at which time we lost the ability to use
the viewer’s network connection. For privacy, we collected
only properties typically disclosed by browsers when viewing
web pages (e.g., plug-in support, user agent, and external IP
address). The experiment conformed to the terms of service
of the advertising network and to the guidelines of the in-
dependent review board at our institution. Every network
operation produced by the advertisement could have been
produced by a legitimate SWF advertisement, but we pro-
duced the operations through the Socket interface, demon-
strating the ability to make arbitrary TCP connections.

Results. We ran the ad beginning at midnight EDT on
three successive nights in late April 2007. We bid $0.50
per 1000 impressions for a variety of keywords. We spent
$10 per day, garnering approximately 20,000 impressions per
day. Due to a server misconfiguration, we disregarded ap-
proximately 10,000 impressions. We also disregarded 19 im-
pressions from our university. We received 50,951 impres-
sions from 44,924 unique IP addresses (40.2% IE7, 32.3%
IE6, 23.5% Firefox, 4% Other).

We ran the rebinding experiment on the 44,301 (86.9%)
impressions that reported Flash Player 9. We did not at-
tempt to exploit other rebinding vulnerabilities (see Ta-
ble 2). The experiment was successful on 30,636 (60.1%)
impressions and 27,480 unique IP addresses. The attack
was less successful on the 1,672 impressions served to Mac
OS, succeeding 36.4% of the time, compared to a success
rate of 70.0% on the 49,535 (97.2%) Windows impressions.4

Mac OS is more resistant to this rebinding attack due to
some caching of DNS entries despite their zero TTL.

For each successful experiment, we measured how long an
attacker could have used the client’s network access by load-
ing the target document at exponentially longer intervals, as
shown in Figure 2. The median impression duration was 32
seconds, with 25% of the impressions lasting longer than 256
seconds. We observed 9 impressions with a duration of at
least 36.4 hours, 25 at least 18.2 hours, and 81 at least 9.1
hours. In aggregate, we obtained 100.3 machine-days of net-
work access. These observations are consistent with those
of [24]. The large number of attacks ending between 4.2 and
8.5 minutes suggests that this is a common duration of time
for users to spend on a web page.

Discussion. Our experimental results show that DNS re-
binding vulnerabilities are widespread and cost-effective to
exploit on a large scale. Each impression costs $0.0005 and
54% of the impressions convert to successful attacks from
unique IP addresses. To hijack 100,000 IP addresses for a
temporary bot network, and attacker would need to spend
less than $100. This technique compares favorably to rent-
ing a traditional bot network for sending spam e-mail and
committing click fraud for two reasons. First, these applica-
tions require large numbers of “fresh” IP address for short
durations as compromised machines are quickly blacklisted.
Second, while estimates of the rental cost of bot networks
vary [44, 14, 7], this technique appears to be at least one or
two orders of magnitude less expensive.

5. DEFENSES AGAINST REBINDING
Defenses for DNS rebinding attacks can be implemented

in browsers, plug-ins, DNS resolvers, firewalls, and servers.
These defenses range in complexity of development, diffi-
culty of deployment, and effectiveness against firewall cir-
cumvention and IP hijacking. In addition to necessary mit-
igations for Flash Player, Java LiveConnect, and browsers,
we propose three long-term defenses. To protect against fire-
wall circumvention, we propose a solution that can be de-
ployed unilaterally by organizations at their network bound-
ary. To fully defend against rebinding attacks, we propose
two defenses: one that requires socket-level network access
be authorized explicitly by the destination server and an-
other works even if sockets are allowed by default.

5.1 Fixing Firewall Circumvention
Networks can be protected against firewall circumvention

by forbidding external host names from resolving to internal
IP addresses, effectively preventing the attacker from nam-
ing the target server. Without the ability to name the tar-
get, the attacker is unable to aggregate the target server into
an origin under his or her control. These malicious bindings

4We succeeded in opening a socket with 2 of 11 PlayStation 3
impressions (those with Flash Player 9), but none of the 12
Nintendo Wii impressions were vulnerable.

can be blocked either by filtering packets at the firewall [5]
or by modifying the DNS resolvers used by clients on the
network.

• Enterprise. By blocking outbound traffic on port 53, a
firewall administrator for an organization can force all
internal machines, including HTTP proxies and VPN
clients, to use a DNS server that is configured not to
resolve external names to internal IP addresses. To
implement this approach, we developed a 300 line C

program, dnswall [15], that runs alongside BIND and
enforces this policy.

• Consumer. Many consumer firewalls, such as those
produced by Linksys, already expose a caching DNS
resolver and can be augmented with dnswall to block
DNS responses that contain private IP addresses. The
vendors of these devices have an incentive to patch
their firewalls because these rebinding attacks can be
used to reconfigure these routers to mount further at-
tacks on their owners.

• Software. Software firewalls, such as the Windows
Firewall, can also prevent their own circumvention by
blocking DNS resolutions to 127.*.*.*. This tech-
nique does not defend services bound to the external
network interface but does protects a large number of
services that bind only to the loopback interface.

Blocking external names from resolving to internal addresses
prevents firewall circumvention but does not defend against
IP hijacking. An attacker can still use internal machines to
attack services running on the public Internet.

5.2 Fixing Plug-ins
Plug-ins are a particular source of complexity in defend-

ing against DNS rebinding attacks because they enable sub-
second attacks, provide socket-level network access, and op-
erate independently from browsers. In order to prevent re-
binding attacks, these plug-ins must be patched.

Flash Player. When a SWF movie opens a socket to a
new host name, it requests a policy over the socket to de-
termine whether the host accepts socket connections from
the origin of the movie. Flash Player could fix most of
its rebinding vulnerabilities by considering a policy valid
for a socket connection only if it obtained the policy from
the same IP address in addition to its current requirement
that it obtained the policy from the same host name. Us-
ing this design, when attacker.com is rebound to the tar-
get IP address, Flash Player will refuse to open a socket to
that address unless the target provides a policy authorizing
attacker.com. This simple refinement uses existing Flash
Player policy deployments and is backwards compatible, as
host names expecting Flash Player connections already serve
policy documents from all of their IP addresses.

SWF movies can also access ports numbers ≥ 1024 on
their origin host name without requesting a policy. Al-
though the majority of services an attacker can profitably
target (e.g., SMTP, HTTP, HTTPS, SSH, FTP, NNTP)
are hosted on low-numbered ports, other services such as
MySQL, BitTorrent, IRC, and HTTP proxies are vulnera-
ble. To fully protect against rebinding attacks, Flash Player
could request a policy before opening sockets to any port,
even back to its origin. However, this modification breaks

backwards compatibility because those servers might not be
already serving policy files.

Java. Many deployed Java applets expect sockets to be al-
lowed by default. If clients are permitted to use these applets
from behind HTTP proxies, they will remain vulnerable to
multi-pin attacks because proxy requests are made by host
name instead of by IP address. A safer approach is to use the
CONNECT method to obtain a proxied socket connection to an
external machine. Typically proxies only allow CONNECT on
port 443 (HTTPS), making this the only port available for
these applets. Alternatively, proxies can use HTTP head-
ers to communicate IP addresses of hosts between the client
and the proxy [28, 29], but this approach requires both the
client and the proxy to implement the protocol.

Java LiveConnect. LiveConnect introduces additional
vulnerabilities, but browsers can fix the LiveConnect multi-
pin vulnerability without altering the JVM by installing
their own DNS resolver into the JVM using a standard
interface. Firefox, in particular, implements LiveConnect
through the Java Native Interface (JNI). When Firefox ini-
tializes the JVM, it can install a custom InetAddress class
that will handle DNS resolution for the JVM. This custom
class should contain a native method that implements DNS
resolution using Firefox’s DNS resolver instead of the system
resolver. If the browser implements pinning, LiveConnect
and the browser will use a common pin database, removing
multi-pin vulnerabilities.

5.3 Fixing Browsers (Default-Deny Sockets)
Allowing direct socket access by default precludes many

defenses for DNS rebinding attacks. If browser plug-ins de-
faulted to denying socket access, as a patched Flash Player
and the proposed TCPConnection (specified in HTML5 [19])
would, these defenses would become viable. Java and Live-
Connect, along with any number of lesser-known plug-ins,
expect socket access to be allowed, and fixing these is a chal-
lenge.

Checking Host Header. HTTP 1.1 requires that user
agents include a Host header in HTTP requests that spec-
ifies the host name of the server [11]. This feature is used
extensively by HTTP proxies and by web servers to host
many virtual hosts on one IP address. If sockets are de-
nied by default, the Host header reliably indicates the host
name being used by the browser to contact the server be-
cause XMLHttpRequest [43] and related technologies are re-
stricted from spoofing the Host header.5 One server-side de-
fense for these attacks is therefore to reject incoming HTTP
requests with unexpected Host headers [28, 37].

Finer-grained Origins. Another defense against DNS
rebinding attacks is to refine origins to include additional
information, such as the server’s IP address [28] or public
key [27, 23], so that when the attacker rebinds attacker.com
to the target, the browser will consider the rebound host
name to be a new origin. One challenge to deploying finer-
grained origins is that every plug-in would need to revise its
security policies and interacting technologies would need to
hand-off refined origins correctly.

5Lack of integrity of the Host header has been a recur-
ring source of security vulnerabilities, most notably in Flash
Player 7.

• IP Addresses. Refining origins with IP address [28]
is more robust than pinning in that a single browsing
session can fail-over from one IP address to another.
When such a fail-over occurs, however, it will likely
break long-lived AJAX applications, such as Gmail,
because they will be prevented from making XML-
HttpRequests to the new IP address. Users can recover
from this by clicking the browser’s reload button. Un-
fortunately, browsers that use a proxy server do not
know the actual IP address of the remote server and
thus cannot properly refine origins. Also, this defense
is vulnerable to an attack using relative paths to script
files, similar to the applet relative-path vulnerability
described in Section 3.2.

• Public Keys. Augmenting origins with public keys [27,
23] prevents two HTTPS pages served from the same
domain with different public keys from reading each
other’s state. This defense is useful when users dis-
miss HTTPS invalid certificate warnings and chiefly
protects HTTPS-only “secure” cookies from network
attackers. Many web pages, however, are not served
over HTTPS, rendering this defense more appropriate
for pharming attacks that compromise victim domains
than for rebinding attacks.

Smarter Pinning. To mitigate rebinding attacks, browsers
can implement smarter pinning policies. Pinning is a de-
fense for DNS rebinding that trades off robustness for secu-
rity. RFC 1035 [32] provides for small (and even zero) TTLs
to enable dynamic DNS and robust behavior in the case of
server failure but respecting these TTLs allows rebinding
attacks. Over the last decade, browsers have experimented
with different pin durations and release heuristics, leading
some vendors to shorten their pin duration to improve ro-
bustness [13]. However, duration is not the only parameter
that can be varied in a pinning policy.

Browsers can vary the width of their pins by permitting
host names to be rebound within a set of IP addresses that
meet some similarity heuristic. Selecting an optimal width
as well as duration enables a better trade-off between se-
curity and robustness than optimizing duration alone. One
promising policy is to allow rebinding within a class C net-
work. For example, if a host name resolved to 171.64.78.10,
then the client would also accept any IP address beginning
with 171.64.78 for that host name. The developers of the
NoScript Firefox extension [26] have announced plans [25]
to adopt this pinning heuristic.

• Security. When browsers use class C network pinning,
the attacker must locate the attack server on the same
class C network as the target, making the rebinding
attack much more difficult to mount. The attack is
possible only if the attacker co-locates a server at the
same hosting facility or leverages a cross-site scripting
vulnerability on a co-located server. This significantly
raises the bar for the attacker and provides better re-
courses for the target.

• Robustness. To study the robustness of class C net-
work pinning, we investigated the IP addresses re-
ported by the 100 most visited English-language sites
(according to Alexa [3]). We visited the home page of
these sites and compiled a list of the 336 host names

used for embedded content (e.g., www.yahoo.com em-
beds images from us.i1.yimg.com). We then issued
DNS queries for these hosts every 10 minutes for 24
hours, recording the IP addresses reported.

In this experiment, 58% reported a single IP address
consistently across all queries. Note that geographic
load balancing is not captured in our data because we
issued our queries from a single machine, mimicking
the behavior of a real client. Averaged over the 42%
of hosts reporting multiple IP addresses, if a browser
pinned to an IP address at random, the expected frac-
tion of IP addresses available for rebinding under class
C network pinning is 81.3% compared with 16.4% un-
der strict IP address pinning, suggesting that class C
pinning is significantly more robust to server failure.

Other heuristics for pin width are possible. For example,
the browser could prevent rebinding between public IP ad-
dresses and the RFC 1918 [35] private IP addresses. This
provides greater robustness for fail-overs across data centers
and for dynamic DNS. LocalRodeo [22, 45] is a Firefox ex-
tension that implements RFC 1918 pinning for JavaScript.
As for security, RFC 1918 pinning largely prevents firewall
circumvention but does not protect against IP hijacking nor
does it prevent firewall circumvention in the case where a
firewall protects non-private IP addresses, which is the case
for many real-life protected networks and personal software
firewalls.

Even the widest possible pinning heuristic prevents some
legitimate rebinding of DNS names. For example, public
host names controlled by an organization often have two IP
addresses, a private IP address used by clients within the
firewall and a public IP address used by clients on the Inter-
net. Pinning prevents employees from properly connecting
to these severs after joining the organization’s Virtual Pri-
vate Network (VPN) as those host names appear to rebind
from public to private IP addresses.

Policy-based Pinning. Instead of using unpinning heuris-
tics, we propose browsers consult server-supplied policies to
determine when it is safe to re-pin a host name from one IP
address to another, providing robustness without degrading
security. To re-pin safely, the browser must obtain a policy
from both the old and new IP address (because some at-
tacks first bind to the attacker whereas others first bind to
the target). Servers can supply this policy at a well-known
location, such as /crossdomain.xml, or in reverse DNS (see
Section 5.4).

Pinning Pitfalls. Correctly implementing pinning has sev-
eral subtleties that are critical to its ability to defend against
DNS rebinding attacks.

• Common Pin Database. To eliminate multi-pin at-
tacks, pinning-based defense require that all browser
technologies that access the network share a common
pin database. Many plug-ins, including Flash Player
and Silverlight, already use the browser’s pins when
issuing HTTP requests because they issue these re-
quests through the browser. To share DNS pins for
other kinds of network access, either the browser could
expose an interface to its pin database or the operating
system could pin in its DNS resolver. Unfortunately,
browser vendors appear reluctant to expose such an
interface [12, 33] and pinning in the operating system

either changes the semantics of DNS for other applica-
tions or requires that the OS treats browsers and their
plug-ins differently from other applications.

• Cache. The browser’s cache and all plug-in caches
must be modified to prevent rebinding attacks. Cur-
rently, objects stored in the cache are retrieved by
URL, irrespective of the originating IP address, creat-
ing a rebinding vulnerability: a cached script from the
attacker might run later when attacker.com is bound
to the target. To prevent this attack, objects in the
cache must be retrieved by both URL and originat-
ing IP address. This degrades performance when the
browser pins to a new IP address, which might occur
when the host at the first IP address fails, the user
starts a new browsing session, or the user’s network
connectivity changes. These events are uncommon and
are unlikely to impact performance significantly.

• document.domain. Even with the strictest pinning, a
server is vulnerable to rebinding attacks if it hosts a
web page that executes the following, seemingly in-
nocuous, JavaScript:

document.domain = document.domain;

After a page sets its domain property, the browser al-
lows cross-origin interactions with other pages that
have set their domain property to the same value [42,
17]. This idiom, used by a number of JavaScript li-
braries6, sets the domain property to a value under
the control of the attacker: the current host name.

5.4 Fixing Browsers (Default-Allow Sockets)
Instead of trying to prevent a host name from rebinding

from one IP address to another—a fairly common event—a
different approach to defending against rebinding is to pre-
vent the attacker from naming the target server, essentially
generalizing dnswall to the Internet. Without the ability to
name the target server, the attacker cannot mount a DNS
rebinding attack against the target. This approach defends
against rebinding, can allow socket access by default, and
preserves the robustness of dynamic DNS.

Host Name Authorization. On the Internet, clients re-
quire additional information to determine the set of valid
host names for an given IP address. We propose that servers
advertise the set of host names they consider valid for them-
selves and clients check these advertisements before binding
a host name to an IP address, making explicit which host
names can map to which IP addresses. Host name autho-
rization prevents rebinding attacks because honest machines
will not advertise host names controlled by attackers.

Reverse DNS already provides a mapping from IP ad-
dresses to host names. The owner of an IP address ip is
delegated naming authority for ip.in-addr.arpa and typi-
cally stores a PTR record containing the host name associ-
ated with that IP address. These records are insufficient
for host name authorization because a single IP address can
have many valid host names, and existing PTR records do
not indicate that other host names are invalid.

6For example, “Dojo” AJAX library, Struts servlet/JSP
based web application framework, jsMath AJAX Mathemat-
ics library, and Sun’s “Ultimate client-side JavaScript client
sniff” library are vulnerable in this way.

The reverse DNS system can be extended to authorize
host names without sacrificing backwards compatibility. To
authorize the host www.example.com for 171.64.78.146, the
owner of the IP address inserts the following DNS records:

auth.146.78.64.171.in-addr.arpa.

IN A 171.64.78.146

www.example.com.auth.146.78.64.171.in-addr.arpa.

IN A 171.64.78.146

To make a policy-enabled resolution for www.example.com,
first resolve the host name a set of IP addresses normally
and then validate each IP address as follows:

1. Resolve the host name auth.ip.in-addr.arpa.

2. If the host name exists, ip is policy-enabled and ac-
cepts only authorized host names. Otherwise, ip is
not policy-enabled and accepts any host name.

3. Finally, if ip is policy-enabled, resolve the host name

www.example.com.auth.ip.in-addr.arpa

to determine if the host name is authorized.

An IP address ip implicitly authorizes every host name of
the form *.auth.ip.in-addr.arpa, preventing incorrect re-
cursive policy checks. For host names with multiple IP ad-
dresses, only authorized IP addresses should be included in
the result. If no IP addresses are authorized, the result
should be “not found.” If an IP address is not policy en-
abled, DNS rebinding attacks can be mitigated using the
techniques in Section 5.3.

The policy check can be implemented in DNS resolvers7,
such as ones run by organizations and ISPs, transparently
protecting large groups of machines from having their IP
addresses hijacked. User agents, such as browser and plug-
ins, can easily query the policy records because they are
stored in A records and can issue policy checks in paral-
lel with HTTP requests (provided they do not process the
HTTP response before the host name is authorized). Stan-
dard DNS caching reduces much of the overhead of redun-
dant policy checks issued by DNS resolvers, browsers, and
plug-ins. As a further optimization, policy-enabled resolvers
can include policy records in the “additional” section of the
DNS response, allowing downstream resolvers to cache com-
plete policies and user-agents to get policy records without
a separate request. We have implemented host name autho-
rization as a 72-line patch to Firefox 2.

One disadvantage of this mechanism is that the owner of
an IP address, the ISP, might not be the owner of the ma-
chine at that IP address. The machine can advertise the
correct set of authorized host names only if the ISP is will-
ing to delegate the auth subdomain to the owner or insert
appropriate DNS records. Instead, machines could advertise
authorized host names over HTTP in a well-known location,
similar to crossdomain.xml, but this has several disadvan-
tages: it requires policy-enabled DNS resolvers to implement
HTTP clients, it requires all machines, such as SMTP gate-
ways, to run an HTTP server, and policy queries are not
cached, resulting in extra traffic comparable to favicon.ico.

7To prevent a subtle attack that involves poisoning DNS
caches, a policy-enabled DNS resolver must follow the same
procedure for CNAME queries as for A queries, even though
responses to the former do not directly include IP addresses.

Trusted Policy Providers. Clients and DNS resolvers
can also check policy by querying a trusted policy provider.
Much like spam black lists [39] and phishing filters [6, 31,
16], different policy providers can use different heuristics to
determine whether a host name is valid for an IP address,
but every provider should respect host names authorized
in reverse DNS. When correctly configured, host name au-
thorization in reverse DNS has no false negatives (no valid
host name is rejected) but many false positives (lack of pol-
icy is implicit authorization). Trusted policy providers can
greatly reduce the false positive rate, possibly at the cost of
increasing the false negative rate. Clients are free to select
as aggressive a policy provider as they desire.

6. RELATED WORK

Using Browsers as Bots. The technique of luring web
users to an attacker’s site and then distracting them while
their browsers participate in a coordinated attack is de-
scribed in [24]. These “puppetnets” can be used for dis-
tributed denial of service but cannot be used to mount the
attacks described in Section 4 because puppetnets cannot
read back responses from different origins or connect to for-
bidden ports such as 25.

JavaScript can also be misused to scan behind firewalls [18]
and reconfigure home routers [40]. These techniques of-
ten rely on exploiting default passwords and on underlying
cross-site scripting or cross-site request forgery vulnerabil-
ities. DNS rebinding attacks can be used to exploit de-
fault passwords without the need for a cross-site scripting
or cross-site request forgery hole.

Sender Policy Framework. To fight spam e-mail, the
Sender Policy Framework (SPF) [46] stores policy informa-
tion in DNS. SPF policies are stored as TXT records in for-
ward DNS, where host names can advertise the set of IP
addresses authorized to send e-mail on their behalf.

7. CONCLUSIONS
An attacker can exploit DNS rebinding vulnerabilities to

circumvent firewalls and hijack IP addresses. Basic DNS re-
binding attacks have been known for over a decade, but the
classic defense, pinning, reduces robustness and fails to pro-
tect current browsers that use plug-ins. Modern multi-pin
attacks defeat pinning in hundreds of milliseconds, granting
the attacker direct socket access from the client’s machine.
These attacks are a highly cost-effective technique for hi-
jacking hundreds of thousands of IP addresses for sending
spam e-mail and committing click fraud.

For network administrators, we provide a tool to prevent
DNS rebinding from being used for firewall circumvention
by blocking external DNS names from resolving to internal
IP addresses. For the vendors of Flash Player, Java, and
LiveConnect, we suggest simple patches that mitigate large-
scale exploitation by vastly reducing the cost-effectiveness
of the attacks for sending spam e-mail and committing click
fraud. Finally, we propose two defense options that prevent
both firewall circumvention and IP hijacking: policy-based
pinning and host name authorization. We hope that ven-
dors and network administrators will deploy these defenses
quickly before attackers exploit DNS rebinding on a large
scale.

Acknowledgments
We thank Drew Dean, Darin Fisher, Jeremiah Grossman,
Martin Johns, Dan Kaminsky, Chris Karlof, Jim Roskind,
and Dan Wallach for their helpful suggestions and feedback.
This work is supported by grants from the National Science
Foundation and the US Department of Homeland Security.

8. REFERENCES
[1] Adobe. Flash Player Penetration. http://www.adobe.

com/products/player census/flashplayer/.

[2] Adobe. Adobe Flash Player 9 Security.
http://www.adobe.com/devnet/flashplayer/

articles/flash player 9 security.pdf, July 2006.

[3] Alexa. Top sites. http://www.alexa.com/site/ds/
top sites?ts mode=global.

[4] K. Anvil. Anti-DNS pinning + socket in flash.
http://www.jumperz.net/, 2007.

[5] W. Cheswick and S. Bellovin. A DNS filter and switch
for packet-filtering gateways. In Proc. Usenix, 1996.

[6] N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell.
Client-side defense against web-based identity theft.
In Proc. NDSS, 2004.

[7] N. Daswani, M. Stoppelman, et al. The anatomy of
Clickbot.A. In Proc. HotBots, 2007.

[8] D. Dean, E. W. Felten, and D. S. Wallach. Java
security: from HotJava to Netscape and beyond. In
IEEE Symposium on Security and Privacy: Oakland,
California, May 1996.

[9] D. Edwards. Your MOMA knows best, December
2005. http://xooglers.blogspot.com/2005/12/
your-moma-knows-best.html.

[10] K. Fenzi and D. Wreski. Linux security HOWTO,
January 2004.

[11] R. Fielding et al. Hypertext Transfer
Protocol—HTTP/1.1. RFC 2616, June 1999.

[12] D. Fisher, 2007. Personal communication.

[13] D. Fisher et al. Problems with new DNS cache
(“pinning” forever). https:
//bugzilla.mozilla.org/show bug.cgi?id=162871.

[14] D. Goodin. Calif. man pleads guilty to felony hacking.
Associated Press, Janurary 2005.

[15] Google. dnswall.
http://code.google.com/p/google-dnswall/.

[16] Google. Google Safe Browsing for Firefox, 2005. http:
//www.google.com/tools/firefox/safebrowsing/.

[17] S. Grimm et al. Setting document.domain doesn’t
match an implicit parent domain. https:
//bugzilla.mozilla.org/show bug.cgi?id=183143.

[18] J. Grossman and T. Niedzialkowski. Hacking intranet
websites from the outside: JavaScript malware just
got a lot more dangerous. In Blackhat USA, August
2006. Invited talk.

[19] I. Hickson et al. HTML 5 Working Draft. http:
//www.whatwg.org/specs/web-apps/current-work/.

[20] C. Jackson, A. Bortz, D. Boneh, and J. Mitchell.
Protecting browser state from web privacy attacks. In
Proc. WWW, 2006.

[21] M. Johns. (somewhat) breaking the same-origin policy
by undermining DNS pinning, August 2006.
http://shampoo.antville.org/stories/1451301/.

[22] M. Johns and J. Winter. Protecting the Intranet
against “JavaScript Malware” and related attacks. In
Proc. DIMVA, July 2007.

[23] C. K. Karlof, U. Shankar, D. Tygar, and D. Wagner.
Dynamic pharming attacks and the locked same-origin
policies for web browsers. In Proc. CCS, October 2007.

[24] V. T. Lam, S. Antonatos, P. Akritidis, and K. G.
Anagnostakis. Puppetnets: Misusing web browsers as
a distributed attack infrastructure. In Proc. CCS,
2006.

[25] G. Maone. DNS Spoofing/Pinning. http:
//sla.ckers.org/forum/read.php?6,4511,14500.

[26] G. Maone. NoScript. http://noscript.net/.

[27] C. Masone, K. Baek, and S. Smith. WSKE: web server
key enabled cookies. In Proc. USEC, 2007.

[28] A. Megacz. XWT Foundation Security Advisory.
http://xwt.org/research/papers/sop.txt.

[29] A. Megacz and D. Meketa. X-RequestOrigin.
http://www.xwt.org/x-requestorigin.txt.

[30] Microsoft. Microsoft Web Enterprise Portal, January
2004. http://www.microsoft.com/technet/
itshowcase/content/MSWebTWP.mspx.

[31] Microsoft. Microsoft phishing filter: A new approach
to building trust in e-commerce content, 2005.

[32] P. Mockapetris. Domain Names—Implementation and
Specification. IETF RFC 1035, November 1987.

[33] C. Nuuja (Adobe), 2007. Personal communication.

[34] G. Ollmann. The pharming guide. http://www.
ngssoftware.com/papers/ThePharmingGuide.pdf,
August 2005.

[35] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J.
de Groot, and E. Lear. Address Allocation for Private
Internets. IETF RFC 1918, February 1996.

[36] J. Roskind. Attacks against the Netscape browser. In
RSA Conference, April 2001. Invited talk.

[37] D. Ross. Notes on DNS pinning.
http://blogs.msdn.com/dross/archive/2007/07/

09/notes-on-dns-pinning.aspx, 2007.

[38] J. Ruderman. JavaScript Security: Same Origin.
http://www.mozilla.org/projects/security/

components/same-origin.html.

[39] Spamhaus. The spamhaus block list, 2007.
http://www.spamhaus.org/sbl/.

[40] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
pharming. Technical Report 641, Computer Science,
Indiana University, December 2006.

[41] J. Topf. HTML Form Protocol Attack, August 2001.
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf.

[42] D. Veditz et al. document.domain abused to access
hosts behind firewall. https:
//bugzilla.mozilla.org/show bug.cgi?id=154930.

[43] W3C. The XMLHttpRequest Object, February 2007.
http://www.w3.org/TR/XMLHttpRequest/.

[44] B. Warner. Home PCs rented out in sabotage-for-hire
racket. Reuters, July 2004.

[45] J. Winter and M. Johns. LocalRodeo: Client-side
protection against JavaScript Malware.
http://databasement.net/labs/localrodeo/, 2007.

[46] M. Wong and W. Schlitt. Sender Policy Framework
(SPF) for Authorizing Use of Domains in E-Mail.
IETF RFC 4408, April 2006.

