
Evading Censorship with Browser-Based Proxies

David Fifield1, Nate Hardison1, Jonathan Ellithorpe1, Emily Stark2,
Dan Boneh1, Roger Dingledine3, and Phil Porras4

1 Stanford University
2 Massachusetts Institute of Technology

3 The Tor Project
4 SRI International

Abstract. While Internet access to certain sites is blocked in some parts
of the world, these restrictions are often circumvented using proxies out-
side the censored region. Often these proxies are blocked as soon as they
are discovered. In this paper we propose a browser-based proxy creation
system that generates a large number of short-lived proxies. Clients using
the system seamlessly hop from one proxy to the next as these browser-
based proxies appear and disappear. We discuss a number of technical
challenges that had to be overcome for this system to work and report
on its performance and security. We show that browser-based short-lived
proxies provide adequate bandwidth for video delivery and argue that
blocking them can be challenging.

1 Introduction

While the Internet began as a research network open to all types of data, many
nations now filter Internet traffic. The OpenNet Initiative, which tracks public
reports of Internet filtering, lists a large number of countries that filter Internet
traffic. Some countries block sites like YouTube and Facebook while others block
access to web content containing materials they consider objectionable. The list
of countries includes well-publicized examples in Asia and the Middle East as
well as Australia and several European countries. Over half of the 74 countries
tested in 2011 imposed some degree of filtering on the Internet [1].

Censored users try to bypass the censor by connecting to sites through a
proxy. Several proxy systems have emerged to help users circumvent censorship.
Most notable among these is Tor [2], which, while originally designed to provide
anonymity, has also seen wide use in circumvention. Other proposals include
Telex [3] and Ultrasurf [4]. The existence of circumvention systems makes the
censor’s job harder: The censor must block access to all circumvention tools, in
addition to any resources it would ordinarily block, if it is to remain effective.
Our goal is to enable access to circumvention even in the face of such blocking.

Proxy-based circumvention systems generally need to solve three problems:

1. Rendezvous. A rendezvous protocol lets a user in the censored region send
and receive a small amount of information (a few bytes) from the circumven-
tion system to outside the censored region, for the purpose of introducing a



user to a proxy. Rendezvous protocols are designed for low-rate traffic and
are intended to be difficult to block. Tor, for example, developed rendezvous
protocols to distribute the IP addresses of Tor bridges, which are relays
whose addresses are not universally known so they are harder to block [5].

2. Proxy creation. The circumvention system relies on proxies outside the fil-
tered region to relay traffic from the client to the desired site. In response the
censor can masquerade as legitimate users to discover proxy addresses and
promptly block them. One way to combat this Sybil attack is to constantly
create new proxies outside the filtered region. As proxies get blocked, new
ones take their place. Rapid proxy creation is the main topic of this paper.

3. Camouflage. Once the client has the address of a non-blocked proxy, it
needs to camouflage its conversation with the proxy so that the session can-
not be blocked by traffic analysis. The goal of camouflage is to make the
conversation look like acceptable traffic such as an e-commerce transaction,
a voice conversation, or part of a multiplayer game. Concrete proposals for
camouflage include obfsproxy [6] and StegoTorus [7]. We treat camouflage
as an independent layer and do not discuss it in this paper.

A complete circumvention system must also address secure client software dis-
tribution, an install system, and secure integration with a web browser. The Tor
Project already handles these issues quite well and we do not discuss them here.

In this paper, we focus on Tor because it is widely deployed, with hundreds
of thousands of daily users [8]. Tor consists of a network of several thousand
volunteer nodes, known as relays. Clients build a three-node encrypted circuit
through the network by selecting relays from a public relay directory. The client
sends data to an entry node, which forwards it through an intermediate and
an exit node, after which the exit node sends the data to the destination host
on the public Internet. More details about the Tor design are given in [2]. The
fact that relays are listed in a public directory makes them easy to block [9] –
a countermeasure to this blocking is Tor bridges, relays whose addresses are not
made universally known. Bridges, too, have been found susceptible to partial
enumeration and blocking [10–12].

Our contributions. In this paper we propose a new approach to rapid proxy
creation. The core idea is to use the power of the web to create millions of short-
lived proxies, each proxy being active for only a few minutes. To do this, we enlist
the help of volunteer web sites (e.g., personal home pages) outside the filtered
region that want to support an open Internet. These volunteer web sites are
unrelated to the destination web site that the censored user is trying to reach.

A volunteer web site simply embeds a small “Internet Freedom” badge on
its web pages (see Fig. 1). The badge is a tiny user interface on top of some
JavaScript code. When a web browser outside the filtered region visits the vol-
unteer site, it runs the JavaScript program, which relays traffic to and from the
filtered region through the visitor’s web browser. In effect, the browser visiting
the volunteer’s site becomes a short-lived proxy. As soon as the visitor navigates
away from the page, the browser unloads the badge and the proxy disappears
leaving no trace on the visitor’s machine. Surprisingly, browsing the web through



these ephemeral browser-based proxies, even when hopping from one proxy to
another, works quite well. Our experiments in Sect. 4 show that the filtered client
can sustain more than enough bandwidth to carry a Tor tunnel.

Fig. 1. Flash proxy badge on a web page. It runs in a visitor’s web browser, and the
(optional) counter increments for each client served. Clicking on the badge disables it.

Our flash proxies5 are at the opposite extreme of Tor bridges. Tor bridges
are intended to serve for a long time; they are created at a relatively low rate
and there are only a few thousand of them. Our proxies are only active while the
visitor’s browser is viewing the volunteer web page – often just a few minutes –
but a new proxy is created every time someone visits a volunteer page, potentially
creating a pool of millions of active proxies at any given time. Building a reliable
transport using these ephemeral proxies presents interesting challenges discussed
in Sect. 3. For completeness we discuss new strategies for rendezvous in Sect. 6.

2 Threat Model and Assumptions

Our setting includes four key players. The client owns a computer in the filtered
region and is trying to access a web site outside the filtered region. We assume
the client has complete control of his computer and, in particular, can install
arbitrary software on the computer. The target web site (e.g., Facebook) is
located outside the filtered region and is generally oblivious to the circumvention
effort. That is, it does not cooperate with nor try to prevent circumvention. The
circumvention tool attempts to relay traffic back and forth from the client
to the target host. The tool may include client software as well as network in-
frastructure inside and outside the filtered region. The adversary (censor), who
tries to filter traffic, must allow acceptable Internet traffic such as banking and
e-commerce, but tries to block all objectionable traffic, including possibly block-
ing systems used by the circumvention tool. The definition of what is acceptable
and objectionable is up to the adversary.

5 The word “flash” is meant to evoke an idea of quickness and ephemerality. Our first
implementation of the system used Adobe Flash, which partly inspired the name.
The current implementation uses JavaScript rather than Flash.



The adversary achieves its goal by installing hardware and software at In-
ternet Service Providers (ISPs) in the filtered region. It can inspect all network
traffic to and from the filtered region and block any packet it wishes. However,
the adversary operates under the following three constraints:

Line rate. It must operate at line rate and cannot noticeably slow down legit-
imate traffic to and from the filtered region. In other words, it has little time to
make its decision whether to block or allow packets and flows.

No control of clients. We assume the adversary does not have software in-
stalled on the client computer. This assumption matches current reality where
filtering happens at the network and not at the end host. If the adversary can
force users to run filtering software – either by law or by using technologies
such as Trusted Computing (TCG) – then the circumvention problem becomes
much harder, though not impossible. Some circumvention tools are designed for
a public-kiosk environment where the client is browsing the web over a public
terminal that may have filtering software installed. These tools, however, are
much harder to use and therefore in this paper we assume the user is in full
control of his computer.

Minimal collateral damage. To the extent possible, the adversary tries to
avoid collateral damage. It tries to minimize the impact to acceptable flows, such
as those used for banking and e-commerce. The adversary cannot simply shut
down all Internet traffic to the filtered region, as this would halt all banking and
e-commerce in the region. While some governments, including Egypt, Libya and
Syria, have recently implemented filtering by literally shutting down all Internet
traffic, most deployed Internet filters try to minimize collateral damage so as not
to hurt commerce.

3 Rapid Proxy Creation Using Flash Proxies

Next we present an architecture for creating a large number of short-lived prox-
ies. The flash proxy system uses browsers all over the Internet as ephemeral
proxies. The design is in large part dictated by a limitation of web socket tech-
nologies, namely that they can only make outgoing TCP connections, and cannot
receive connections as a normal proxy would. In the flash proxy model, the proxy
connects to the client, not the other way around.

Our implementation uses the Tor pluggable transports support introduced in
Tor version 0.2.2.32 [13]. Pluggable transports are designed to enable different
circumvention and tunneling schemes without having to modify core Tor code.
Our system requires a program called a client transport plugin running on the
client and a server transport plugin running on the relay. The functioning of
these pieces is described further below. The integration of pluggable transports
in Tor means that using these auxiliary programs is fairly painless.



Fig. 2. Flash proxy architecture. When a client wants service, it registers with the
facilitator and waits. A flash proxy appears and polls the facilitator for a client address.
Once the proxy obtains a client address it connects to both the client and to the Tor
relay and proxies traffic back and forth for the client.

Two of the five system components (the Tor client and relay) are the same
as are used for any Tor connection. The remaining three (the proxy, facilitator,
and transport plugins) are specific to the flash proxy system (see Fig. 2).

Tor client. The censored user runs a Tor client, configured to use a client
transport plugin.

Flash proxy. The proxy itself is a small application that runs in a web browser
and is hosted on a volunteer web site. We have made two implementations of the
flash proxy, one using Adobe Flash and one using JavaScript with WebSocket. We
have presented the proxy as a small “Internet Freedom” badge as shown in Fig. 1.
Whenever someone visits the page, the badge begins running in their browser.
When they navigate away the badge is unloaded leaving no trace. The badge
communicates with the facilitator to find the addresses of clients that need a
connection. Once it has a client address, it connects to the client transport
plugin, then to the server transport plugin running on the Tor relay, and
begins proxying data between them. The badge itself runs in the background and
has no impact on the visitor’s interaction with the volunteer site. It is important
to understand that censored users do not need to see the badge – in fact web
sites including the badge can be blocked by the censor – because it is visitors to
the web site, not the web site itself, who provide the proxy access.

Facilitator. The facilitator keeps track of client registrations and hands them
out to proxies when requested. When the client transport plugin starts it
registers with the facilitator using a robust rendezvous protocol such as one of
those described in Sect. 6. The facilitator may be blocked by the censor; the



purpose of the rendezvous protocol is to allow the client to send its IP address
– just a few bytes – to the facilitator despite blocking. The flash proxies that
communicate with the facilitator do not go through the censor and are therefore
not impacted by blocking the facilitator. After registration, when a browser-
based flash proxy is available for service, the facilitator assigns it to serve a
censored client.

Transport plugins. The Tor client and relay both run their own transport plu-
gin to read from and write to the flash proxy tunnel. In the case of WebSocket,
the transport plugins respond to the HTTP handshake, encode and decode bi-
nary data, and put data into WebSocket frames. The client transport plugin has
the additional important duty of bridging Tor’s “connect outward to a proxy”
expectation and the “receive a connection from a proxy” reality of the flash proxy
architecture: it receives connections from the Tor client (using ordinary TCP),
and on another port receives connections from flash proxies (using WebSocket),
maintaining a pool of connections of each type. Whenever there is at least one
connection in both pools, the transport plugin links them up and begins to relay
data traffic back and forth. When a flash proxy disappears, the transport plugin
begins to use another proxy connection from the pool. The Tor client is mostly
unaware that a new flash proxy is put in place.

Tor relay. Any Tor relay can be used as the entrance to the Tor network, as
long as it runs the server transport plugin. The relay may be blocked from the
point of view of the client.

3.1 Establishing Connections

Programs running in a web browser, whether they use WebSocket, Flash, or
other socket-like technologies, share a limitation: they cannot open a listening
socket and wait passively for connections; they can only initiate new outgoing
connections. This forces an inversion of the usual proxy model: It is the client
(with a full complement of socket operations) that listens for a connection, and
the flash proxy (limited by running in a web browser) that connects to it. This
inversion is the source of most of the complexity of the model.

A less important restriction is that web browser security policies gener-
ally prevent programs from making connections to arbitrary destinations. The
browser requires some positive cooperation from the destination that indicates
that the connection should be allowed. For us this poses no problem as the three
destinations the proxy connects to – the facilitator, the client transport plugin,
and the server transport plugin – are cooperative. What this means in con-
crete terms for the WebSocket implementation is that the facilitator must allow
cross-origin resource sharing (CORS) [14] by sending an Access-Control-Allow-
Origin header field, and that the client and server must be able to answer the
WebSocket handshake and proxy the tunneled data to Tor. For Flash it means
that the endpoints must serve a crossdomain policy [15], a small chunk of XML
specifying which connections should be allowed.



The fact that the flash proxy may not receive connections has one important
advantage. The flash proxy operator (i.e., web browser) may be behind network
address translation (NAT) or a firewall that doesn’t allow incoming connections,
and it doesn’t affect the architecture. The unfortunate corollary is that clients
must be able to receive connections, which generally means not being behind
NAT or else being able to configure port forwarding. We feel that this is at least
the right way to allocate the burden, if it must fall somewhere. We expect flash
proxies to greatly outnumber censored clients; running a proxy should be as
simple as possible while clients are already motivated to take technical steps for
secure communication. Ideally flash proxies would be usable even behind NAT
without any special configuration using NAT punching techniques; Sect. 5.2
discusses difficulties and solutions.

Figure 2 illustrates the components operating in sequence in a sample session:

1. The client starts Tor and the client transport plugin, and sends a registration
to the facilitator using a secure rendezvous mechanism. The transport plugin
begins listening for a remote connection.

2. A flash proxy comes online and polls the facilitator.
3. The facilitator returns a client registration, informing the flash proxy where

to connect.
4. The proxy makes an outgoing connection to the client, and this connection

is received by the client’s transport plugin.
5. The proxy makes an outgoing connection to the transport plugin on the Tor

relay, and begins sending and receiving data between the client and relay.
6. Sooner or later, the flash proxy disappears and breaks the connection be-

tween the the client and the relay. The client’s transport plugin then switches
immediately to another available proxy. In the unlikely event that none are
available, the transport plugin waits until one becomes so. In this process,
existing tunneled TCP streams are broken, but see Sect. 5.2 for ideas on
transparently keeping TCP connections intact.

The client transport plugin maintains a pool of up to five live proxy connec-
tions, in order to make switching between them faster. Only one of the proxies
will be used at a time, but when the one being used disappears, the socket hand-
shake is already finished with one of the reserves, for a lower delay in establishing
a new connection. The transport plugin discards reserve proxies as they go of-
fline, and the facilitator replenishes the reserve as long as there is extra capacity,
so there is no danger of uselessly switching to a defunct proxy.

The flash proxy has features for quality of service and good network behavior.
A single proxy limits itself to 10 simultaneous client–relay pairs. Its built-in
adjustable rate limit avoids using too much of the operator’s bandwidth. The
proxy checks the platform it’s running on, and disables itself if it is on a mobile
phone or similar device where bandwidth that may be limited or expensive.

The goal of the facilitator is to fairly allocate proxies to clients and attempt
to provide good service for all. The facilitator also seeks to even the load carried
by each proxy whenever there is spare proxy capacity. The facilitator keeps track



of the number of clients given to each proxy. When a new client arrives, it is
given to the proxy with the least load, with ties being broken randomly. (In
the usual case we expect most proxies to be idle most of the time, so this will
be a random selection from among all the idle proxies.) While there is unused
proxy capacity, the facilitator seeks to provide each client with a small number
of redundant proxies for faster switching. When one of the proxies goes offline
(which can be detected because the proxy ceases polling), the facilitator will
attempt to assign a new proxy to the client that it had been serving. As we
discuss in Sect. 6, client communication with the facilitator is low-bandwidth
and infrequent; therefore there is no explicit message for a client to “unregister”
itself. Instead, the facilitator estimates that a client no longer needs service when
a proxy reports that it has been unable to connect to a client, and a reasonable
timeout elapses. (The timeout is to allow other proxies an attempt to serve the
same client, in case the failed proxy is experiencing network problems.)

One unusual feature of this architecture is that the client using the proxy
does not know in advance where it is connecting to. In fact, the client transport
plugin accepts a dummy destination address only to comply with the pluggable
transports protocol, then ignores it and tunnels to the proxy’s other endpoint,
namely the Tor relay. In effect, the first hop of a Tor circuit is made blindly,
and then the client may choose the second and third hop from the directory of
relays. Section 5.1 explains why this does not affect security (briefly, the use of
Tor allows authenticating the destination after the connection is made). We also
note that this is the same situation a client finds itself in when using a bridge
address it has not seen before.

As a practical matter, there may be more than one facilitator, to diffuse the
risk of one’s being breached, and to distribute load. However we do not rely on
there being multiple facilitators for the purpose of evading blocking; we assume
that all facilitators will be permanently blocked by the censor. The censored
clients send data only over a secure rendezvous channel whose characteristics
– being very low-bandwidth, write-only, and infrequently used – make it much
harder to block. Section 6 discusses potential rendezvous protocols in more detail.

4 Experimenting with Ephemeral Flash Proxies

4.1 Throughput

We measured the maximum throughput of a single proxy, independent of Tor and
any other network bottleneck, by running transport plugins, facilitator, proxy,
and web server all on the local host. We then started between 1 and 50 simulta-
neous HTTP downloads of a 10 MB file directly over TCP, through a WebSocket
proxy, and through a Flash-based proxy. The test was run on the Linux kernel
version 3.2 in a QEMU instance with a 2.27 GHz CPU. The proxies ran in Fire-
fox 8.0.1 with Flash Player 11.1 r102. The proxies’ bandwidth and connection
limits were disabled. Figure 3 shows the time taken for each of the simultaneous
clients to download the file. Each column contains multiple dots, but in the cases
of Flash sockets and direct download the dots approximately coincide.



0 10 20 30 40 50
Number of simultaneous clients

0

5

10

15

20

T
im

e
to

d
ow

n
lo

ad
(s

)
WebSocket

Flash sockets

Direct download

Fig. 3. Time taken to download a 10 MB file through many simultaneous connections.

Both flavors of proxy are slower than a direct download. The WebSocket
measurements show download times being roughly proportional to the number
of clients. There is much variance, perhaps due to unfairness in the way that the
browser schedules WebSocket message events.

A surprising effect is seen with Flash sockets: the time taken to download
per client is almost constant, up to about 16 clients. We suspect some kind
of internal limit within Flash Player that restricts individual connections to
no more than about 6 MB/s. Because of this restriction, WebSocket is faster
than Flash sockets for small numbers of clients. Eventually natural limits on
bandwidth become more restrictive than this artificial limit, and the download
time becomes approximately linear.

The WebSocket API does not expose a “read” procedure to read from the
socket; rather, one registers a “message” callback function that is called whenever
data have already been read. Received packets not immediately handled by the
application are buffered. At high data rates this buffer can grow without bound,
possibly eventually crashing the proxy. This issue is not specific to flash proxies,
and has not been a problem at Tor rates, but it leaves proxies somewhat exposed
to attacks by malicious clients or relays. WebSocket provides a way to control
the size of the write buffer; a complementary mechanism for the read buffer
would be sufficient to solve this. Flash sockets don’t have this problem as they
buffer data at the operating system kernel level, so the TCP window prevents
too much data from being received at once.

These results show that once connected, a flash proxy can provide more band-
width than is commonly used by a Tor circuit (which is in the range of hundreds
of kilobytes per second [16]), and even enough for online video sites. With few
clients, browser-based proxies are stable and have predictable performance.



4.2 Switching Between Proxies

Fig. 4. Alternation of proxies. Solid bars indicate when a proxy is operating.

It is expected that a Tor client will have to switch between flash proxies
frequently as they go offline. To measure the effect this has on performance, we
set up two browsers running the flash proxy program, driven by a script that
turned each proxy on for 10 seconds and then off for 6, so that the two proxies’
periods of operation would overlap by 2 seconds in a cycle (see Fig. 4). There was
always at least one proxy available, so any delay was caused purely by the need
to switch between them. We did a test over the public Tor network, retrieving
the same 5 MB file used by the torperf measurement tool [17]. (It is not possible
to use torperf directly because it does not retry downloads.) This table shows
the difference between normal Tor, an uninterrupted flash proxy, and alternating
flash proxies. The direct Tor connection was configured to use the same entry
bridge that the flash proxies use. Because the performance of the Tor network
changes over time, all the tests were run in direct succession.

The switching experiment was run 20 times. Figure 5 shows the measure-
ments for each test. Switching between proxies causes a visible increase in the
mean time to download, but most of the variance is caused by Tor itself.

0 20 40 60 80 100 120 140

Alternating flash proxies
Uninterrupted flash proxy

Direct through Tor mean 69.5 KB/s
mean 79.7 KB/s
mean 56.6 KB/s

Fig. 5. Time taken for each trial in the switching experiment. Each data set contains
20 measurements.

In these results we see that a flash proxy that stays online gives performance
roughly the same as connecting directly to Tor. However, overall speed is 20 to
40 percent lower when using proxies that are unreliable, because of the overhead
of building new Tor circuits. The results of the throughput experiments show
that a flash proxy can provide more bandwidth than Tor can use, so it is not
surprising that downloading though a flash proxy is as fast as downloading over
Tor. On the other hand, reestablishing a broken connection is more expensive.



In this test, the time taken to restart the download was variable, but commonly
left only 3–6 seconds of useful downloading time out of each 8-second cycle.

4.3 Capacity

The flash proxy badge has several properties that, we believe, make it easy to
adopt. It can be installed just by pasting an HTML snippet. It does not require
any special access or configuration on the web server, nor cooperation from ISPs
or the servers being proxied to. Web pages displaying the badge do not have to
be in any particular network position. The sites displaying the badge may even
be blocked by the censor, because it is the viewers of the site, not the site itself,
that provide a circumvention bridge. In this section we seek to predict how many
censored users can be helped, given a certain number of flash proxies.

Here we make some simplifying assumptions. First, we approximate the pat-
tern of visits to a web page as a Poisson process, with different arrivals being
independent, and the times between arrivals being exponentially distributed.
This is not a very strong assumption; there is evidence that the request arrival
process for a single web page is Poisson [18], even though the process for indi-
vidual packets is not [19]. Second, we assume that traffic has reached a steady
state, without edge effects from web pages appearing or disappearing, and with-
out variability due to time of day or other factors.

Under the Poisson arrival approximation, the traffic to a single web page is
governed by two parameters: λ, the mean number of arrivals per unit time; and µ,
the mean visit duration. The times between arrivals are exponentially distributed
with density function λe−λt. The mean inter-arrival time is 1/λ. We do not
assume anything about the distribution of visit durations (which correspond to
proxy lifetimes), other than that a mean exists and that the process generating
them is strictly stationary (unchanging over time).

Different web pages have different traffic characteristics, but we may treat
a group of pages uniformly using the same two parameters, for the following
reasons. The exponential distribution has the property that the minimum of
several exponentials with rates λ1, . . . , λk is also exponentially distributed with
rate λ1 + · · ·+ λk. The minimum time to the next arrival is exactly what inter-
arrival time is, so the inter-arrival times from several web pages come from their
own exponential distribution. The aggregate mean visit duration across several
web pages is just the mean of all of their individual visit durations. The flash
proxy is configured to serve up to 10 clients at a time; this may be handled
by multiplying the arrival rate by 10. In this section we think of each proxy as
handling only one client at a time.

If proxy badges collectively provide service with parameters λ and µ, then
the expected number of operating proxies (and hence the number of clients that
can be served) at any time is λµ (which is Little’s law [20]). For example, if 3
proxies come online every second (λ = 3) and each lasts 60 seconds on average
(µ = 60), then we expect 180 proxies to be operating at once on average.

Let us substitute some measured numbers into this formula. We wrote a
program to record the visits of viewers capable of running Flash, and installed



it on a personal home page for about two weeks. For each visitor, the program
recorded (start-time, end-time, bandwidth, latency). The program recorded 784
visits. we discounted the two longest-lived connections of approximately 1.9 and
3.1 days (the next longest connection after those was 15 hours). We also ignored
28 connections that had a measured bandwidth of 0, and an apparent outlier
that came much later than any other connection. This left 753 entries.

July
13

July
14

July
15

July
16

July
17

July
18

July
19

July
20

July
21

July
22

July
23

July
24

July
25

0

1

2

3

C
o
n

n
ec

ti
o
n

s

Fig. 6. Measured simultaneous connections on a personal home page.

Figure 6 shows the number of simultaneous visitors to the web page for each
day of the experiment. There were at times as many as three visitors viewing the
page at once, but only about 17% of the time was there even one visitor. This
web page acting alone would not be able to provide good proxy service, because
of the long periods during which there are no visitors and hence no flash proxies.
It would take several such pages working together to fill in the gaps and provide
continuous service with high probability.

We estimate the quantities λ and µ by taking the sample means of inter-
arrival time and visit duration, respectively:

Mean inter-arrival time 1/λ 1407.6 s
Mean arrival rate λ 0.00071/s
Mean duration µ 285.8 s

If 100 web pages like the one we tested were to install the flash proxy badge,
then we estimate an overall arrival rate of λ′ = 100 · 10 · λ ≈ 0.71 per second
(recall that one proxy can handle 10 simultaneous clients). The combined mean
visit duration is unchanged: µ′ = µ. The expected number of clients that these
100 web pages can support is λ′µ′ ≈ 203.

The number of clients scales linearly with the number of proxies, so 1,000 web
pages with similar traffic characteristics would be able to support 2,030 clients
on average, with the same expected duration. Pages with more visitors (lower
inter-arrival time) or longer visit durations will provide better service.

4.4 Field Testing

We tested connecting to the Tor network from within China over flash proxies
in December, 2011. We were running one proxy, and a few others were run by



unknown web users. The proxies worked as expected, and we could use Tor
despite its well-known blocking by China. This test used only a simple HTTP-
based rendezvous, and not any of the advanced rendezvous methods from Sect. 6,
so it could have been blocked by IP address. Nevertheless, the test shows that
the proxies work as they are supposed to, once the rendezvous step is completed.

5 Discussion

5.1 Security and Privacy

Flash proxies can in principle be used to reach any kind of tunnel, such as an
HTTP proxy or SSH tunnel. Tunneling through Tor, however, brings attractive
security features. The most obvious is enhanced anonymity: It is not easy for a
network observer, including the flash proxy itself, to know the final destination
of traffic. Users who would like to use Tor for circumvention, but cannot because
Tor relays and bridges are blocked, therefore do not have give to up anonymity
when using a flash proxy transport.

A second feature provided by Tor is encryption. Once a proxy has connected
to its two endpoints, it sends and receives only ciphertext. This is important not
only for the client, but for the temporary operator of the proxy. It would not
be friendly toward proxy operators to allow them to send plaintext that could
potentially run afoul of a corporate firewall, for example. Note, however, that
encryption can also be obtained by directing flash proxies to forward traffic to
an SSH server in the open Internet, in which case the client runs an SSH client
instead of a Tor client.

The third feature is authentication. Even though a malicious flash proxy
can connect to any endpoint it wants, it cannot in this way trick a client into
connecting somewhere unexpected. The most it can do is deny service. If the
proxy connects to something that is not a Tor relay, the Tor client will fail
to make a connection and show error messages. Once a connection is made to
the first relay, the proxy cannot interfere with the client’s circuit construction
because it is already within a layer of encryption. A flash proxy operated by
a malicious adversary gets to choose the first relay, so it could always choose
a relay it controls, and thereby always see the first hop of a circuit. However,
such an adversary can already do something similar simply by running its own
bridges and waiting for connections from ordinary bridge users.

How might the flash proxy system be attacked? In our threat model, the
adversary “wins” if it is able to prevent access to sites that it would block
normally. The adversary can also control some fraction of all flash proxies and
relays. Here we list a number of attacks and possible mitigations.

Client enumeration. The censor can query the facilitator and get a list of IP
addresses of presumed circumventors. This is a consequence of the fact that flash
proxies connect to censored clients, instead of the other way around. Note how-
ever that the adversary is already in a position to learn the addresses of users



of a circumvention tool, just by sniffing at the firewall, but having a centralized
facilitator makes it easier. One possible mitigation of this attack is sheer num-
bers. If there are many more proxies than there are clients, then most proxies
will not have any client to serve at all. (The facilitator will just return “no client
address” when queried.) The adversary will be competing against all legitimate
flash proxies in querying the facilitator to learn client addresses, and most at-
tempts will be fruitless. With successful deployment we expect to have millions
of available proxies at any given time meaning that most, including many of the
adversary’s, will be idle.

Flooding client registrations. The facilitator accepts client registrations from
anywhere as a consequence of the indirect rendezvous mechanism. An adversary
can flood the facilitator with fake client addresses. When a legitimate proxy
retrieves one of these fake client addresses, it will waste time trying to give
service to that presumed client. This temporarily removes an otherwise useful
proxy from the system. It should be noted, though, that legitimate registrations
will still get through and will eventually be picked up by a proxy. Mitigating this
attack requires enough proxies to absorb the busywork created by the adversary.
It is also possible to limit the number of registrations accepted over a period of
time from a given source address.

Exhausting client registrations. The adversary can pose as multiple flash
proxies to the facilitator, and ask for addresses of clients, which it then ignores.
The aim is to cause the facilitator to think that the client address has been
given to enough proxies that it need not be given out any more, and prevent
legitimate proxies from seeing the address. This too is mitigated by numbers. If
there are enough legitimate proxies, the adversary will have difficulty claiming
all the registration “slots” for a particular client. As long as one of the proxies
is legitimate, the client will be able to get service.

Protocol fingerprinting. The fact that they run through a browser means
that flash proxy tunnels look different from ordinary TCP connections at the
network level. With WebSocket, there is the HTTP handshake to begin the
connection, followed by data in a structured framing format. Flash sockets are
distinguishable because they begin with a crossdomain policy request. Even if
obfuscation is used to hide the Tor protocol, it must all happen within the
framework provided by browser sockets. The unblockability of the system rests
in part on the type of connections used by the proxies (e.g., WebSocket) also
carrying enough ordinary traffic that the censor will be reluctant to block that
type of connection wholesale. It remains to be seen whether WebSocket will
have this level of popularity, but support for WebSocket in major browsers is a
promising trend.

5.2 Usability

Usability is listed as a security requirement in the design of Tor [2]. In this
section we examine how much additional effort is required to use flash proxies
on the part of users and relay operators, and how this affects usability.



Relay operators. On the part of Tor relay operators, the only additional re-
quirement is to run the flash proxy server transport plugin. This is a matter of
installing the plugin and adding a line to the relay’s configuration file.

Clients. Our programs are designed to work with the Tor pluggable transports
design, so configuration is fairly easy. A user must run the transport plugin, add
a few lines to the Tor configuration file, and then be able to register with the
facilitator. Our transport plugin is written in Python, which is an additional
requirement beyond plain Tor. If the user is not able to receive direct TCP
connections, the more technical step of enabling port forwarding must be taken.
A Windows installer can automate this process and we plan to build one as
interest increases.

Limitations. The fact that proxies are expected to disappear causes a qualita-
tive difference in network behavior when using flash proxies. These differences
vary in importance depending on the application being used. Basic web brows-
ing, with relatively short-lived connections, works quite well. When connections
are short, there is a smaller chance that they will be interrupted. When they
are interrupted, fixing a partially downloaded page only requires refreshing the
page. Some browsers, such as Firefox and Chrome, automatically restart failed
downloads making this seamless. Large web downloads and video work less well,
because it is more likely that a download will be interrupted in the middle.
Again, browsers that automatically restart failed downloads from the point of
failure make this less of a problem.

The fact that clients must not be behind NAT is an impediment to usability.
A NAT traversal mechanism that works within our threat model would be a great
benefit. Typical NAT traversal technologies, such as STUN (Session Traversal
Utilities for NAT) [21] and RTMFP (Real Time Media Flow Protocol) [22], rely
on a stable third-party server to facilitate the connection, which is trivially de-
feated by the censor blocking the third party by IP address. (Also we believe
it is better to avoid informing a third party of each flash proxy connection if it
can be avoided.) Tricks involving low-level packet manipulation, for example pw-
nat [23], are not available to browser sockets. Ideally, any NAT traversal scheme
will not require both the client and the proxy to know each other’s IP address,
so that facilitator registration can remain unidirectional. New technologies like
WebRTC [24] may fill this need in the future, if they become sufficiently popular
that flash proxies’ use of them does not stand out as unusual.

Applications that inherently rely on long-lived connections, e.g. SSH, have a
poor user experience. The session ends completely whenever a proxy goes offline,
losing state and requiring a new login. For SSH, the most important property of
a proxy is long lifetime, which flash proxies in the wild usually do not provide. On
the other hand, protocols that use long connections but do not maintain much
server-side state can still work tolerably well with enough application support.
For example, an Internet Relay Chat (IRC) client that automatically reconnects
after losing its proxy server will be usable with only brief interruptions. The flash
proxy system can be extended with buffers in the transport plugins, to enable
connection continuity across different flash proxy sessions.



5.3 Deployment Scenarios

Our proposal hinges on volunteer web pages hosting the flash badge. Recall
that while the badge is running in the visitor’s browser it has no impact on the
visitor’s experience at the site. Nevertheless, web site admins will likely want to
configure the badge to best suit their objectives. For this reason the badge is
highly configurable for different scenarios:

– Opt-in vs. opt-out: Sites that maintain user accounts (e.g., Facebook) can
add a check-box to user profiles allowing users to specify whether they want
to participate in this system or not. The Flash object will only be served to
users who check the box. The default settings for the checkbox is a matter of
policy. Moreover, the badge itself can be configured to only begin proxying
after the visitor clicks on the badge.

– Geographic limitations: The badge can be configured to only serve clients
in certain geographies.

– Proxy targets: If Tor is not used, the badge can be configured to only
proxy to specific domains such as YouTube and Facebook.

– Connectivity: The badge is already configured to shut down when running
on a mobile device so as not to use up the host’s data plan. It can similarly
be configured to shut down when it detects a low-bandwidth connection so
as not to interfere with the host’s browsing experience.

We envision two types of deployments. Commercial sites that are already
blocked, such as YouTube, can deploy the badge on their home page so that
their uncensored users can help their censored users reach the site. In these
deployments, the badge will only forward traffic to YouTube, and possibly only
from regions where YouTube is known to be censored.

Another type of deployment can come from people who are concerned about
Internet filtering and choose to deploy the badge on their home page and blogs.
Visitors to those pages will help censored users connect to Tor. People who choose
to deploy the badge on their blogs can customize it as they wish, possibly serving
clients only in certain geographies or forwarding traffic only to certain domains.

6 Rendezvous Protocols

The flash proxy system relies on a robust rendezvous mechanism that lets clients
in the censored region register their IP address with the facilitator. If the censor
could simply block the facilitator then the flash proxy system would break down.

The flash proxy rendezvous problem is related to, but somewhat different
from the rendezvous problem in Tor. In the Tor system, rendezvous is used to
communicate the address of an unblocked Tor bridge into the censored region.
In the flash proxy system rendezvous is used to communicate the address of a
client out of the censored region.

Our facilitator design is reasonably modular, so that the facilitator itself does
not need to understand all of the potential rendezvous methods, or know in ad-
vance which will be used. The censored client runs a program implementing a



certain rendezvous method; an uncensored recipient that understands the proto-
col then forwards the registration to the facilitator on the client’s behalf. In this
way, new rendezvous methods can be tested without redeploying the facilitator,
and without requiring the cooperation of those who run the facilitator.

We experimented with two methods for communicating a small amount of
information out of the censored region. The first uses cloud-based storage servers
outside the blocked region. The second uses cooperating web sites. We note that
many other systems, including Skype and Telex [3] can be used for rendezvous.

Storage servers. Cloud storage systems like S3 and Box.net provide a good
opportunity for rendezvous. These services are difficult to block due to large
collateral damage caused by blocking them. We experimented with a system
that uses a variety of such cloud storage systems. As long as one system among
many is unblocked, the information will get out.

The idea is that the facilitator signs up for an account on all cloud storage
servers that the system will use. It sets permissions so that anyone may write
to the storage server, but only the facilitator may read from it. Clients in the
censored region who want service write their IP address to all the storage servers
over HTTPS and the facilitator retrieves them by periodically polling the servers.

Our experiments showed that this method has high latency. For example, it
can take several seconds for data written to S3 in one geographic location to
become available for reading in another location. Hence, while this channel is
insufficient for general network access, it is fairly well suited for rendezvous.

Web sites. Our second approach, which is more speculative, is to embed ren-
dezvous messages in standard HTTP requests.

A client wishing to register with the facilitator would send an HTTP request
to a participating web server where one of the HTTP headers (e.g., a cookie
header) contains a crafted random string. The web server would be configured
with a secret key that lets it recognize the pattern in the HTTP request and
forward the request to the facilitator. The censor, who does not have the secret
key, cannot recognize that the request encodes a flash proxy registration request.
If many web servers participate in this scheme then the censor’s only hope for
blocking these messages (besides blocking all web sites) is to attempt to compile
a list of cooperating sites to block, by crawling the web and trying to use each site
to rendezvous with the facilitator. If many web sites participate in this scheme,
then blocking all of them will cause considerable collateral damage.

To experiment with this approach, we modified the Apache web server to
accept rendezvous requests for the flash proxy system. This modification could
be packaged as an Apache module for ease of deployment. Users might discover
participating web sites through word of mouth or social media; or if there are
enough of them, a browser plugin could discover them automatically during the
course of normal web browsing. When the client wishes to register with the
facilitator it chooses a random web site that is participating in this rendezvous
mechanism. Next, it encrypts the message (032‖IPaddr) with that server’s public
key and embeds the resulting ciphertext in an HTTP request sent to the web
server. The ciphertext is embedded in a session cookie header that is normally



used when interacting with this web site. The censor cannot tell the difference
between a real session cookie and a rendezvous request, since both appear to be
random strings. The client uses this header in a request for a page that does not
exist (which can be generated by choosing a random string or a random English
word). When the web server receives an HTTP request with a session cookie
that results in a 404 response, the server tries to decrypt the contents of that
session cookie. If it detects the 032 pattern, it forwards the encoded IP address
to the facilitator. The server sends a 200 response so that the client knows that
the rendezvous request was successful. Note that the public-key decryption step
is only used on HTTP requests that result in a 404 response.

In our prototype, we used identity-based encryption (IBE) [25], in which a
server’s public key is its domain name. With IBE, clients do not need to use some
other mechanism to learn a server’s public key before using it for rendezvous.

7 Related Work

Blocking resistance is an ongoing area of research. It appears that there is no sin-
gle, simple solution, but rather many different problems must be solved together
for effective blocking resistance.

Simple proxy systems suffer from the problem that they typically reside on
static IP addresses and are expected to be relatively long-lived, making them
easy to block. It will always be a race between users striving to find new usable
proxy addresses and the censor to block them. Additionally, single-hop proxies
cannot provide the same security properties that Tor can; for example they may
be susceptible to subversion of the proxy server itself.

Infranet [26] is a design to conceal traffic that would otherwise be blocked
within seemingly normal HTTP traffic. A user’s ordinary innocuous browsing
provides cover for messages sent and received to some other blocked server. In-
franet requires the cooperation of unblocked web servers. We note that Infranet’s
covert channel could be used as a method of rendezvous.

In some cases, the mere presence of statistical anomalies in traffic, such as an
encrypted stream, could be enough to cause a censor to block access to a resource,
merely on suspicion that the opaque stream may be used for circumvention.
This illustrates the need for protocol camouflage, making circumvention traffic
look like “normal” traffic, at least from the point of a censoring firewall. The
Tor Project made a proposal for pluggable transports [13], which allow using a
variety of different camouflage or circumvention techniques, depending on what
is mutually supported by the client and entry node.

Recently Wustrow et al. introduced Telex [3], a system that allows cryp-
tographically “tagging” normal TLS streams so that an ISP-level router may
redirect it to a blocked destination. Telex is different from other proposals in
that it involves action by entities in the middle of the network path, not only at
the edges. Unlike with Infranet, unblocked web sites do not need to know about
or participate in the circumvention.



The Tor Project has enhanced blocking resistance by introducing non-public
bridges in addition to public relays [5]. Bridge addresses go not into the main
relay database, but into a special bridge database. The set of bridges is par-
titioned and each partition is distributed over a different channel, for example
email, HTTPS, or non-electronic means. The bridge database hands out only a
few bridge addresses at a time, with some additional restrictions making it hard
for one user to learn many or all of them. The goal is to prevent a scarce and
precious resource (bridge addresses) from being completely enumerated, while
still allowing anyone to learn the few addresses they need to get connected.

8 Conclusions

We have introduced flash proxies, a new method of producing many short-lived
proxies that for the purpose of censorship circumvention. Rather than attempting
to hide the addresses of proxies, we aim to create so many that it is not feasible to
block them all. Performance experiments are promising and the system is ready
to be deployed. The flash proxy badge is installed on the project home page,
and visitors are already acting as flash proxies. There are already sufficiently
many active flash proxies to provide intermittent service. The project code is
open source and available from https://crypto.stanford.edu/flashproxy/.

Acknowledgments

We are grateful for many helpful conversations on this topic with Drew Dean,
Pat Lincoln, Ian Schuler, and Vinod Yegneswaran; and to Steve Beaty for help
in testing.

The work is supported by the Defense Advanced Research Project Agency
(DARPA) and Space and Naval Warfare Systems Center Pacific under Contract
No. N66001-11-C-4022. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Defense Advanced Research Project Agency and Space
and Naval Warfare Systems Center Pacific. Distribution Statement “A:” Ap-
proved for Public Release, Distribution Unlimited.

References

1. The OpenNet Initiative: OpenNet Initiative Internet censorship data. http://

opennet.net/research/data (November 2011)
2. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proceedings of the 13th USENIX Security Symposium. (August 2004)
3. Wustrow, E., Wolchok, S., Goldberg, I., Halderman, J.A.: Telex: Anticensorship in

the network infrastructure. In: Proc. 20th USENIX Security Symposium. (2011)
4. Ultrareach Internet Corp.: Ultrasurf proxy. http://www.ultrasurf.us/

5. Dingledine, R., Mathewson, N.: Design of a blocking-resistant anonymity system.
Technical Report 2006-1, The Tor Project (November 2006)



6. Kadianakis, G., Mathewson, N.: Obfsproxy architecture. https://www.

torproject.org/projects/obfsproxy (December 2011)
7. Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Boneh, D., Wang, F.:

StegoTorus: A camouflage proxy for the Tor anonymity system
8. Tor Metrics Portal: Users. https://metrics.torproject.org/users.html (2011)
9. Lewman, A.: Tor partially blocked in China. https://blog.torproject.org/

blog/tor-partially-blocked-china (September 2009)
10. McLachlan, J., Hopper, N.: On the risks of serving whenever you surf: Vulnera-

bilities in Tor’s blocking resistance design. In: Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2009), ACM (November 2009)

11. Wilde, T.: Knock knock knockin’ on bridges’ doors. https://blog.torproject.

org/blog/knock-knock-knockin-bridges-doors (January 2012)
12. Winter, P., Lindskog, S.: How China is blocking Tor. Technical report, Karlstad

University (April 2012)
13. Appelbaum, J., Mathewson, N.: Pluggable transports for circumven-

tion. https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/

180-pluggable-transport.txt (October 2010)
14. W3C: Cross-origin resource sharing. http://www.w3.org/TR/cors/ (April 2012)
15. Adobe Systems Incorporated: Adobe Flash Player 9 security. http:

//wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/

flashplayer/pdfs/flash_player_9_security.pdf (July 2008)
16. Tor Metrics Portal: Time in seconds to complete 5 MiB request. https://metrics.

torproject.org/performance.html (2012)
17. Loesing, K.: torperf measurements-HOWTO. https://gitweb.torproject.org/

torperf.git/blob_plain/HEAD:/measurements-HOWTO (2011)
18. Arlitt, M., Williamson, C.: Internet web servers: workload characterization and per-

formance implications. IEEE/ACM Transactions on Networking 5(5) (Oct 1997)
19. Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling.

IEEE/ACM Trans. Netw. 3 (June 1995) 226–244
20. Little, J.D.C.: A proof of the queuing formula L = λW . (1960)
21. Rosenberg, J., Mahy, R., Matthews, P., Wing, D.: Session Traversal Utilities for

NAT (STUN). RFC 5389 (Proposed Standard) (October 2008)
22. Adobe Systems Incorporated: Real Time Media Flow Protocol. http://labs.

adobe.com/technologies/cirrus/ (October 2008)
23. Müller, A., Evans, N., Grothoff, C., Kamkar, S.: Autonomous NAT traversal. In:

10th IEEE International Conference on Peer-to-Peer Computing (P2P). (2010)
24. W3C: WebRTC 1.0: Real-time communication between browsers. http://dev.

w3.org/2011/webrtc/editor/webrtc.html (January 2012)
25. Lynn, B.: PBC library. http://crypto.stanford.edu/pbc/

26. Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D.: Infranet:
Circumventing web censorship and surveillance. In: Proceedings of the 11th
USENIX Security Symposium. (2002)


