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ABSTRACT

In this age of globalization, organizations need to pubtiséir
micro-data owing to legal directives or share it with busgasso-
ciates in order to remain competitive. This puts persornigbpy at
risk. To surmount this risk, attributes that clearly idgntndivid-
uals, such aflame Social Security Number , Driving
License Number , are generally removed or replaced by ran-
dom values. But this may not be enough because such defiddnti
databases can sometimes be joined with other public dasioss
attributes such aGender , Date of Birth , andZipcode to
re-identify individuals who were supposed to remain anooysn
In literature, such an identity-leaking attribute combioais called
as a quasi-identifier. It is always critical to be able to grire
guasi-identifiers and to apply to them appropriate proteatiea-
sures to mitigate the identity disclosure risk posed by ftacks.

In this paper, we start out by providing the first formal clutea
ization and a practical technique to identify quasi-idiéers. We
show an interesting connection between whether a set ofretu
forms a quasi-identifier and the number of distinct valuesiased
by the combination of the columns. We then use this chatiacter
zation to come up with a probabilistic notion of anonymitygain
we show an interesting connection between the number dfdist

values taken by a combination of columns and the anonymity it

can offer. This allows us to find an ideal amount of genertibra
or suppression to apply to different columns in order to exi

probabilistic anonymity. We work through many examples and
show that our analysis can be used to make a published databas

conform to privacy acts like HIPAA. In order to achieve thelpr
abilistic anonymity, we observe that one needs to solve iplelt
1-dimensionak-anonymity problems. We propose many efficient
and scalable algorithms for achieving 1-dimensional anoty
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Our algorithms are optimal in a sense that they minimallyodis
data and retain much of its utility.

1. INTRODUCTION

“Over a year and a half, one individual impersonated me to-pro
cure over$50,000 in goods and services. Not only did she damage
my credit, but she escalated her crimes to a level that | neudy
expected: she engaged in drug trafficking. The crime redutie
my erroneous arrest record, a warrant out for my arrest, andre
tually, a prison record when she was booked under my name as
an inmate in the Chicago Federal Prison:= An excerpt from the
verbal testimony of Michelle Brown to a US Senate Commit&e [

Unfortunately, in today’s highly networked digital worlthci-
dents like the above with Michelle Brown are commonplace: Ac
cording to Bureau of Justice Statistics Bulletin [6]6 3million
households, representing 3% of the households in the Ustads,
discovered that at least one member of the household hadleen
victim of identity theft during the previous 6 months in 200¥c-
cording to the same report, the estimated loss as a resakofiiy
theft was about $ 3.2 billion. Needless to say that prevgriden-
tity thefts is one of the top priorities for government, cangtions
and society alike.

Globalization further complicates this picture. Due todedi-
rectives or business associations, there are multipl@scsnwhere
in organizations need to share or publish their micro-dateet
main competitive. This puts personal privacy at furthek.ri§o
surmount this risk, attributes that clearly identify indivals, such
asName Social Security Number , Driving License
Number, are generally removed or replaced by random values.
But this may not be enough because such de-identified dasbas
can sometimes be joined with other public databases on sggmi
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approximately 87% of the population of the United Stateslman
uniquely identified on the basis @ender , Date of Birth ,
and 5-digitZipcode . The uniqueness of such attribute combina-
tions leads to a class of attacks where data is re-identifi¢uifing
multiple and often publicly available data-sets. This tgpattack
was illustrated by Sweeney in [33] where the author was able t
join a public voter registration list and the de-identifiedipnt data

of Massachusetts’ state employees to determine the mduttaty

of the state’s governor.

In literature, such an identity-leaking attribute combioa is
called as auasi-identifier It is always critical to be able to rec-
ognize quasi-identifiers and to apply to them appropriabésotive
measures to mitigate the identity disclosure risk posecby4t-
tacks. In fact, Sweeney herself proposektanonymity model in
[31] for the same. According to her, a database table is sdit



k-anonymous if for each row in the table there krel other rows
in the table that aré&entical along the quasi-identifier attributes.
Clearly, a join with &k-anonymous table would give rigeor more
matches and create confusion. Thus, an individual is hididen
crowd of sizek giving herk-anonymity. It also means that the iden-
tity disclosure risk is at most/k for “join” class of attacks.
Although such a simple and clear quantification of privask ri
makesk-anonymity model attractive, its widespread use in practic
is severely hampered owing to the following factors:

1. Choice ofk is not clear. From pure privacy point of view,
largerk would mean more privacy, but it comes at the cost of
utility [1]. What is the right choice ok for the given data and
the given notion of utility has not been very well understood
yet.

. Fork-anonymity model to be effective, it is critical that there
is a complete understanding of the quasi-identifiers for the
give data-set. But there is no real formalism available &r d
ciding whether an attribute combination could form a quasi-
identifier. This is currently done manually, based on falkel
and human expertise.

. For a giverk, the goal is always to minimally suppress or
generalize the data such that the resultant data-ketienymous.
However, for some natural notions of measuring this resul-
tant distortion, the minimization problems turn out to be-NP
Hard [26, 2, 4].

On the approximation front, no efficient but good approxima-
tion algorithms are currently known. The known algorithms
are eitherO(k) approximations [26, 2] or super-linear [4] -
thus making them inefficient or expensive.

1.1 Paper Organization and Contribution

In this paper, we start out by providing the first formal cltara
terization and a practical technique to identify quashtifeers. In
Section 2, we also show an interesting connection betweethgh
a set of columns forms a quasi-identifier and the number tihdis
values assumed by the combination of the columns.

We then use this characterization in Section 3 to come up with
a probabilistic notion of anonymity. Again we show an ingiieg
connection between the number of distinct values taken lpna ¢
bination of columns and the anonymity it can offer. Thiswabas
to find an ideal amount of generalization or suppression fdyap
to different columns in order to achieve probabilistic ayroity.

DEFINITION 1. A quasi-identifier set Q is a minimal set of at-
tributes in table T that can be joined with external inforiatto
re-identify individual records (with sufficiently high goability).

Above definition is from [29]. A similar definition can be fodin
in an earlier paper of Dalenius [16]. As the reader can sehge,
definition is informal since it does not make “external imf@tion”
and “sufficiently high probability” explicit. Possibly bause of
this, we do not know any formal procedure or test for ideiify
guasi-identifiers. Almost always, researchers and pracéts as-
sume that quasi-identifier attribute sets are known basegetific
knowledge domain [23].

We present a more formal definition of quasi-identifier below
our definition, we do not insist on minimality of attributd ss such
although one could easily accommodate it if required. Thereal
information is theuniversal tablel/ having information about en-
tire (relevant) population. It hasrows. Typically, 2/ would mean
census records that many countries make readily available [

DEFINITION 2. a-quasi-identifier Ana quasi-identifier is a set
of attributes along which an fraction of rows in the universe can
be uniquely identified by values along the combination cfettedt-
tribute columns.

ExaMPLE 1. Empirically it has been observed th&f% of the
people in the U.S. can be uniquely identified by the comhinaif
Cender ,Dat e of BirthandZi pcode. Therefore Gender,
Dat e of Birth, Zi pcode) forms a0.87-quasi-identifier for
the U.S. population. Note that the U.S. census table is oienn
sal table( here.

Ideally, given ana and U, it is straight-forward to figure out
whether some particular attribute combination formseaguasi-
identifier in U by simply measuring the number of singletons in
that attribute combination. One may even try an apriori kige
proach [5] and calculate a-quasi-identifiers ini{. In practice,
there are errors ifi{ that come in during data collection phase it-
self [12, 11] and the knowledge abaolttis never exact. This would
lead to erroneous conclusions about a quasi-identifierrefoes,
it does not justify the expensive calculations given abdwefact,
one then prefers a quick and inexpensive approach thatgigesd
estimateof the same.

In what follows, we assume that the universal tabldtself is
not known. What we know is that it isndom sampléuilt with
replacemenfrom a probability space. Thus our analysis is prob-
abilistic. For the sake of analysis, we require that thei figob-

We work through many examples and show that our analysis can ability distribution, but in reality, our final results anedependent

be used to make a published database conform to privacyilkets |
HIPAA.

In order to achieve the probabilistic anonymity, we obsehat
one needs to solve multiple 1-dimensiokadnonymity problems.
In Section 4, we propose many efficient and scalable algosttor
achieving 1-dimensional anonymity. Our algorithms areropt
in a sense that they minimally distort data and retain mucitsof
utility. The algorithms provided are a stark contrast tovjmes
NP-hard results and comparatively more complicated dlyos
for the previous notion of anonymity calléganonymity [33].

We then experimentally verify our algorithms on real lifeala
sets in Section 5. We sketch the related work in Section 6 and
finally conclude in Section 7.

2. AUTOMATIC DETECTION OF QUASI-
IDENTIFIERS

of this probability distribution. Moreover, we work only thithe
expectations since our goal is to giyeod estimatequickly. Since
the sum of random variables is tightly concentrated arobedek-
pectation (by bounds like the Chernoff bounds [15]), ourlysisa
and results are quite fair. We do not work out the Chernoffyeis
though in order to keep our results and presentation simple.

We build our probability space on the distinct values thaa&n
tribute combination can take. Therefore, we need to knowntime-
ber of distinct values for every attribute combination. c®irone
can get (or reasonably estimate) the count of distinct wafoe
each attribute ire/ [17], we simplify our task with the following
assumption.

DEFINITION 3. Multiple Domain Assumption Letd,, ds, ...,
dyk be the number of distinct values along columns G, ..., C¢
respectively. Then, the total number of distinct valuesnaby the
(C1,Cy,...,C) column setis D=dy x dy X ... dk.



ExAMPLE 2. We study the number of distinct values taken by
the set of columng3nder ,Dat e of Birth,Zi pcode). The
number of distinct values of colun@ender (C,)isd, = 2. The
number of distinct values of colunibat e of Birth (Cy) can
be approximated as,d= 60+365 ~ 2+10*.> The number of distinct
values along columiZi pcode (Cs) is ds = 10°. The number
of distinct values of the column-s&qnder ,Dat e of Birth,
Zipcode)isD=0d; Xty xd3 =2 (2% 10%) + 10° = 4+ 10°.

As another example, consider the set of columlas ( onal i ty,
Date of Birth, Cccupati on). The number of distinct val-
ues of colummNat i onal i ty (C;) is dp = 200. Once again, the
number of distinct values of colunibat e of Birth (Cy) can
be approximated as,d= 60365 ~ 2+ 10*. The number of distinct
values of columr©ccupat i on (Cs) is roughly @ = 100. Thus
D =dy xdy x d3 = 200+ (2% 10%) + 100 = 4 * 105,

Remark: Please note that it may be possible to consider correla-
tions among various attributes and, therefore, arriveighter esti-
mate ofD. Such analysis would certainly lead to improved bounds
in what follows. Yet we decided not to incorporate corr@las -
partly because it would have made analysis very tough and mai
purport of our results could have easily been lost, but Igrge-
cause we also wanted our results to be viable and useful. eRead
will notice that larger estimate fdd implies stricter privacy con-
trol and more anonymization in what follows. This is accefgan
practice as long as it is easily doable and does not lead tolbss

in data utility.

Suppose that a set of columns tdhkalifferent values with prob-
abilities py, p2, ..., Po, whereZiD=l pi = 1. Let us first calculate the
probability that thé™ element is a singleton in the universal table
U. It means first selecting one of the entries in the table ¢thesn
choices), setting it to be thi¥! element (which has probabiliy),
and setting all other entries in the table to something eldech
happens with probability (+ p;)"?). Thus, the probability ofth
element being a singleton in the universal tabés np (1 - p)™ .

Let X; be the indicator variable representing whetifeelement
is a singleton. Then, its expectation

E[X] = P[X = 1] = np(1- p)"* ~ npe".

Let X = Y2, X be the counter for the number of singletons.
Now its expectation is given by

E[X] = ZD: E[X] = ZD: npe P,
i=1 i=1

Let us analyze which distribution maximizes this expectahn
ber of singletons. We aim to maximiz&, x.e™, subject tay.2, x; =
nand 0< x, V1<i<D.

THEOREM 1. If D < n, then the expected number of singletons
is bounded above by.

PrROOF Please refer to the Appendix A for a detailed proof]

THEOREM 2. If D > n, then the expected nhumber of singletons
is bounded above by e

PROOF. Please refer to the Appendix A for a detailed proofi_]

Figure 1 shows how the maximum expected fraction of single-
tons or unigue rows in a collection aofrows behaves, as the num-
ber of distinct valuespP, varies. The graph plots the maximum

Throughout this paper we assume that the ages of peopleghelon
ing to the database comes from an interval of size 60 years.
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Figure 1: Quasi-ldentifier Test

expected fraction of unique rows as a functiorPofit is the line 2,

for 2 < 1 according to Theorem 1. Fé > 1, it is the curvee®
according to Theorem 2. The curve is both continuous and gmoo
(differentiable) a2 = 1 with f(1) = £ andf'(1) = 2.

Figure 1 forms a ready reference table in order to test whethe
a set of attributes forms a probable quasi-identifier. Fangle,
if for a set of attributedD < 3n, then it is unlikely that the set of
attributes will form a 075 quasi-identifier. If a set of attributes do
not form ana-quasi-identifier according to the the number of dis-
tinct values in Figure 1, then they almost certainly do notf@n
a-quasi-identifier as the plot gives the maximum expectedtifsa
of singletons (as per Theorem 1 and Theorem 2).

ExAMPLE 3. We now show how3ender ,Date of Birth,
Zi pcode) forms a quasi-identifier when restricted to the U.S. pop-
ulation. The size of the U.S. population can be approximated
3+ 10, that is, the size of the universal table r8is 10°. The num-
ber of distinct values taken by the attribute s€e(der, Dat e
of Birth,Zipcode)is4x 10 from Example 2. Therefore, by
Theorem 2, the maximum expected fraction of rows with dingle
occurrence is 810410 = g-0075 , 0 93 Thus, Gender , Dat e
of Birth,Zi pcode)is a potential0.93 quasi-identifier. Please
recall that this combination is already known to bé&87 quasi-
identifier [33].

ExAMPLE 4. We now give an example of a set of attributes that
does not form a quasi-identifier. Let us considsai(i onal i ty,
Dat e of Birth, Gccupati on). The number of distinct val-
ues along these columns is given from Example 2 as £« 10°.
Here the size of the universal table is=n6 * 10°, that is, equal to
the world population. Since B n, we use Theorem 1 and find that
the expected fraction of rows with singleton occurrencepisraled
above by Den= 4%10°/2.7+6+10° ~ 0.025 Thus these columns
almost certainly do not form even@05 quasi-identifier as 0.025
is an upper bound on the expected fraction of singletons aller
possible probability distributions over quasi-identifialues.

We now provide a simple test to decide whether a combination
of attributes forms a potentially dangerous quasi-idesttithat is,
saya > 0.5.

THEOREM 3. Given a universe of size n, a set of attributes can
form an a-quasi-identifier (wherd.5 < « < 1) if the number of

. n
distinct values along the columns,ﬂm.



PROOF Please refer to the Appendix A for a detailed proof]

2.1 Distinct Values and Quasi-ldentifiers

In this section, we have provided an interesting connedtieon
tween whether a set of columns forms a quasi-identifier and th
number of distinct values assumed by the combination ofdhewns.
The main contributions of this association are as follows.

1. We provide a fast and efficient technique to test whether a

set of columns forms a quasi-identifier. However there may

be false positives. A set of columns signalled as a probable

« quasi-identifier may only be @ quasi-identifier for some

B <a.

2. We do not assume anything about the distribution on the val

ues taken by the quasi-identifier. The expected number of

singletons is bounded by the expression provided in this sec
tion for all possible distributions over the values takerthzy
quasi-identifier.

3. When a set of columns is declared not to be a quasi-idemtifie
by the test in this section, the set of columns is almost cer-
tainly not a quasi-identifier, that is, there is a minuschilarce
of false negatives.

PROBABILISTIC ANONYMITY

In Sweeney’s anonymity model [33], every row of the dataset
is required to be identical witk other rows in the dataset along
Q. In the following notion of anonymity, we insist that eaclwro
of the anonymized dataset should match with at I&ast more
rows of the universal tablé/ alongQ. Sincel is represented
in a probabilistic fashion, we want this event to happen wWith
probability.

3.

DEFINITION 4. A dataset is said to be probabilisticalll —
B, k)- anonymized along a quasi-identifier set Q, if each row megch
with at least k rows in the universal tab## along Q with proba-
bility greater than(1 - g).

Our notion of anonymity is similar to that of [33] for an adver
sary who isoblivious that is, she is not really looking for some
particular individuals, but is trying to do a join o® and check-
ing if she is “lucky”. This kind of attack is quite a possilyiin
today’s outsourcing scenarios where in an attacker, say & call
center, would want to know identities in her client’s datahout
really knowing whom to look for. If an adversary is lookingrfo
a particular individual in the anonymized dataset, then Sweeney’s
model would generally provide better privacy than our mddelt
would always yielck matches. For our model to work well against
such an adversary, we need to declare the original dataséftas
the universal tablé/ and carry out anonymization.

In what follows, we build on the strong connection between th
number of distinct values assumed by a set of attrib@tesd its
identity revealing potential that was discovered in Secfo In-
tuitively, it is clear from Theorems 1, 2 and 3 that the poyeat
Q as a quasi-identifier would decrease if we reduce the nunfber o
distinct values assumed ). This is to be done with appropriate
generalization We borrow the following definition of generaliza-
tion from [33] which has an excellent discussion on this¢opi

DEFINITION 5. Generalization involves replacing (or recoding)
a value with a less specific but semantically consistentevalu

ExampPLE 5. The original ZIP codeg02138, 02139 can be
generalized to 0213*, thereby stripping the rightmost dagid se-
mantically indicating a larger geographical area.

One way of looking at generalization is creatiag D partitions
of the space oD distinct values and choosing a representative for
each partition. In fact, it would give usanonymity if we could
ensure that most of these partitions are representd&bbynore of
their own members in the universal taldle with high probability.
To make this work, let us suppose that we have gbt-partition
of original D size space such that each partition has probability
1/D’ (or O(1/D’) to be precise). Given a py, p2,..., Pp > prob-
abilities of the originalD size space, such partitioning is certainly
possible using techniques we show in Section 4 for a singhe
sion. Now, we analyze below the bound bn that is necessary
is order to ensure that most of these partitions are repteskmor
more times inZ{ with high probability. Please recall th@ has
sizen and it is built by sampling with replacement.

THEOREM 4. Adata setis probabilisticall{1-3, k)-anonymized
with respect to a universal tablé/ of size n along the quasi-
identifier Q if the number of distinct values along Q, D{(1-c)
for some small constant c.

Before we proceed with the proof, please note that Theorem 4
provides a recommendation f@, the number of partitions db
size space of. If the probabilities< py, p2, ..., pp > are known,
then as per our earlier assumption, one could cluster thedap
bilities such thaD’ equi-probable partitions are created. This con-
cretizes generalization which could be used by any datdendbr
anoymizing its data before release.

PROOF. Please refer to the Appendix A for a detailed proaf.]

EXAMPLE 6. Let? be the U.S. Census Table of size-r8 «
10%. Consider the columns @ (Gender, Date of Birth,
Zi pcode). By Example 2, D= 4 10°. According to Theorem 4,
a dataset i€0.9, 100)anonymized along Q with respectio if we
make D partitions (or generalizations) of the D size space where

, n
D' < 155 = 2.4 10°.

Thus, we have to reduce the number of possibilities for Q by
a factor of YD’ < 170Q Consider the following generalization
(Gender ,Hal f-year of Birth,First Four Digits of
Zi pcode). Now D = d; = d; = d;. dj, the number of distinct val-
ues ofGender , is 2. d, is 60 2 = 120 and d, = 10*. Therefore,

D’ = 2.4« 1. This should be good enough to make each row
100-anonymous with probability at leaéto.

3.1 Privacy vs Utility

Note that Gender , Half-year of Birth , First Four
Digits of Zipcode ) was just one of many different ways we
could have compressed tliesize space in Example 6 by factor
1700. Ideally, we would like to devise this generalizatioctsthat
there is little or no loss in theata utility. We frame this prob-
lem as an optimization problem below where the goal is tameta
maximum utility given privacy constraints.

Let there bencolumns< C,,C,,...,C,, > that need generaliza-
tion andwy, ws, . . ., Wi, be their respective weights giving their rel-
ative importance. We aim to anonymize this multi-columraflase
so that maximum utility is retained in the probabilistigadtanonymized
output.

Letd;, d,,...,d;, be the number of distinct values along columns
C1,Cs, ..., Cy, after probabilistick-anonymization. Then, by The-

orem 4,
m
[]e
i=1

E(l— 0=D.



Let us suppose that the quantile based anonymization fram Se
tion 4 is used. Thugy different quantiles are used along the col-
umnC;. Then, the rank difference of the transformation (from Sec-
tion 4) is approximately&)2 x df ';—2

The sum of the distortion along all columns weighted by tHe co
umn weights is, therefore?(37, %). Minimizing this is equiv-
alent to minimizing};"; 3 subject to[]{Z, d’ = D’. For a fixed
value of product, the sum of numbers is minimized when all the
numbers are equal. Therefore,

Wy _ W Wm
AR
Therefore,d) = dxw Y1 < i < m. The product condition
implies, [T, d' = d™ [T, w; = D’. Therefore,
D’
[T wi

- é (say)

)1/m

d=(

d VM 5w

= (

W (1)
Note that ifd! is less than the number of distinct values in column
i initially, say d;, it suggests applying an approach like quantiles
proposed here on colun@. If d is greater than the number of
distinct values in columi; initially, say d;, then the columi; is
left untouched. The number of distinct elements for othéuroos
can be recalculated (and increased) after this. That &, # d;,
then the optimization problem over all other variables & §olved
after columnC; is eliminated, i.e. Maximiz& [, ;. LV—J‘ subject to

[Ny o = D’/dh.

EXAMPLE 7. Suppose that we want to probabilisticalx9, 100)
anonymize a dataset wiitolumns Gender ,Dat e of Birth,

Zi pcode) and all columns are equally important, that is , they
have equal weight.

As worked out in Example 9, each row is givEd0-anonymity
with probability at leasD.9if D’ = 2.4x10°. As all3 columns have
equal weight, we getid= d;, = d; ~ 133 HoweverGender has
only 2 < d; values. This means we have to leave it untouched and
work with the remaining two attributes. That gives:«dl, = 1.2 «
1CP. Since both the columns have equal weight, we get d; ~
11x10. Asd, = 1.1+ 10° is approximately60 (years}12 (num-
ber of months per yearat e of Bi rt his approximated to the
month of birth. Also the number of distinct valueZopcode be-
ing O(10°) implies that the last two digits @i pcode are starred
out. Thus the anonymization produced @&fder, Mont h of
Birth,First Three Digits of Zi pcode).

Note that this anonymization was entirely worked out in ¢ans
time in the above example. For general case, where the nusfber
columns ism, it would requireO(n?) time. Previous techniques to
provide anonymity were not onl}P-hard in the input size (that
means it took exponential time in the dataset) [26, 3] buheye
proximations required many passes over the database [323].
required passes to be exponential in the number of columhe to
anonymized as the lattice developed there took expondimtialto
be built.

ExXAMPLE 8. According to HIPAA [19], each person must be
anonymized in a crowd of& 20,000 = 2 » 10* people. Now, sup-
pose we want to anonymize a medical records table with cadumn
(Gender, Age (In Years)Zi pcode, Di sease).

As always, the U.S. Census Table is the universal tablavith
n = 3« 10° rows. The quasi-identifier i¥ender , Age (In Years),
Zi pcode). As the number of distinct values@nder andAge
are2 and100respectively, the number of distinct valueZbpcode
allowed is approximatel$  10%/((2 + 10*) » 2+ 100) = 75 by The-
orem 4. ThereforeZi pcode must be anonymized to its first two
digits and should only indicate the State.

3.2 The Curse of Dimensionality

As the number of dimensions (columns) increase, the nunfber o
distinct values per column on anonymization decrease Isagtor
example, consider a database table with 25 columns. Thesdin i
anonymize the table so that 10-anonymity is achieved fotkise
population of size 3 1¢°. Further suppose that all the columns
are given equal weight (importance). Applying Theorem 4 idyed
Multiple Domain Assumption, the number of distinct values p
column can be obtained to be roughly 2. Thus all values ina col
umn are generalized to two intervals or converted to twogygfe
values. This hints at reduced data utility measured by aagare
able metric.

This phenomenon was also observed as the curse of dimension-
ality on k-anonymity [1]. However, we must notice that the pre-
vious analysis should only be applied to columns that ard-ava
able publicly. For example, in the Adults database [8], oois
capgain , caploss , fnlwgt andincome can be assumed to
be sensitive columns that are present only in the datalbsedéand
are not available for an external join.

3.3 Distinct Values and Anonymity

In this section, we have provided an interesting connedtien
tween the number of distinct values taken by a combination of
columns and the anonymity it can offer. The main contrilngio
of this association are as follows.

1. This association between distinct values and anonyriy-g
antee results in an easy technique to obtakaaonymized
dataset. Merge similar distinct values taken by a column so
that the number of distinct values assumed by the column
is reduced. The appropriate reduction in the number of dis-
tinct values leads to the conversion of a quasi-identifitr in
k-anonymous columns. As explained in Section 3.1, this
would also help retain much of data utility since it mininyall
distorts ranks. We shall discuss this angle in more detail in
the next section.

. It also helps in coming up with the right kind of generaliza
tion for publicly known attributes so that published datba
can conform to laws like HIPAA.

4. 1-DIMENSIONAL ANONYMITY

The results of Section 3 provide us with the right amount ofge
eralization for each publicly known attribute in order tcheve
probabilistick-anonymity for the entiren column dataset. From
any particular attribute point of view, the suggested galiza-
tion tries to create appropriate number of buckets (or fiams)
in its distinct values space so that each bucketlas- k indi-
viduals from the universal tabl&/. Thus, in nutshell, there arma
1-dimensional Sweeneylsanonymity problems, of course, each
with different value ofk. Before we proceed further, we will like
the reader to take a note of this strong underlying connedig
tween our notion of probabilistik-anonymity and Sweeney’s no-
tion of k-anonymity.

Now k-anonymity for multiple columns is known to be NP-hard
[26, 3, 23]. Thankfully we found that this is not the case for a



single column. In the remainder of this section, we showwase
ous algorithms that help achieve 1-dimensideahonymity while
retaining maximum possible data utility.

4.1 Numerical Attributes

We start out with algorithms for numerical attributes. Ntitat
they are also applicable to attributes of type dateZipdode .

DEFINITION 6. k-Anonymous Transformation A k-anonymous
transformation is a function, f, from S {s;,S,...$,} t0 S such
that Vs; : [{fY(s))l = k or [{fY(s))| = O, that is, at least k

DEFINITION 9. Quantile Transformation Suppose that n=
gk + r, where0 < r < k. Then, the quantile transformation is
a k-anonymous transformation that partitions the elemanits g
contiguous groups of siZk+[r/q]) or (k+[r/q]) each. All elements
in a group are mapped to the median element of the group.

THEOREM 5. The quantile transformation has the minimum rank
difference among all k anonymous transformations.

PROOF The proof is by a simple greedy argument.]

elements are mapped to each element (which has some elementt-1.3  Efficient Approximate Quantiles using Samples

mapped to it) in the range.

ExAMPLE 9. Consider S= {1,12 4,7,3}, and a function f
given by {1) = 3,f(3) = 3,f(4) = 3, f(7) = 7and f(12) = 7.
Then f is a2-anonymous transformation.

4.1.1 Dynamic Programming

Our goal is to find &-anonymous transformation that minimizes,
say, the maximum cluster size amongst all clusters [35h@stm
of distances to the cluster centers [22], or the sum oveladters
the radius of the cluster times the number of points in theteh[4].
All these problems are known to be NP-hard for a general metri
space. However, for points in a single dimension, we shogcas
an optimal polynomial time algorithm based on dynamic paogr
ming. The details of the algorithm can be found in the Apprmi

This algorithm needs input in the sorted order. Therefdse, i
time complexity has two components: 1. Time taken for sgrtire
input, and 2. time required for the dynamic programming. iRer
put of sizen points, sorting take®(nlogn) time. The dynamic pro-
gramming part requires tim@(nk) as evaluating ClusterCost(1 i)
takesO(k) time for eachi. Thus, overall time complexity i®(n(k+
logn)).

4.1.2 Quantiles

The algorithm from previous section requires sorting of ithe
put. For largen, this would entail external sort. It is not very desir-
able in practice. In this section, we explore efficient aildpons that
cluster the data in time required to make 1 or 2 sequentiagsas
over the data and use very little extra memory.

DEFINITION 7. Rank Given a set of distinct elements=S{s,,
S, ..., 5}, the rank of an element & r if s; is the " largest ele-
ment in the set.

For a multi-set containing duplicates, different occuces of
the same element are given consecutive ranks.

ExAMPLE 10. Among elements S {1,12 4,7, 3}, 7 has rank
4, while 3 has rank2.

DEFINITION 8. Rank difference of a transformation Given a
set S={s1, S,..., S} of n numbers, and a k-anonymous transfor-
mation f, letr(s) represent the rank of element $hen, the rank
difference incurred by;under the transformation f is defined as
In(f(s)) — n(s)|. The rank difference of the transformation f is the
sum of rank difference over all elements, thats,, I7(f(s)) —
n(s)l-

ExampPLE 11. Forset S={1,124,7,3}, (1) = 1, n(12) = 5,
n(4) = 3, n(7) = 4 andn(3) = 2. For f from Example 9x(f(1)) =
2, n(f(12)) = 4, n(f(4)) = 2, n(f(7)) = 4, and p(f(3)) = 2. The
rank difference of this transformation &

Itis possible to implement the exact quantile transfororatBut
finding the exact median(quantile) jrpasses over the data requires
n*’P memory [27]. Thus, to get the exact quantile transformaition
2 passes, would requi(+/n) memory.

For those who work with smaller memory and/or look for some-
thing easier to implement, we sketch a sampling based agiproa
here. We maintain a uniform sample of sige= %log(}) using
Vitter's sampling technique [36]. The rartkelement in the orig-
inal set is approximated by the rams/n element in the sample,
wheren is the size of the original dataset over which the sample is
maintained. This element has rank betweer(en) andt + (en) in
the original data with probability greater than<¥) if the sample
sizesis chosen as given above [25]. For example suppose that we
maintain a uniform sample of 100 elements out of a total 000
elements. Then the, B00th element in sorted order among the
100 000 elements can be approximated well by the 5th element in
sorted order from amongst the sample of 100 elements.

4.2 Categorical Attributes

Country:USA

50 State

WY

Alameda
N .
7 J__ _\-Cities

Figure 2: A Categorical Attribute

In the previous sub-section, we discussed how to createappr
priate buckets or categories for numerical (ordered)latteis. But
many a times, there is an attribute with no intrinsic ordgamong
its value-set. Such an attribute is called astegorical attribute

For categorical attributes we create a layered tree grapx-as
plained. The first layer consists of a node for each categaiyev
The next layer groups together nodes that generalize irggen-
eral categorical value, so that they form a single node. iBhéet
to be the parent of the generalized values. This is repeititdtbte
is a single category. Consider for example location infdaioma
shown in Figure 2. Zipcodes are generalized to cities whieh a
generalized to counties to state and finally to country. dpehree
levels of the generalization hierarchy are shown. To andzgm
this dataset so that there atelistinct values, the generalization is



carried till the level that there adkvalues. For example, to gener-
alize location so that there are 50 different values, thee stdor-
mation would be retained. However to generalize it to 30@0mtt
values, the county information would be retained.

5. EXPERIMENTS

5.1 Quasi-ldentifiers

We counted the number of singletons in the Adult Databasé ava
able from the UCI machine learning repository [8]. The Adult

Database has got 32561 rows with 15 attributes, we considere

10 of them and dropped the remaining 5. The dropped attsbute
are sensitive attributes (not quasi-identifiefajwgt , capgain ,
caploss ,income and the attributedunum which is equivalent

to the attribute education. In our experiments, we variedsize

of the attribute se@ under consideration from 1 to the maximum

of 10. The table in Figure 3 shows some of the results that we

obtained.

LabelsAl, A2, ..., A10 denote the 10 columns of the table. The
first row gives the number of distinct values each attrilAteA2,
..., A10 takes. All other rows (which are labeled with row num-
bers from 1 to 12) of the table represent publishing the ptime
of the table along the columns marked ‘x’. For example, the ro
1 represents publishing the database projected orgee (A1)
column while the row 12 represents publishing all 10 colunms
the database. The colun8ize gives the number of ‘X’ marks in
each row, that is, the number of columns that constitute taesig
identifier Q under consideration.

The columnS is the number of rows uniquely identified by the
projection of these columns, that is, the number of rows welig
identified in the published projection. For example, for raw
whereAl and A9 are the attributes of projectiorg = 986 is re-
turned by the following SQL statement in MS Access:

SELECT Al, A9 FROM T
GROUP BY Al, A9
HAVING count( *)=1

F, is the fraction of rows uniquely identified, given 18/32561

where S is the number of singletons while 32561 represents the

total number of rows in the database table. For ro2= 0.03.
Some previous definitions of quasi-identifiers [38] meadarguasi-
identifier as a set of columns that have a large fraction ofjumi

at least @ fraction of the rows are unique, then the projections in-
dicated by rows numbered & 10, 11 and 12 cannot be published.
This is because thel; values exceed..

In fact, our real worry is that 0.2 fraction of the rows should
not get uniquely identified after taking an external jointwihe
universal tablel{. Then, only row 12 qualifies as a possibl2-0
guasi-identifier as only it&, value exceeds.. Note that, from
Theorems 1 and 2, there is a minuscule chance of false negativ
that is, rows 1 11 are unlikely to be @-quasi-identifiers.

Row 12 needs a closer look sinc®9is only an upper bound on
the expected fraction of unique rows. It may be noticed thayn
combinations are rare and do not occur. In our example, two at
tributesA9 andA10 are specialA9 may be represented with only
5 distinct values since the exact hours per week of an indalid
may not be known an@10 is not uniformly distributed. Such a
case by case analysis of the different attributes may brimegndhe
distinct valuesD, and hence the fraction of distinct rows. Thus, it
can help improve the estimate of quasiness, say, fro@% féac-
tion to (probably) a fraction lower than2 In such a case, row 12
would be a false positive.

5.2 Anonymity Algorithms

We implemented sampling based approximate quantile éfgori
(from Section 4.1.3) as a technique in a commercial data imgisk
tool, MASKETEER"™ [34], used at Tata Consultancy Services.
Our technique only required 400 lines of code to be addedeo th
tool, because of the extensibility features available ettiol. The
tool was run on an Oracle database containing @60 rows of a ta-
ble from a real bank, which was a customer of the tool vendoe T
database table was about 1GB in size and had 261 columns. We
also repeated our experiments on the public use microdatplea
(PUMS) [10] provided by the U.S. Census Bureau. This dataset
was given in a flat file format as input to the data masking tool.
The experiments were run on a machine with 2.66GHz processor
and 504 MB of RAM running Microsoft Windows XP with Service
Pack 2.

Scaling with the Dataset Size

We studied how the running time of the quantile algorithm for
masking a single column changes as the number of rows in the
database table is varied. We measured the time required ¢k ma
various fractions of the table, the entirety of which cons250 000
rows. The time required to mask this single numeric columit wi

rows. ThusF; is used as a measure of quasiness. This does notK = 10,000 anonymity (so that there are 25 different quantiles to

model the external table present with the adversary. Fomexa
ple, by this definitionAl and A9 would together be a.03-quasi-
identifier.

D is the product of the domain sizes of the attributes markéed ‘x
in the row. By Multiple Domain Assumption, it is the size okth
distinct values space for that combination of columns. kangle,
forrow 3,D = 60 5 2 = 600.

F, captures the notion of quasiness as proposed in Section 2. |

is given byf(D/n) shown in Figure 1. Herd) is set to be equal to
the value from columi, andn = 3x10%, the size of US population.
Please recall that, by Theorems 1 and@/n) = D/enfor D < n
ande P for D > n. For all but the last row of the tablB, < 3x10°,
henceF, = m, for the last rowF, = e 31/,

k-Anon is approximately the probabilisticanonymity obtained
from the published database. Based on the result of Theorém 4
is set ton/D, wheren = 3 x 10°, the size of the US population.
WhenD exceeds n, itis setto 1.

Suppose we are allowed to publish a set of columns with the con
dition that all 02-quasi-identifiers are to be suppressed. If we only
consider the entries of the table and look at those projestichere

which the data is approximated) increased linearly to al wita
about 10 seconds for the entire column. A straight line with a
most exactly identical slope and coordinates was obtaioethe
PUMS [10] dataset.

Scaling with the Number of Columns Masked

We studied how the running time of the quantile algorithm for
masking multiple columns varies as the number of columnseto b

{masked is varied. For this experiment too, we used the taitte w

250,000 rows and 261 columns. As each column is independently
anonymized, the time taken increases linearly as the numiber
columns being anonymized increases. Previous algoritt28f [
had an exponential increase in the time taken for anonyioizat
as the number of columns increased as the lattice createéwas
ponential in the number of columns being anonymized.

The time taken to anonymize 10 columns of data with, 280
rows was approximately 100 seconds. This is almost an oifder o
magnitude improvement over the previous algorithm [23]e Téx+
sults on the PUMS dataset were similar.

Scaling with the Anonymity Parameter
The implemented algorithm does a binary scan over all backet



Row | Size | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 S Fi D F> k-Anon
60 | 8 15| 7 14 | 6 5 2 20 | 40

1 1 X 2 6.1%10° 60 7.4+ 1078 5% 10°
2 2 X X 986 0.03 1200 148x10° | 25% 10°
3 3 X X X 65 0.002 600 7.4+ 1077 5% 1P
4 4 X X X X 5056 0.16 110 12%10% | 3x1C°
5 4 X X X X 3105 0.095 27«10 | 33+10% | 1.1+ 1C°
6 4 X X X X 7581 0.23 6.7+10° | 83%10°% 450
7 4 X X X X 1384 0.043 6.7+«10" | 83x10° | 45+10°
8 5 X X X X X 7659 0.235 45 10° 494103 75
9 5 X X X X X 5215 0.16 28«10 | 34107 | 1+1C
10 5 X X X X X 12870 0.40 8x 10° 9.9x10°% 380
11 5 X X X X X 10402 0.32 54+10°F | 6.7+10° 55
12 10 X X X X X X X X X X 24802 0.76 33 10° 0.99 1

Size = Number of columns that make the quasi-identifier, Alge AA2

=Work class, A3 = Education, A4 = Marital status, A5 =Qgation,

A6 = Relationship, A7 = Race, A8 = Sex, A9 = Hours per week, Al9ative country,S = Number of singletons in the current tabkg,=
Fraction of singletons using the table itself = S/329B5Fraction of singletons using Figure 1 ameg 3 10° for US population, k-Anon=

Anonymity parameter for the published databasg b.

Figure 3: Quasi-ldentifiers on the Adult Dataset
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Figure 4: Time taken for varying number of rows.

to find the bucket closest to each data item. The time requaed
anonymize a data value, therefore, logarithmically insesaas the
number of buckets increases (or the vadwé anonymity parameter
decreases). i is the number of buckets amthe number of rows,
then the time to anonymize idog(b). The time taken to read
rows from disk isnC where C is a large constant. The total time
taken is, thereforey(C + logb) whereC > log(b). This explains
the shape of the curve in Figure 6. H&1€@ ~ 10 seconds and the
log(b) term explains the slight increase from 0 to 500 buckets.
Tradeoff between Privacy and Utility
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Figure 5: Time taken for varying number of columns.

ted on thex-axis. An almost identical curve was obtained for the
PUMS dataset. The curve very closely follows the cuknj-yeThis
could be proven analytically.

Thus, for givenn andk, we find that the identity disclosure risk
is < 1/k (for “join” class of attacks) and the error introduced in
data isec k?/n?. We may, therefore, boldly quantify the privacy
provided byk-anonymization ap = 1—1/k and the utility retained
asu = 1 — k?/n? implying the following privacy-utility trade-off
equation.

(1- p)%(1 - u) = 1/n? (a constant)

We studied how the error introduced in a column as a result of

k-anonymization varies with the anonymity parameterLet x;
be the original value of thé" row. LetX be its value aftek-
anonymization. Thenx( —x)? is the error introduced for rowas a
result ofk-anonymization. The Eotal error introduced ovaows is
Error = 31 (X —%)?. Letx= Z'le“ Ifall X are constrained to be
identical (corresponding to anonymity with a single bugkistenx
gives the minimum error according to the above metric, i.gives
MinError = Min, X1, (X — x)? = Y, (X - x)2. We, therefore,
normalize the error as Error/MinError.

The curve is plotted in Figure 7 where the normalized error is
plotted on they-axis while the number of bucketb,= {, is plot-

Note that, the fact that we used sum square errors, instead of
sums of absolute values of errors explains the square teoseab

6. RELATED WORK

One of the earliest definitions of quasi-identifier can bentbin
Dalenius [16]. [33, 32] and [23] use a similar definition.

Samarati and Sweeney formulated #ianonymity framework
and suggested mechanisms kesinonymization using the ideas of
generalization and suppression [29, 33, 32]. Subsequenkt lves
shown some NP-hardness results [26, 2, 4] and that has edspir
many interesting heuristics and approximation algorith, 37,
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26, 7, 2, 23, 24, 4]. All of this work assumes that quasi-idwmt
attribute sets are known based on specific knowledge domain.

The basic theme dFanonymity model is thidean individual in
a crowd of siz&k or more. A similar intuition is pursued by Chawla
et al in [13] who, in fact, manage to convert it into a precisatim
ematical statement. They not only give definition of privacyd
its compromise for statistical databases, but also proxidesthod
for describing and comparing the privacy offered by specifioi-
tization techniques. They also give a formal definition ofsolat-
ing adversary whose goal is to single out someone from the crowd
with the help of someauxiliary informationz. This work is fur-
ther extended in [14] where Chawla et al study privacy-présg
histogram transformations that provide substantialtuytili

There is a wide consensus that privacy is a corporate resgons
ity [20]. In order to help and ensure corporations fulfil tréspon-
sibility, governments all over the world have passed migtjri-
vacy acts and laws, for example, Gramm-Leach-Bliley (GL&)A
[18], Sarbanes-Oxley (SOX) Act [30], Health Insurance Rloitity
and Accountability Act (HIPAA) [19] are some such well known
U.S. privacy acts. In fact, HIPAA recommends the followsafe-
harbor method of de-identification in which it provides clear guide
lines for sanitizing quasi-identifiers including date tgp&pcode
etc. For 20000 anonymity, HIPAA advises to retain essentially
only the State information iZipcode and year information in
Date of Birth which is quite inline with what we concluded
in Examples 6, 7 and 8 based on our analysis. The de-idetitifica
excerpt from the HIPAA law is provided in Appendix C.

7. CONCLUSIONS

In this paper, we provided the first formalism and a practical
technique to identify a quasi-identifier. Along the way weadiv-
ered an interesting connection between whether a set ofmeau
forms a quasi-identifier and the number of distinct valuesiased
by the combination of the columns.

Then we defined a new notion of anonymity called as probabilis
tic anonymity where in we insist that each row of the anonwdiz
dataset should match with at ledsbr more rows of the univer-
sal tablel/ along a quasi-identifier. We observed that this new
notion of anonymity is similar to the existektanonymity notion
in terms of privacy guarantees and is sufficiently strongnfiany
real life scenarios involving oblivious adversaries. Birf on our
earlier work, we found an interesting connection betweemtim-
ber of distinct values taken by a combination of columns dred t
anonymity it can offer. This allowed us to find an ideal amooint
generalization or suppression to apply to different colsrimor-
der to achieve probabilistic anonymity. We worked througdmngn
examples and showed that our analysis can be used to make a pub
lished database conform to privacy acts like HIPAA.

In order to achieve the probabilistic anonymity, we obse et
one needs to solve multiple 1-dimensiokadnonymity problems.
We proposed many efficient and scalable algorithms for anige
1-dimensional anonymity. Our algorithms are optimal in asse
that they minimally distort data and retain much of its uili
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APPENDIX
A. PROOFS

PrROOF[of theorem 1] If f(x) = xe*, f'(X) = (1 - x)e* and
f”(x) = (x— 2)e*. Thus, the functiorf has a global maximum at
x =1, sincef’ (1) = 0 andf” (1) < 0.

Now the expected number of singletons,

This expression is a tight upper bound on the expected nuafiber
singletons foiD < n. For example, it is almost obtained by setting
x=1"fori=12...,.D-1,andxp =n-D+1. [O

PrOOF[of theorem 2] If f(X) = xe*, f'(x) = (1 - X)e* and
f'(X) = (x - 2)e*. The functionf has a point of inflection at
x = 2, sincef”(x) < 0 for x < 2 implying the function is concave
here, andf” (x) > 0 for x > 2 implying the function is convex here.

First we claim that on maximizin@2, xe™, nox > 2. Sup-
pose otherwise: after maximizinElexie‘Xi, someX, > 2. As
D > n,andy2, x = n, somex, < 1. For some smali, replacing
Xa by Xa — 6 andx, by X, + 6 we retainy2, x, = n. As f(x) = xe*
increases towards x=X(xs — 6) > f(X) and f(X, + &) > f(X).
Thusy 2, x.e™* is increased, contradicting the fact that it was max-
imized. Thusyl<i<D,x <2.

Now f”(x) < 0 for 0 < x < 2. Sincef is concave, we can apply
Jensen’s inequality [28]to get

D b 1
X = Z gk
St - 0Fdne
i=1 i=1
D .
< D-( ﬁ)e—(z.‘ilﬁ)
i D
i=1
= nev.

Thus, ifD > n, the expected number of singletons is bounded above
bynes. [J

PrROOF OF THEOREM3. Note thaD > n. If not, then, by Theo-
rem 1, the maximum expected fraction of rows taking uniguees
isD/en< l/e<a.

From Theorem 2, the maximum expected fraction of rows taking
unique values along the columns wilh distinct values ise™P.

For the the set of rows to form anquasi-identifier, this fraction
must be larger than. Thus,e™P > a, which implies thatD >
O

_n__
n(/a) "

PROOF OF THEOREM4. Let us suppose that we have gdda
partition of original D size space of quasi-identifi€) such that
each partition has probability/D’. Let X; denote the indicator
variable if> k rows in the universal tablg/ are chosen from the

2If f is a concave function, ang", pi = 1, with p; > 0 Vi, then
SMpf(x) < F(E0 pix).

it partition.

5 (n), 1 1.
- - (] — oy
PIX = 1] j_k(i)(D') a-3)
k-1
n\, 1 1.,
= 1- (_)(—,)1(1— =)™
I\ D D
-D'(n/D’ = (k- 1))
> l-exp n
(by Chernoff bounds [15])
_ —(n—(k=-1)D')
= 1l-exg D ).
For 1- B probability guarantee, we would like to have
—(n-(k-1)D")?
1-exp D )>1-5,
that is,
—(n-(k-1)D)
oD <Ing.
This is true when,
2nD' ( Ing n \2
72 _F _
0<D"+ k—1(k—1 1)+(k—1) :
that is,

D’ < %(1+ X— VX2 + 2x),

where

This implies that
n
D'<-(1-
<=9

is sufficient for some small constant [

B. ALGORITHM OF SECTION 4.1.1

If not already sorted, first sort the input and suppose thit it
pPL< P2 <...< pn. Forl<a<b <n,let Clusterg, b) be the cost
to cluster elementp,, ..., po.

Consider the optimal clustering of the input points. Notatth
each cluster in the optimal clustering contains a set ofigont
ous elements. Moreover, each cluster is of size at le&st the
k-anonymity requirement. Since any cluster of sizek can be
broken into two contiguous clusters of size at ldasaich and that
would reduce the clustering cost, the size of a cluster imghienal
clustering will be at mostk— 1.

The optimal clustering of tha input points is, therefore, the
optimal clustering of pointgs, p2, pn_i and one single cluster of
the points fn_ii1,..., Pn), Wherei is the size of the last cluster.
Note thatk < i < 2k by the previous analysis. Therefore we find
the optimal clustering by trying out all possible values ef{k, k +
1,...,2k - 1}. Now, the dynamic programming recursive equation
is given by
ClusterCost(In) = min.j.« Cost(ClusterCost(h—i), Clusterfi—
i+1,n).

Here CostA, B) is the sum for a metric like thiemedian [22] or
cellular [4] metric which minimizes the sum of costs overdalis-
ters. It is the maximum function for thecenter metric [35] which
minimizes the maximum of cluster sizes amongst all clusters

ClusterCos#, b) is initially set toco if b—a+1 < k. Forb—a+1 >
k, ClusterCost, b) is initially set to the cost of clubbing all points
into a single cluster, that is, Clustey).



C. DE-IDENTIFICATION REQUIRED FOR
HIPAA

“The following identifiers of the individual or of relativesm-
ployers, or household members of the individual must be vetho
to achieve the "safe harbor” method of de-identification;) (dames;
(B) All geographic subdivisions smaller than a State, idahg
street address, city, county, precinct, zip code, and teguriva-
lent geocodes, except for the initial three digits of a zigecd,
according to the current publicly available data from ther&au
of Census (1) the geographic units formed by combining all zi
codes with the same three initial digits contains more tha)9@0
people; and (2) the initial three digits of a zip code for alich
geographic units containing 20,000 or fewer people is cleahtp
000; (C) All elements of dates (except year) for dates diraet
lated to the individual, including birth date, admissionteladis-
charge date, date of death; and all ages over 89 and all el¢sen
of dates (including year) indicative of such age, except theh
ages and elements may be aggregated into a single categageof
90 or older; (D) Telephone numbers; (E) Fax numbers; (F) Elec
tronic mail addresses: (G) Social security numbers; (H) Meat
record numbers; (I) Health plan beneficiary numbers; (J) duat
numbers; (K) Certificate/license numbers; (L) Vehicle tifears
and serial numbers, including license plate nhumbers; (Myibe
identifiers and serial numbers; (N) Web Universal Resource L
cators (URLSs); (O) Internet Protocol (IP) address numbefB)
Biometric identifiers, including finger and voice prints; )(®ull
face photographic images and any comparable images; and (R)
any other unique identifying number, characteristic, odepex-
cept as permitted for re-identification purposes providedtain
conditions are met. In addition to the removal of the abaeges!
identifiers, the covered entity may not have actual knovdetigt
the remaining information could be used alone or in comborat
with any other information to identify an individual who isigect
of the information. 45 C.F.R164.514(b).”



