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ABSTRACT
In this age of globalization, organizations need to publishtheir
micro-data owing to legal directives or share it with business asso-
ciates in order to remain competitive. This puts personal privacy at
risk. To surmount this risk, attributes that clearly identify individ-
uals, such asName, Social Security Number , Driving
License Number , are generally removed or replaced by ran-
dom values. But this may not be enough because such de-identified
databases can sometimes be joined with other public databases on
attributes such asGender , Date of Birth , andZipcode to
re-identify individuals who were supposed to remain anonymous.
In literature, such an identity-leaking attribute combination is called
as a quasi-identifier. It is always critical to be able to recognize
quasi-identifiers and to apply to them appropriate protective mea-
sures to mitigate the identity disclosure risk posed by joinattacks.

In this paper, we start out by providing the first formal character-
ization and a practical technique to identify quasi-identifiers. We
show an interesting connection between whether a set of columns
forms a quasi-identifier and the number of distinct values assumed
by the combination of the columns. We then use this characteri-
zation to come up with a probabilistic notion of anonymity. Again
we show an interesting connection between the number of distinct
values taken by a combination of columns and the anonymity it
can offer. This allows us to find an ideal amount of generalization
or suppression to apply to different columns in order to achieve
probabilistic anonymity. We work through many examples and
show that our analysis can be used to make a published database
conform to privacy acts like HIPAA. In order to achieve the prob-
abilistic anonymity, we observe that one needs to solve multiple
1-dimensionalk-anonymity problems. We propose many efficient
and scalable algorithms for achieving 1-dimensional anonymity.
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Our algorithms are optimal in a sense that they minimally distort
data and retain much of its utility.

1. INTRODUCTION
“Over a year and a half, one individual impersonated me to pro-

cure over$50,000 in goods and services. Not only did she damage
my credit, but she escalated her crimes to a level that I nevertruly
expected: she engaged in drug trafficking. The crime resulted in
my erroneous arrest record, a warrant out for my arrest, and even-
tually, a prison record when she was booked under my name as
an inmate in the Chicago Federal Prison.”- An excerpt from the
verbal testimony of Michelle Brown to a US Senate Committee [9].

Unfortunately, in today’s highly networked digital world,inci-
dents like the above with Michelle Brown are commonplace. Ac-
cording to Bureau of Justice Statistics Bulletin [6], 3.6 million
households, representing 3% of the households in the UnitedStates,
discovered that at least one member of the household had beenthe
victim of identity theft during the previous 6 months in 2004. Ac-
cording to the same report, the estimated loss as a result of identity
theft was about $ 3.2 billion. Needless to say that preventing iden-
tity thefts is one of the top priorities for government, corporations
and society alike.

Globalization further complicates this picture. Due to legal di-
rectives or business associations, there are multiple scenarios where
in organizations need to share or publish their micro-data to re-
main competitive. This puts personal privacy at further risk. To
surmount this risk, attributes that clearly identify individuals, such
asName, Social Security Number , Driving License
Number, are generally removed or replaced by random values.
But this may not be enough because such de-identified databases
can sometimes be joined with other public databases on seemingly
innocuous attributes to re-identify individuals who were supposed
to remain anonymous. For example, according to one study [33],
approximately 87% of the population of the United States canbe
uniquely identified on the basis ofGender , Date of Birth ,
and 5-digitZipcode . The uniqueness of such attribute combina-
tions leads to a class of attacks where data is re-identified by joining
multiple and often publicly available data-sets. This typeof attack
was illustrated by Sweeney in [33] where the author was able to
join a public voter registration list and the de-identified patient data
of Massachusetts’ state employees to determine the medicalhistory
of the state’s governor.

In literature, such an identity-leaking attribute combination is
called as aquasi-identifier. It is always critical to be able to rec-
ognize quasi-identifiers and to apply to them appropriate protective
measures to mitigate the identity disclosure risk posed by join at-
tacks. In fact, Sweeney herself proposed ak-anonymity model in
[31] for the same. According to her, a database table is said to be



k-anonymous if for each row in the table there arek− 1 other rows
in the table that areidentical along the quasi-identifier attributes.
Clearly, a join with ak-anonymous table would give risek or more
matches and create confusion. Thus, an individual is hiddenin a
crowd of sizek giving herk-anonymity. It also means that the iden-
tity disclosure risk is at most 1/k for “join” class of attacks.

Although such a simple and clear quantification of privacy risk
makesk-anonymity model attractive, its widespread use in practice
is severely hampered owing to the following factors:

1. Choice ofk is not clear. From pure privacy point of view,
largerk would mean more privacy, but it comes at the cost of
utility [1]. What is the right choice ofk for the given data and
the given notion of utility has not been very well understood
yet.

2. Fork-anonymity model to be effective, it is critical that there
is a complete understanding of the quasi-identifiers for the
give data-set. But there is no real formalism available for de-
ciding whether an attribute combination could form a quasi-
identifier. This is currently done manually, based on folk-lore
and human expertise.

3. For a givenk, the goal is always to minimally suppress or
generalize the data such that the resultant data-set isk-anonymous.
However, for some natural notions of measuring this resul-
tant distortion, the minimization problems turn out to be NP-
Hard [26, 2, 4].

On the approximation front, no efficient but good approxima-
tion algorithms are currently known. The known algorithms
are eitherÕ(k) approximations [26, 2] or super-linear [4] -
thus making them inefficient or expensive.

1.1 Paper Organization and Contribution
In this paper, we start out by providing the first formal charac-

terization and a practical technique to identify quasi-identifiers. In
Section 2, we also show an interesting connection between whether
a set of columns forms a quasi-identifier and the number of distinct
values assumed by the combination of the columns.

We then use this characterization in Section 3 to come up with
a probabilistic notion of anonymity. Again we show an interesting
connection between the number of distinct values taken by a com-
bination of columns and the anonymity it can offer. This allows us
to find an ideal amount of generalization or suppression to apply
to different columns in order to achieve probabilistic anonymity.
We work through many examples and show that our analysis can
be used to make a published database conform to privacy acts like
HIPAA.

In order to achieve the probabilistic anonymity, we observethat
one needs to solve multiple 1-dimensionalk-anonymity problems.
In Section 4, we propose many efficient and scalable algorithms for
achieving 1-dimensional anonymity. Our algorithms are optimal
in a sense that they minimally distort data and retain much ofits
utility. The algorithms provided are a stark contrast to previous
NP-hard results and comparatively more complicated algorithms
for the previous notion of anonymity calledk-anonymity [33].

We then experimentally verify our algorithms on real life data
sets in Section 5. We sketch the related work in Section 6 and
finally conclude in Section 7.

2. AUTOMATIC DETECTION OF QUASI-
IDENTIFIERS

DEFINITION 1. A quasi-identifier set Q is a minimal set of at-
tributes in table T that can be joined with external information to
re-identify individual records (with sufficiently high probability).

Above definition is from [29]. A similar definition can be found
in an earlier paper of Dalenius [16]. As the reader can sense,this
definition is informal since it does not make “external information”
and “sufficiently high probability” explicit. Possibly because of
this, we do not know any formal procedure or test for identifying
quasi-identifiers. Almost always, researchers and practitioners as-
sume that quasi-identifier attribute sets are known based onspecific
knowledge domain [23].

We present a more formal definition of quasi-identifier below. In
our definition, we do not insist on minimality of attribute set as such
although one could easily accommodate it if required. The external
information is theuniversal tableU having information about en-
tire (relevant) population. It hasn rows. Typically,U would mean
census records that many countries make readily available [10].

DEFINITION 2. α-quasi-identifier Anα quasi-identifier is a set
of attributes along which anα fraction of rows in the universe can
be uniquely identified by values along the combination of these at-
tribute columns.

EXAMPLE 1. Empirically it has been observed that87% of the
people in the U.S. can be uniquely identified by the combination of
Gender,Date of Birth andZipcode. Therefore (Gender,
Date of Birth, Zipcode) forms a0.87-quasi-identifier for
the U.S. population. Note that the U.S. census table is our univer-
sal tableU here.

Ideally, given anα andU, it is straight-forward to figure out
whether some particular attribute combination forms anα-quasi-
identifier inU by simply measuring the number of singletons in
that attribute combination. One may even try an apriori likeap-
proach [5] and calculate allα-quasi-identifiers inU. In practice,
there are errors inU that come in during data collection phase it-
self [12, 11] and the knowledge aboutU is never exact. This would
lead to erroneous conclusions about a quasi-identifier. Therefore,
it does not justify the expensive calculations given above.In fact,
one then prefers a quick and inexpensive approach that givesa good
estimateof the same.

In what follows, we assume that the universal tableU itself is
not known. What we know is that it is arandom samplebuilt with
replacementfrom a probability space. Thus our analysis is prob-
abilistic. For the sake of analysis, we require that there isa prob-
ability distribution, but in reality, our final results are independent
of this probability distribution. Moreover, we work only with the
expectations since our goal is to givegood estimatesquickly. Since
the sum of random variables is tightly concentrated around the ex-
pectation (by bounds like the Chernoff bounds [15]), our analysis
and results are quite fair. We do not work out the Chernoff analysis
though in order to keep our results and presentation simple.

We build our probability space on the distinct values that anat-
tribute combination can take. Therefore, we need to know thenum-
ber of distinct values for every attribute combination. Since one
can get (or reasonably estimate) the count of distinct values for
each attribute inU [17], we simplify our task with the following
assumption.

DEFINITION 3. Multiple Domain Assumption Let d1, d2, . . .,
dk be the number of distinct values along columns C1, C2, . . ., Ck

respectively. Then, the total number of distinct values taken by the
(C1,C2, . . . ,Ck) column set is D= d1 × d2 × . . .dk.



EXAMPLE 2. We study the number of distinct values taken by
the set of columns (Gender, Date of Birth, Zipcode). The
number of distinct values of columnGender (C1) is d1 = 2. The
number of distinct values of columnDate of Birth (C2) can
be approximated as d2 = 60∗365≈ 2∗104.1 The number of distinct
values along columnZipcode (C3) is d3 = 105. The number
of distinct values of the column-set (Gender, Date of Birth,
Zipcode) is D = d1 × d2 × d3 = 2 ∗ (2 ∗ 104) ∗ 105

= 4 ∗ 109.

As another example, consider the set of columns (Nationality,
Date of Birth, Occupation). The number of distinct val-
ues of columnNationality (C1) is d1 = 200. Once again, the
number of distinct values of columnDate of Birth (C2) can
be approximated as d2 = 60∗365≈ 2∗104. The number of distinct
values of columnOccupation (C3) is roughly d3 = 100. Thus
D = d1 × d2 × d3 = 200∗ (2 ∗ 104) ∗ 100= 4 ∗ 108.

Remark: Please note that it may be possible to consider correla-
tions among various attributes and, therefore, arrive at a tighter esti-
mate ofD. Such analysis would certainly lead to improved bounds
in what follows. Yet we decided not to incorporate correlations -
partly because it would have made analysis very tough and main
purport of our results could have easily been lost, but largely be-
cause we also wanted our results to be viable and useful. Reader
will notice that larger estimate forD implies stricter privacy con-
trol and more anonymization in what follows. This is acceptable in
practice as long as it is easily doable and does not lead to high loss
in data utility.

Suppose that a set of columns takeD different values with prob-
abilities p1, p2, . . ., pD, where

∑D
i=1 pi = 1. Let us first calculate the

probability that theith element is a singleton in the universal table
U. It means first selecting one of the entries in the table (there aren
choices), setting it to be thisith element (which has probabilitypi),
and setting all other entries in the table to something else (which
happens with probability (1− pi)n−1). Thus, the probability ofith

element being a singleton in the universal tableU is npi (1− pi)n−1.
Let Xi be the indicator variable representing whetherith element

is a singleton. Then, its expectation

E[Xi ] = P[Xi = 1] = npi(1− pi)n−1 ≈ npie−npi .

Let X =
∑D

i=1 Xi be the counter for the number of singletons.
Now its expectation is given by

E[X] =
D

∑

i=1

E[Xi ] =
D

∑

i=1

npie
−npi .

Let us analyze which distribution maximizes this expected num-
ber of singletons. We aim to maximize

∑D
i=1 xie−xi , subject to

∑D
i=1 xi =

n and 0≤ xi , ∀1 ≤ i ≤ D.

THEOREM 1. If D ≤ n, then the expected number of singletons
is bounded above byDe .

PROOF: Please refer to the Appendix A for a detailed proof.

THEOREM 2. If D ≥ n, then the expected number of singletons
is bounded above by ne

−n
D .

PROOF: Please refer to the Appendix A for a detailed proof.

Figure 1 shows how the maximum expected fraction of single-
tons or unique rows in a collection ofn rows behaves, as the num-
ber of distinct values,D, varies. The graph plots the maximum
1Throughout this paper we assume that the ages of people belong-
ing to the database comes from an interval of size 60 years.

Figure 1: Quasi-Identifier Test

expected fraction of unique rows as a function ofD
n . It is the line D

en

for D
n ≤ 1 according to Theorem 1. ForD

n ≥ 1, it is the curvee
−n
D

according to Theorem 2. The curve is both continuous and smooth
(differentiable) atDn = 1 with f (1) = 1

e and f
′
(1) = 1

e .

Figure 1 forms a ready reference table in order to test whether
a set of attributes forms a probable quasi-identifier. For example,
if for a set of attributesD < 3n, then it is unlikely that the set of
attributes will form a 0.75 quasi-identifier. If a set of attributes do
not form anα-quasi-identifier according to the the number of dis-
tinct values in Figure 1, then they almost certainly do not form an
α-quasi-identifier as the plot gives the maximum expected fraction
of singletons (as per Theorem 1 and Theorem 2).

EXAMPLE 3. We now show how (Gender,Date of Birth,
Zipcode) forms a quasi-identifier when restricted to the U.S. pop-
ulation. The size of the U.S. population can be approximatedas
3∗ 108, that is, the size of the universal table n is3∗ 108. The num-
ber of distinct values taken by the attribute set (Gender, Date
of Birth, Zipcode) is 4 ∗ 109 from Example 2. Therefore, by
Theorem 2, the maximum expected fraction of rows with singleton
occurrence is e−3∗108/4∗109

= e−0.075 ≈ 0.93. Thus, (Gender, Date
of Birth, Zipcode) is a potential0.93quasi-identifier. Please
recall that this combination is already known to be a0.87 quasi-
identifier [33].

EXAMPLE 4. We now give an example of a set of attributes that
does not form a quasi-identifier. Let us consider (Nationality,
Date of Birth, Occupation). The number of distinct val-
ues along these columns is given from Example 2 as D= 4 ∗ 108.
Here the size of the universal table is n= 6 ∗ 109, that is, equal to
the world population. Since D< n, we use Theorem 1 and find that
the expected fraction of rows with singleton occurrence is bounded
above by D/en= 4∗108/2.7∗6∗109 ≈ 0.025. Thus these columns
almost certainly do not form even a0.05 quasi-identifier as 0.025
is an upper bound on the expected fraction of singletons overall
possible probability distributions over quasi-identifiervalues.

We now provide a simple test to decide whether a combination
of attributes forms a potentially dangerous quasi-identifier, that is,
sayα ≥ 0.5.

THEOREM 3. Given a universe of size n, a set of attributes can
form anα-quasi-identifier (where0.5 ≤ α < 1) if the number of
distinct values along the columns, D> n

ln(1/α) .



PROOF. Please refer to the Appendix A for a detailed proof.

2.1 Distinct Values and Quasi-Identifiers
In this section, we have provided an interesting connectionbe-

tween whether a set of columns forms a quasi-identifier and the
number of distinct values assumed by the combination of the columns.
The main contributions of this association are as follows.

1. We provide a fast and efficient technique to test whether a
set of columns forms a quasi-identifier. However there may
be false positives. A set of columns signalled as a probable
α quasi-identifier may only be aβ quasi-identifier for some
β < α.

2. We do not assume anything about the distribution on the val-
ues taken by the quasi-identifier. The expected number of
singletons is bounded by the expression provided in this sec-
tion for all possible distributions over the values taken bythe
quasi-identifier.

3. When a set of columns is declared not to be a quasi-identifier
by the test in this section, the set of columns is almost cer-
tainly not a quasi-identifier, that is, there is a minuscule chance
of false negatives.

3. PROBABILISTIC ANONYMITY
In Sweeney’s anonymity model [33], every row of the dataset

is required to be identical withk other rows in the dataset along
Q. In the following notion of anonymity, we insist that each row
of the anonymized dataset should match with at leastk or more
rows of the universal tableU along Q. SinceU is represented
in a probabilistic fashion, we want this event to happen withhigh
probability.

DEFINITION 4. A dataset is said to be probabilistically(1 −
β, k)- anonymized along a quasi-identifier set Q, if each row matches
with at least k rows in the universal tableU along Q with proba-
bility greater than(1− β).

Our notion of anonymity is similar to that of [33] for an adver-
sary who isoblivious, that is, she is not really looking for some
particular individuals, but is trying to do a join onQ and check-
ing if she is “lucky”. This kind of attack is quite a possibility in
today’s outsourcing scenarios where in an attacker, say, from a call
center, would want to know identities in her client’s data without
really knowing whom to look for. If an adversary is looking for
a particular individual in the anonymized dataset, then Sweeney’s
model would generally provide better privacy than our modelfor it
would always yieldk matches. For our model to work well against
such an adversary, we need to declare the original dataset itself as
the universal tableU and carry out anonymization.

In what follows, we build on the strong connection between the
number of distinct values assumed by a set of attributesQ and its
identity revealing potential that was discovered in Section 2. In-
tuitively, it is clear from Theorems 1, 2 and 3 that the potency of
Q as a quasi-identifier would decrease if we reduce the number of
distinct values assumed byQ. This is to be done with appropriate
generalization. We borrow the following definition of generaliza-
tion from [33] which has an excellent discussion on this topic.

DEFINITION 5. Generalization involves replacing (or recoding)
a value with a less specific but semantically consistent value.

EXAMPLE 5. The original ZIP codes{02138, 02139} can be
generalized to 0213*, thereby stripping the rightmost digit and se-
mantically indicating a larger geographical area.

One way of looking at generalization is creating<< D partitions
of the space ofD distinct values and choosing a representative for
each partition. In fact, it would give usk-anonymity if we could
ensure that most of these partitions are represented byk or more of
their own members in the universal tableU with high probability.
To make this work, let us suppose that we have got aD′-partition
of original D size space such that each partition has probability
1/D′ (or O(1/D′) to be precise). Given a< p1, p2, . . . , pD > prob-
abilities of the originalD size space, such partitioning is certainly
possible using techniques we show in Section 4 for a single dimen-
sion. Now, we analyze below the bound onD′ that is necessary
is order to ensure that most of these partitions are representedk or
more times inU with high probability. Please recall thatU has
sizen and it is built by sampling with replacement.

THEOREM 4. A data set is probabilistically(1−β, k)-anonymized
with respect to a universal tableU of size n along the quasi-
identifier Q if the number of distinct values along Q, D′ < n

k (1− c)
for some small constant c.

Before we proceed with the proof, please note that Theorem 4
provides a recommendation forD′, the number of partitions ofD
size space ofQ. If the probabilities< p1, p2, . . . , pD > are known,
then as per our earlier assumption, one could cluster these proba-
bilities such thatD′ equi-probable partitions are created. This con-
cretizes generalization which could be used by any data-holder for
anoymizing its data before release.

PROOF. Please refer to the Appendix A for a detailed proof.

EXAMPLE 6. LetU be the U.S. Census Table of size n= 3 ∗
108. Consider the columns Q= (Gender, Date of Birth,
Zipcode). By Example 2, D= 4 ∗ 109. According to Theorem 4,
a dataset is(0.9, 100)anonymized along Q with respect toU if we
make D′ partitions (or generalizations) of the D size space where

D′ ≤ n
125
= 2.4 ∗ 106.

Thus, we have to reduce the number of possibilities for Q by
a factor of D/D′ < 1700. Consider the following generalization
(Gender,Half-year of Birth,First Four Digits of
Zipcode). Now D′ = d′1 ∗ d′2 ∗ d′3. d′1, the number of distinct val-
ues ofGender, is 2. d′2 is 60∗ 2 = 120, and d′3 = 104. Therefore,
D′ = 2.4 ∗ 106. This should be good enough to make each row
100-anonymous with probability at least0.9.

3.1 Privacy vs Utility
Note that (Gender , Half-year of Birth , First Four

Digits of Zipcode ) was just one of many different ways we
could have compressed theD size space in Example 6 by factor
1700. Ideally, we would like to devise this generalization such that
there is little or no loss in thedata utility. We frame this prob-
lem as an optimization problem below where the goal is to retain
maximum utility given privacy constraints.

Let there bemcolumns< C1,C2, . . . ,Cm > that need generaliza-
tion andw1,w2, . . . ,wm be their respective weights giving their rel-
ative importance. We aim to anonymize this multi-column database
so that maximum utility is retained in the probabilistically k-anonymized
output.

Let d′1, d
′
2, . . . ,d

′
m be the number of distinct values along columns

C1,C2, . . . ,Cm after probabilistick-anonymization. Then, by The-
orem 4,

m
∏

i=1

d′i =
n
k

(1− c) = D′.



Let us suppose that the quantile based anonymization from Sec-
tion 4 is used. Thus,d′i different quantiles are used along the col-
umnCi. Then, the rank difference of the transformation (from Sec-
tion 4) is approximately (nd′i

)2 × d′i =
n2

d′i
.

The sum of the distortion along all columns weighted by the col-
umn weights is, therefore,n2(

∑m
i=1

wi
d′i

). Minimizing this is equiv-

alent to minimizing
∑m

i=1
wi
d′i

subject to
∏m

i=1 d′i = D′. For a fixed

value of product, the sum of numbers is minimized when all the
numbers are equal. Therefore,

w1

d′1
=

w2

d′2
= . . .

wm

d′m
=

1
d

(say).

Therefore,d′i = d × wi ∀1 ≤ i ≤ m. The product condition
implies,

∏m
i=1 d′i = dm ∏m

i=1 wi = D′. Therefore,

d = (
D′

∏m
i=1 wi

)1/m,

d′i = (
D′

∏m
i=1 wi

)1/m × wi . (1)

Note that ifd′i is less than the number of distinct values in column
i initially, say di , it suggests applying an approach like quantiles
proposed here on columnCi . If d′i is greater than the number of
distinct values in columnCi initially, saydi , then the columnCi is
left untouched. The number of distinct elements for other columns
can be recalculated (and increased) after this. That is, ifd′i > di ,
then the optimization problem over all other variables is first solved
after columnCi is eliminated, i.e. Maximize

∑m
j=1, j,i

w j

d′j
subject to

∏m
j=1, j,i d′j = D′/di .

EXAMPLE 7. Suppose that we want to probabilistically(0.9, 100)-
anonymize a dataset with3columns (Gender,Date of Birth,
Zipcode) and all columns are equally important, that is , they
have equal weight.

As worked out in Example 9, each row is given100-anonymity
with probability at least0.9 if D′ = 2.4∗106. As all3 columns have
equal weight, we get d′1 = d′2 = d′3 ≈ 133. HoweverGender has
only 2 < d′1 values. This means we have to leave it untouched and
work with the remaining two attributes. That gives d′

2 ∗ d′3 = 1.2 ∗
106. Since both the columns have equal weight, we get d′

2 = d′3 ≈
1.1 ∗ 103. As d′2 = 1.1 ∗ 103 is approximately60 (years)∗12 (num-
ber of months per year),Date of Birth is approximated to the
month of birth. Also the number of distinct values ofZipcode be-
ing O(103) implies that the last two digits ofZipcode are starred
out. Thus the anonymization produced is (Gender, Month of
Birth, First Three Digits of Zipcode).

Note that this anonymization was entirely worked out in constant
time in the above example. For general case, where the numberof
columns ism, it would requireO(m2) time. Previous techniques to
provide anonymity were not onlyNP-hard in the input size (that
means it took exponential time in the dataset) [26, 3] but even ap-
proximations required many passes over the database [3, 4].[23]
required passes to be exponential in the number of columns tobe
anonymized as the lattice developed there took exponentialtime to
be built.

EXAMPLE 8. According to HIPAA [19], each person must be
anonymized in a crowd of k= 20, 000= 2 ∗ 104 people. Now, sup-
pose we want to anonymize a medical records table with columns
(Gender, Age (In Years),Zipcode, Disease).

As always, the U.S. Census Table is the universal tableU with
n = 3∗108 rows. The quasi-identifier is (Gender, Age (In Years),
Zipcode). As the number of distinct values ofGender andAge
are2 and100respectively, the number of distinct values ofZipcode
allowed is approximately3∗ 108/((2∗ 104) ∗ 2∗ 100)= 75by The-
orem 4. Therefore,Zipcode must be anonymized to its first two
digits and should only indicate the State.

3.2 The Curse of Dimensionality
As the number of dimensions (columns) increase, the number of

distinct values per column on anonymization decrease rapidly. For
example, consider a database table with 25 columns. The aim is to
anonymize the table so that 10-anonymity is achieved for theU.S.
population of size 3∗ 108. Further suppose that all the columns
are given equal weight (importance). Applying Theorem 4 andthe
Multiple Domain Assumption, the number of distinct values per
column can be obtained to be roughly 2. Thus all values in a col-
umn are generalized to two intervals or converted to two types of
values. This hints at reduced data utility measured by any reason-
able metric.

This phenomenon was also observed as the curse of dimension-
ality on k-anonymity [1]. However, we must notice that the pre-
vious analysis should only be applied to columns that are avail-
able publicly. For example, in the Adults database [8], columns
capgain , caploss , fnlwgt and income can be assumed to
be sensitive columns that are present only in the database itself and
are not available for an external join.

3.3 Distinct Values and Anonymity
In this section, we have provided an interesting connectionbe-

tween the number of distinct values taken by a combination of
columns and the anonymity it can offer. The main contributions
of this association are as follows.

1. This association between distinct values and anonymity guar-
antee results in an easy technique to obtain ak-anonymized
dataset. Merge similar distinct values taken by a column so
that the number of distinct values assumed by the column
is reduced. The appropriate reduction in the number of dis-
tinct values leads to the conversion of a quasi-identifier into
k-anonymous columns. As explained in Section 3.1, this
would also help retain much of data utility since it minimally
distorts ranks. We shall discuss this angle in more detail in
the next section.

2. It also helps in coming up with the right kind of generaliza-
tion for publicly known attributes so that published database
can conform to laws like HIPAA.

4. 1-DIMENSIONAL ANONYMITY
The results of Section 3 provide us with the right amount of gen-

eralization for each publicly known attribute in order to achieve
probabilistick-anonymity for the entirem column dataset. From
any particular attribute point of view, the suggested generaliza-
tion tries to create appropriate number of buckets (or partitions)
in its distinct values space so that each bucket hask′ ≫ k indi-
viduals from the universal tableU. Thus, in nutshell, there arem
1-dimensional Sweeney’sk-anonymity problems, of course, each
with different value ofk. Before we proceed further, we will like
the reader to take a note of this strong underlying connection be-
tween our notion of probabilistick-anonymity and Sweeney’s no-
tion of k-anonymity.

Now k-anonymity for multiple columns is known to be NP-hard
[26, 3, 23]. Thankfully we found that this is not the case for a



single column. In the remainder of this section, we showcasevari-
ous algorithms that help achieve 1-dimensionalk-anonymity while
retaining maximum possible data utility.

4.1 Numerical Attributes
We start out with algorithms for numerical attributes. Notethat

they are also applicable to attributes of type date andZipcode .

DEFINITION 6. k-Anonymous Transformation A k-anonymous
transformation is a function, f , from S= {s1, s2, . . . sn} to S such
that ∀sj : |{ f −1(sj )}| ≥ k or |{ f −1(sj)}| = 0, that is, at least k
elements are mapped to each element (which has some element
mapped to it) in the range.

EXAMPLE 9. Consider S = {1,12, 4,7, 3}, and a function f
given by f(1) = 3, f (3) = 3, f (4) = 3, f (7) = 7 and f(12) = 7.
Then f is a2-anonymous transformation.

4.1.1 Dynamic Programming
Our goal is to find ak-anonymous transformation that minimizes,

say, the maximum cluster size amongst all clusters [35], or the sum
of distances to the cluster centers [22], or the sum over all clusters
the radius of the cluster times the number of points in the cluster [4].
All these problems are known to be NP-hard for a general metric
space. However, for points in a single dimension, we showcase
an optimal polynomial time algorithm based on dynamic program-
ming. The details of the algorithm can be found in the Appendix B.

This algorithm needs input in the sorted order. Therefore, its
time complexity has two components: 1. Time taken for sorting the
input, and 2. time required for the dynamic programming. Forin-
put of sizen points, sorting takesO(n logn) time. The dynamic pro-
gramming part requires timeO(nk) as evaluating ClusterCost(1. . . i)
takesO(k) time for eachi. Thus, overall time complexity isO(n(k+
logn)).

4.1.2 Quantiles
The algorithm from previous section requires sorting of thein-

put. For largen, this would entail external sort. It is not very desir-
able in practice. In this section, we explore efficient algorithms that
cluster the data in time required to make 1 or 2 sequential passes
over the data and use very little extra memory.

DEFINITION 7. Rank Given a set of distinct elements S= {s1,

s2, . . . , sn}, the rank of an element si is r if si is the rth largest ele-
ment in the set.

For a multi-set containing duplicates, different occurrences of
the same element are given consecutive ranks.

EXAMPLE 10. Among elements S= {1,12, 4, 7,3}, 7 has rank
4, while3 has rank2.

DEFINITION 8. Rank difference of a transformation Given a
set S= {s1, s2, . . . , sn} of n numbers, and a k-anonymous transfor-
mation f , letπ(si) represent the rank of element si . Then, the rank
difference incurred by si under the transformation f is defined as
|π( f (si)) − π(si)|. The rank difference of the transformation f is the
sum of rank difference over all elements, that is,

∑n
i=1 |π( f (si)) −

π(si)|.

EXAMPLE 11. For set S= {1,12, 4, 7,3}, π(1) = 1, π(12) = 5,
π(4) = 3, π(7) = 4 andπ(3) = 2. For f from Example 9,π( f (1)) =
2, π( f (12)) = 4, π( f (4)) = 2, π( f (7)) = 4, and pi( f (3)) = 2. The
rank difference of this transformation is3.

DEFINITION 9. Quantile Transformation Suppose that n=
qk + r, where0 ≤ r < k. Then, the quantile transformation is
a k-anonymous transformation that partitions the elementsinto q
contiguous groups of size(k+⌊r/q⌋) or (k+⌈r/q⌉) each. All elements
in a group are mapped to the median element of the group.

THEOREM 5. The quantile transformation has the minimum rank
difference among all k anonymous transformations.

PROOF. The proof is by a simple greedy argument.

4.1.3 Efficient Approximate Quantiles using Samples
It is possible to implement the exact quantile transformation. But

finding the exact median(quantile) inppasses over the data requires
n1/p memory [27]. Thus, to get the exact quantile transformationin
2 passes, would requireΩ(

√
n) memory.

For those who work with smaller memory and/or look for some-
thing easier to implement, we sketch a sampling based approach
here. We maintain a uniform sample of sizes = 1

ǫ2
log( 1

δ
) using

Vitter’s sampling technique [36]. The rankt element in the orig-
inal set is approximated by the rankst/n element in the sample,
wheren is the size of the original dataset over which the sample is
maintained. This element has rank betweent − (ǫn) andt + (ǫn) in
the original data with probability greater than (1− δ) if the sample
sizes is chosen as given above [25]. For example suppose that we
maintain a uniform sample of 100 elements out of a total 100, 000
elements. Then the 5, 000th element in sorted order among the
100, 000 elements can be approximated well by the 5th element in
sorted order from amongst the sample of 100 elements.

4.2 Categorical Attributes
                  

Country:USA

50 States

AL AK CA WY

58 Counties

Alameda

Cities

Figure 2: A Categorical Attribute

In the previous sub-section, we discussed how to create appro-
priate buckets or categories for numerical (ordered) attributes. But
many a times, there is an attribute with no intrinsic ordering among
its value-set. Such an attribute is called as acategorical attribute

For categorical attributes we create a layered tree graph asex-
plained. The first layer consists of a node for each category value.
The next layer groups together nodes that generalize into one gen-
eral categorical value, so that they form a single node. Thisis set
to be the parent of the generalized values. This is repeated till there
is a single category. Consider for example location information
shown in Figure 2. Zipcodes are generalized to cities which are
generalized to counties to state and finally to country. The top three
levels of the generalization hierarchy are shown. To anonymize
this dataset so that there ared distinct values, the generalization is



carried till the level that there ared values. For example, to gener-
alize location so that there are 50 different values, the state infor-
mation would be retained. However to generalize it to 3000 distinct
values, the county information would be retained.

5. EXPERIMENTS

5.1 Quasi-Identifiers
We counted the number of singletons in the Adult Database avail-

able from the UCI machine learning repository [8]. The Adult
Database has got 32561 rows with 15 attributes, we considered
10 of them and dropped the remaining 5. The dropped attributes
are sensitive attributes (not quasi-identifiers):fnlwgt , capgain ,
caploss , income and the attributeedunum which is equivalent
to the attribute education. In our experiments, we varied the size
of the attribute setQ under consideration from 1 to the maximum
of 10. The table in Figure 3 shows some of the results that we
obtained.

LabelsA1, A2, . . ., A10 denote the 10 columns of the table. The
first row gives the number of distinct values each attributeA1, A2,
. . ., A10 takes. All other rows (which are labeled with row num-
bers from 1 to 12) of the table represent publishing the projection
of the table along the columns marked ‘x’. For example, the row
1 represents publishing the database projected on theAge (A1)
column while the row 12 represents publishing all 10 columnsin
the database. The columnSizegives the number of ‘x’ marks in
each row, that is, the number of columns that constitute the quasi-
identifierQ under consideration.

The columnS is the number of rows uniquely identified by the
projection of these columns, that is, the number of rows uniquely
identified in the published projection. For example, for row2,
whereA1 and A9 are the attributes of projection,S = 986 is re-
turned by the following SQL statement in MS Access:

SELECT A1, A9 FROM T
GROUP BY A1, A9
HAVING count( * )=1

F1 is the fraction of rows uniquely identified, given byS/32561
whereS is the number of singletons while 32561 represents the
total number of rows in the database table. For row 2,F1 = 0.03.
Some previous definitions of quasi-identifiers [38] measured a quasi-
identifier as a set of columns that have a large fraction of unique
rows. Thus,F1 is used as a measure of quasiness. This does not
model the external table present with the adversary. For exam-
ple, by this definition,A1 andA9 would together be a 0.03-quasi-
identifier.

D is the product of the domain sizes of the attributes marked ‘x’
in the row. By Multiple Domain Assumption, it is the size of the
distinct values space for that combination of columns. For example,
for row 3,D = 60∗ 5 ∗ 2 = 600.

F2 captures the notion of quasiness as proposed in Section 2. It
is given by f (D/n) shown in Figure 1. Here,D is set to be equal to
the value from columnD, andn = 3∗108, the size of US population.
Please recall that, by Theorems 1 and 2,f (D/n) = D/enfor D < n
ande−n/D for D ≥ n. For all but the last row of the table,D < 3∗108,
henceF2 =

D
2.7∗3∗108 , for the last rowF2 = e−3∗108/D.

k-Anon is approximately the probabilistick-anonymity obtained
from the published database. Based on the result of Theorem 4, it
is set ton/D, wheren = 3 ∗ 108, the size of the US population.
WhenD exceeds n, it is set to 1.

Suppose we are allowed to publish a set of columns with the con-
dition that all 0.2-quasi-identifiers are to be suppressed. If we only
consider the entries of the table and look at those projections where

at least 0.2 fraction of the rows are unique, then the projections in-
dicated by rows numbered 6, 8,10, 11 and 12 cannot be published.
This is because theirF1 values exceed 0.2.

In fact, our real worry is that> 0.2 fraction of the rows should
not get uniquely identified after taking an external join with the
universal tableU. Then, only row 12 qualifies as a possible 0.2-
quasi-identifier as only itsF2 value exceeds 0.2. Note that, from
Theorems 1 and 2, there is a minuscule chance of false negatives,
that is, rows 1− 11 are unlikely to be 0.2-quasi-identifiers.

Row 12 needs a closer look since 0.99 is only an upper bound on
the expected fraction of unique rows. It may be noticed that many
combinations are rare and do not occur. In our example, two at-
tributesA9 andA10 are special.A9 may be represented with only
5 distinct values since the exact hours per week of an individual
may not be known andA10 is not uniformly distributed. Such a
case by case analysis of the different attributes may bring down the
distinct values,D, and hence the fraction of distinct rows. Thus, it
can help improve the estimate of quasiness, say, from a 0.99 frac-
tion to (probably) a fraction lower than 0.2. In such a case, row 12
would be a false positive.

5.2 Anonymity Algorithms
We implemented sampling based approximate quantile algorithm

(from Section 4.1.3) as a technique in a commercial data masking
tool, MASKETEERTM [34], used at Tata Consultancy Services.
Our technique only required 400 lines of code to be added to the
tool, because of the extensibility features available in the tool. The
tool was run on an Oracle database containing 250, 000 rows of a ta-
ble from a real bank, which was a customer of the tool vendor. The
database table was about 1GB in size and had 261 columns. We
also repeated our experiments on the public use microdata sample
(PUMS) [10] provided by the U.S. Census Bureau. This dataset
was given in a flat file format as input to the data masking tool.
The experiments were run on a machine with 2.66GHz processor
and 504 MB of RAM running Microsoft Windows XP with Service
Pack 2.

Scaling with the Dataset Size
We studied how the running time of the quantile algorithm for

masking a single column changes as the number of rows in the
database table is varied. We measured the time required to mask
various fractions of the table, the entirety of which contains 250, 000
rows. The time required to mask this single numeric column with
k = 10, 000 anonymity (so that there are 25 different quantiles to
which the data is approximated) increased linearly to a total of
about 10 seconds for the entire column. A straight line with al-
most exactly identical slope and coordinates was obtained for the
PUMS [10] dataset.

Scaling with the Number of Columns Masked
We studied how the running time of the quantile algorithm for

masking multiple columns varies as the number of columns to be
masked is varied. For this experiment too, we used the table with
250, 000 rows and 261 columns. As each column is independently
anonymized, the time taken increases linearly as the numberof
columns being anonymized increases. Previous algorithms [23]
had an exponential increase in the time taken for anonymization
as the number of columns increased as the lattice created wasex-
ponential in the number of columns being anonymized.

The time taken to anonymize 10 columns of data with 250, 000
rows was approximately 100 seconds. This is almost an order of
magnitude improvement over the previous algorithm [23]. The re-
sults on the PUMS dataset were similar.

Scaling with the Anonymity Parameter
The implemented algorithm does a binary scan over all buckets



Row Size A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 S F1 D F2 k-Anon
60 8 15 7 14 6 5 2 20 40

1 1 x 2 6.1 ∗ 10−5 60 7.4 ∗ 10−8 5 ∗ 106

2 2 x x 986 0.03 1200 1.48∗ 10−6 2.5 ∗ 105

3 3 x x x 65 0.002 600 7.4 ∗ 10−7 5 ∗ 105

4 4 x x x x 5056 0.16 1 ∗ 105 1.2 ∗ 10−4 3 ∗ 103

5 4 x x x x 3105 0.095 2.7 ∗ 105 3.3 ∗ 10−4 1.1 ∗ 103

6 4 x x x x 7581 0.23 6.7 ∗ 105 8.3 ∗ 10−4 450
7 4 x x x x 1384 0.043 6.7 ∗ 104 8.3 ∗ 10−5 4.5 ∗ 103

8 5 x x x x x 7659 0.235 4 ∗ 106 4.9 ∗ 10−3 75
9 5 x x x x x 5215 0.16 2.8 ∗ 105 3.4 ∗ 10−4 1 ∗ 103

10 5 x x x x x 12870 0.40 8 ∗ 105 9.9 ∗ 10−4 380
11 5 x x x x x 10402 0.32 5.4 ∗ 106 6.7 ∗ 10−3 55
12 10 x x x x x x x x x x 24802 0.76 33∗ 109 0.99 1

Size = Number of columns that make the quasi-identifier, A1 = Age, A2 = Work class, A3 = Education, A4 = Marital status, A5 = Occupation,
A6 = Relationship, A7 = Race, A8 = Sex, A9 = Hours per week, A10 =Native country,S = Number of singletons in the current table,F1=
Fraction of singletons using the table itself = S/32561,F2=Fraction of singletons using Figure 1 andn = 3∗ 108 for US population, k-Anon=
Anonymity parameter for the published database =n/D.

Figure 3: Quasi-Identifiers on the Adult Dataset

Figure 4: Time taken for varying number of rows.

to find the bucket closest to each data item. The time requiredto
anonymize a data value, therefore, logarithmically increases as the
number of buckets increases (or the valuek of anonymity parameter
decreases). Ifb is the number of buckets andn the number of rows,
then the time to anonymize isnlog(b). The time taken to readn
rows from disk isnC where C is a large constant. The total time
taken is, therefore,n(C + logb) whereC ≫ log(b). This explains
the shape of the curve in Figure 6. HerenC ≈ 10 seconds and the
log(b) term explains the slight increase from 0 to 500 buckets.

Tradeoff between Privacy and Utility
We studied how the error introduced in a column as a result of

k-anonymization varies with the anonymity parameterk. Let xi

be the original value of thei th row. Let x
′
i be its value afterk-

anonymization. Then (x
′
i − xi)2 is the error introduced for rowi as a

result ofk-anonymization. The total error introduced overn rows is

Error =
∑n

i=1(x
′
i −xi)2. Let x̄ =

∑n
i=1 xi

n . If all x
′
i are constrained to be

identical (corresponding to anonymity with a single bucket), thenx̄
gives the minimum error according to the above metric, i.e. it gives
MinError = Minx

∑n
i=1(x − xi)2

=
∑n

i=1(x̄ − xi)2. We, therefore,
normalize the error as Error/MinError.

The curve is plotted in Figure 7 where the normalized error is
plotted on they-axis while the number of buckets,b = n

k , is plot-

Figure 5: Time taken for varying number of columns.

ted on thex-axis. An almost identical curve was obtained for the
PUMS dataset. The curve very closely follows the curve1

b2 . This
could be proven analytically.

Thus, for givenn andk, we find that the identity disclosure risk
is < 1/k (for “join” class of attacks) and the error introduced in
data is∝ k2/n2. We may, therefore, boldly quantify the privacy
provided byk-anonymization asp = 1−1/k and the utility retained
asu = 1 − k2/n2 implying the following privacy-utility trade-off
equation.

(1− p)2(1− u) = 1/n2 (a constant).

Note that, the fact that we used sum square errors, instead of
sums of absolute values of errors explains the square term above.

6. RELATED WORK
One of the earliest definitions of quasi-identifier can be found in

Dalenius [16]. [33, 32] and [23] use a similar definition.
Samarati and Sweeney formulated thek-anonymity framework

and suggested mechanisms fork-anonymization using the ideas of
generalization and suppression [29, 33, 32]. Subsequent work has
shown some NP-hardness results [26, 2, 4] and that has inspired
many interesting heuristics and approximation algorithms[21, 37,



Figure 6: Time taken for varying number of buckets.

Figure 7: Tradeoff between privacy and utility.

26, 7, 2, 23, 24, 4]. All of this work assumes that quasi-identifier
attribute sets are known based on specific knowledge domain.

The basic theme ofk-anonymity model is tohidean individual in
a crowd of sizek or more. A similar intuition is pursued by Chawla
et al in [13] who, in fact, manage to convert it into a precise math-
ematical statement. They not only give definition of privacyand
its compromise for statistical databases, but also providea method
for describing and comparing the privacy offered by specificsani-
tization techniques. They also give a formal definition of anisolat-
ing adversary whose goal is to single out someone from the crowd
with the help of someauxiliary informationz. This work is fur-
ther extended in [14] where Chawla et al study privacy-preserving
histogram transformations that provide substantial utility.

There is a wide consensus that privacy is a corporate responsibil-
ity [20]. In order to help and ensure corporations fulfil thisrespon-
sibility, governments all over the world have passed multiple pri-
vacy acts and laws, for example, Gramm-Leach-Bliley (GLB)Act
[18], Sarbanes-Oxley (SOX) Act [30], Health Insurance Portability
and Accountability Act (HIPAA) [19] are some such well known
U.S. privacy acts. In fact, HIPAA recommends the followingsafe-
harbormethod of de-identification in which it provides clear guide-
lines for sanitizing quasi-identifiers including date types,Zipcode ,
etc. For 20,000 anonymity, HIPAA advises to retain essentially
only the State information inZipcode and year information in
Date of Birth which is quite inline with what we concluded
in Examples 6, 7 and 8 based on our analysis. The de-identification
excerpt from the HIPAA law is provided in Appendix C.

7. CONCLUSIONS

In this paper, we provided the first formalism and a practical
technique to identify a quasi-identifier. Along the way we discov-
ered an interesting connection between whether a set of columns
forms a quasi-identifier and the number of distinct values assumed
by the combination of the columns.

Then we defined a new notion of anonymity called as probabilis-
tic anonymity where in we insist that each row of the anonymized
dataset should match with at leastk or more rows of the univer-
sal tableU along a quasi-identifier. We observed that this new
notion of anonymity is similar to the existentk-anonymity notion
in terms of privacy guarantees and is sufficiently strong formany
real life scenarios involving oblivious adversaries. Building on our
earlier work, we found an interesting connection between the num-
ber of distinct values taken by a combination of columns and the
anonymity it can offer. This allowed us to find an ideal amountof
generalization or suppression to apply to different columns in or-
der to achieve probabilistic anonymity. We worked through many
examples and showed that our analysis can be used to make a pub-
lished database conform to privacy acts like HIPAA.

In order to achieve the probabilistic anonymity, we observed that
one needs to solve multiple 1-dimensionalk-anonymity problems.
We proposed many efficient and scalable algorithms for achieving
1-dimensional anonymity. Our algorithms are optimal in a sense
that they minimally distort data and retain much of its utility.
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APPENDIX

A. PROOFS
PROOF:[of theorem 1] If f (x) = xe−x, f

′
(x) = (1 − x)e−x and

f
′′
(x) = (x− 2)e−x. Thus, the functionf has a global maximum at

x = 1, sincef
′
(1) = 0 and f

′′
(1) < 0.

Now the expected number of singletons,

D
∑

i=1

xie
−xi ≤

D
∑

i=1

e−1
=

D
e
.

This expression is a tight upper bound on the expected numberof
singletons forD ≤ n. For example, it is almost obtained by setting
xi = 1, for i = 1,2, . . . ,D − 1, andxD = n− D + 1.

PROOF:[of theorem 2] If f (x) = xe−x, f
′
(x) = (1 − x)e−x and

f
′′
(x) = (x − 2)e−x. The function f has a point of inflection at

x = 2, sincef
′′
(x) < 0 for x < 2 implying the function is concave

here, andf
′′
(x) > 0 for x > 2 implying the function is convex here.

First we claim that on maximizing
∑D

i=1 xie−xi , no xi ≥ 2. Sup-
pose otherwise: after maximizing

∑D
i=1 xie−xi , somexa ≥ 2. As

D ≥ n, and
∑D

i=1 xi = n, somexb < 1. For some smallδ, replacing
xa by xa − δ andxb by xb + δ we retain

∑D
i=1 xi = n. As f (x) = xe−x

increases towards x=1,f (xa − δ) > f (xa) and f (xb + δ) > f (xb).
Thus

∑D
i=1 xie−xi is increased, contradicting the fact that it was max-

imized. Thus,∀1 ≤ i ≤ D, xi < 2 .
Now f

′′
(x) < 0 for 0≤ x < 2. Sincef is concave, we can apply

Jensen’s inequality [28]2 to get

D
∑

i=1

xie
−xi = D

D
∑

i=1

1
D

xie
−xi

≤ D · (
D

∑

i=1

xi

D
)e−(

∑D
i=1

xi
D )

= ne
−n
D .

Thus, ifD ≥ n, the expected number of singletons is bounded above
by ne

−n
D .

PROOF OF THEOREM3. Note thatD > n. If not, then, by Theo-
rem 1, the maximum expected fraction of rows taking unique values
is D/en≤ 1/e< α.

From Theorem 2, the maximum expected fraction of rows taking
unique values along the columns withD distinct values ise−n/D.
For the the set of rows to form anα-quasi-identifier, this fraction
must be larger thanα. Thus,e−n/D > α, which implies thatD >

n
ln(1/α) .

PROOF OF THEOREM4. Let us suppose that we have got aD′-
partition of originalD size space of quasi-identifierQ such that
each partition has probability 1/D′. Let Xi denote the indicator
variable if≥ k rows in the universal tableU are chosen from the

2If f is a concave function, and
∑m

i=1 pi = 1, with pi ≥ 0 ∀i, then
∑m

i=1 pi f (xi) ≤ f (
∑m

i=1 pi xi).

ith partition.

P[Xi = 1] =
n

∑

j=k

(

n
j

)

(
1
D′

) j(1− 1
D′

)n− j

= 1−
k−1
∑

j=0

(

n
j

)

(
1
D′

) j(1− 1
D′

)n− j

≥ 1− exp(
−D′(n/D′ − (k− 1))2

2n
)

(by Chernoff bounds [15])

= 1− exp(
−(n− (k− 1)D′)2

2nD′
).

For 1− β probability guarantee, we would like to have

1− exp(
−(n− (k− 1)D′)2

2nD′
) ≥ 1− β,

that is,

−(n− (k− 1)D′)2

2nD′
≤ lnβ.

This is true when,

0 ≤ D′2 +
2nD′

k− 1

(

lnβ
k− 1

− 1

)

+

( n
k− 1

)2

,

that is,

D′ ≤ n
k− 1

(1+ x−
√

x2 + 2x),

where

x =
−lnβ
k− 1

.

This implies that

D′ ≤ n
k

(1− c)

is sufficient for some small constantc.

B. ALGORITHM OF SECTION 4.1.1
If not already sorted, first sort the input and suppose that itis

p1 < p2 < . . . < pn. For 1≤ a < b ≤ n, let Cluster(a,b) be the cost
to cluster elementspa, . . . , pb.

Consider the optimal clustering of the input points. Note that
each cluster in the optimal clustering contains a set of contigu-
ous elements. Moreover, each cluster is of size at leastk by the
k-anonymity requirement. Since any cluster of size≥ 2k can be
broken into two contiguous clusters of size at leastk each and that
would reduce the clustering cost, the size of a cluster in theoptimal
clustering will be at most 2k − 1.

The optimal clustering of then input points is, therefore, the
optimal clustering of pointsp1, p2, pn−i and one single cluster of
the points (pn−i+1, . . . , pn), where i is the size of the last cluster.
Note thatk ≤ i < 2k by the previous analysis. Therefore we find
the optimal clustering by trying out all possible values ofi ∈ {k, k+
1, . . . ,2k − 1}. Now, the dynamic programming recursive equation
is given by
ClusterCost(1,n) = mink≤i<2k Cost(ClusterCost(1,n− i), Cluster(n−
i + 1,n)).

Here Cost(A,B) is the sum for a metric like thek-median [22] or
cellular [4] metric which minimizes the sum of costs over allclus-
ters. It is the maximum function for thek-center metric [35] which
minimizes the maximum of cluster sizes amongst all clusters.

ClusterCost(a,b) is initially set to∞ if b−a+1 < k. Forb−a+1 ≥
k, ClusterCost(a,b) is initially set to the cost of clubbing all points
into a single cluster, that is, Cluster(a,b).



C. DE-IDENTIFICATION REQUIRED FOR
HIPAA

“The following identifiers of the individual or of relatives,em-
ployers, or household members of the individual must be removed
to achieve the ”safe harbor” method of de-identification: (A) Names;
(B) All geographic subdivisions smaller than a State, including
street address, city, county, precinct, zip code, and theirequiva-
lent geocodes, except for the initial three digits of a zip code if,
according to the current publicly available data from the Bureau
of Census (1) the geographic units formed by combining all zip
codes with the same three initial digits contains more than 20,000
people; and (2) the initial three digits of a zip code for all such
geographic units containing 20,000 or fewer people is changed to
000; (C) All elements of dates (except year) for dates directly re-
lated to the individual, including birth date, admission date, dis-
charge date, date of death; and all ages over 89 and all elements
of dates (including year) indicative of such age, except that such
ages and elements may be aggregated into a single category ofage
90 or older; (D) Telephone numbers; (E) Fax numbers; (F) Elec-
tronic mail addresses: (G) Social security numbers; (H) Medical
record numbers; (I) Health plan beneficiary numbers; (J) Account
numbers; (K) Certificate/license numbers; (L) Vehicle identifiers
and serial numbers, including license plate numbers; (M) Device
identifiers and serial numbers; (N) Web Universal Resource Lo-
cators (URLs); (O) Internet Protocol (IP) address numbers;(P)
Biometric identifiers, including finger and voice prints; (Q) Full
face photographic images and any comparable images; and (R)
any other unique identifying number, characteristic, or code, ex-
cept as permitted for re-identification purposes provided certain
conditions are met. In addition to the removal of the above-stated
identifiers, the covered entity may not have actual knowledge that
the remaining information could be used alone or in combination
with any other information to identify an individual who is subject
of the information. 45 C.F.R.§164.514(b).”


