The Space Complexity of Pass-Efficient Algorithms for Clustering

Kevin L. Chang*f

Abstract

We present multiple pass streaming algorithms for a ba-
sic clustering problem for massive data sets. If our al-
gorithm is allotted 2¢ passes, it will produce an approx-
imation with error at most e using O(k?/e2/%) bits of
memory, the most critical resource for streaming com-
putation. We demonstrate that this tradeoff between
passes and memory allotted is intrinsic to the problem
and model of computation by proving lower bounds on
the memory requirements of any ¢ pass randomized algo-
rithm that are nearly matched by our upper bounds. To
the best of our knowledge, this is the first time nearly
matching bounds have been proved for such an expo-
nential tradeoff for randomized computation.

In this problem, we are given a set of n points drawn
randomly according to a mixture of k£ uniform distribu-
tions and wish to approximate the density function of
the mixture. The points are placed in a datastream
(possibly in adversarial order), which may only be read
sequentially by the algorithm. We argue that this mod-
els, among others, the datastream produced by a na-
tional census of the incomes of all citizens.

1 Introduction

The streaming model of computation has received much
attention in the recent literature. In this model, the
input to an algorithm may only be read in a single,
sequential pass over the data; no random access of the
input is allowed. Furthermore, the amount of memory
used by the algorithm must be small (typically o(n),
where n is the size of the datastream). The streaming
model fits well with the constraints of computation with
massive data sets, where the size of the input is much
too large to fit into main memory. The data must be
placed in secondary storage (for instance a tape, or disk
that must be read in entire blocks), which may only be
accessed sequentially.

Multiple passes were first discussed in the early
datastream papers [1, 13, 19]. The restricted pass-
efficient model has been proposed by Drineas and

~ *Dept. of Computer Science, Yale University, New Haven, CT
06520, USA. Email: [kchang, kannan]@cs.yale.edu.

fSupported by NSF’s ITR program under grant number
0331548.

Ravi Kannan*

Kannan [8] as a more flexible version of the streaming
model. Intuitively, the rigid restriction of the streaming
model to a single pass over the data unnecessarily limits
its potential utility. The pass-efficient model allows
for multiple sequential passes over the input (ideally a
small, perhaps constant, number of passes), and a small
amount of extra space. While processing each element of
the datastream, the algorithm may only use computing
time that is independent of n, but after each pass, it is
allowed more computing time (typically o(n)). In this
model of computation, we are most concerned with two
resources: the number of passes and additional storage
space (memory). The model has been applied to a two
pass algorithm for computing a succinct, approximate
representation of a matrix [8].

In this paper, we consider a new clustering problem.
Our problem, learning a mizture of k uniform distribu-
tions, is roughly stated as follows: Given a set of points
drawn from a mixture of distributions (to be defined
precisely below), compute the clusters (i.e. density func-
tion of the mixture) from which the points were drawn.
The main motivation for our problem arises from con-
siderations in the analysis of census data. Census data
can naturally be modeled as a mixture of uniform dis-
tributions. Consider for instance the data set consisting
of the personal incomes of a sampled set of citizens or,
as in the case of the United States census, in principle
all citizens. The incomes of individuals engaged in any
single profession are certainly not exactly the same, but
rather are distributed over some range of incomes. A
reasonable first step in modeling such distributions is
to assume that the incomes in a given profession are
uniformly distributed over some interval. Thus, sup-
pose profession i corresponds to the range of incomes
(ai,b;), and represents w; proportion of the population.
A sample drawn for the census can be viewed as dis-
tributed according to a mixture of uniform distributions
in the following way: with probability w;, the individ-
ual sampled belongs to profession i, in which case the
individual’s income will fall in the interval (a;,b;). The
whole of the census data may be in adversarial order,
since realistically we may make no assumptions about
the ordering of the census data. For instance, the order-
ing of the data may be based on location of residence,
or some arbitrary identification number, rather than in-

come value (indeed, a census record consists of many
attributes; certainly records in a datastream cannot be
sorted by more than one attribute).

An interesting question to ask is: assuming the cen-
sus data is distributed as a mixture of uniform distri-
butions, can we compute the distribution of incomes?
Since the amount of data in a census is very large, the
pass-efficient model is appropriate.

More formally, a mizture of k uniform distributions
is defined by k possibly intersecting intervals (a;, b;) for
1 =1,...,k and a corresponding mizing weight w; > 0
for each interval, such that Y w; = 1. We assume that
the mixture is not degenerate: —oo < a; < b; < o0,
for all i. A mixture of k uniform distributions is a
probability distribution on R defined by choosing the ith
interval with probability w;, and then picking a point
uniformly at random from the chosen interval.

Suppose that X is a set of n points randomly
chosen from R according to a mixture of k-uniform
distributions with density function F. X can be ordered
(possibly by the adversary) to produce a sequence
which constitutes the datastream. Our problem is then:
Design a pass-efficient algorithm that approximates F'
from the datastream X.

Vapnik-Cervonenkis arguments show that a random
sample of size O(k?/€?) (O(-) and Q(-) denote asymp-
totic notation with polylog factors omitted) from X will
have about the right number of points in any interval;
thus intuitively clustering the sample should give us an
€ approximation to F. Some care is needed to rigor-
ously prove this (see Section 3 for precise statements).
The two main results of our paper are a) a multiple
pass algorithm whose space requirements drop off sig-
nificantly with more passes allowed and b) a lowerbound
that shows that our tradeoff between passes and mem-
ory usage is close to tight. To the best of our knowledge,
this is the first paper with a lower bound on randomized
computation that shows that the sharp tradeoff that we
achieve (memory decreases by §2(1/¢) in the exponent)
is tight. Previous work either only considered determin-
istic lower bounds in very limited models of computa-
tion, or lower bounds with memory scaling by 1/¢. We
also generalize our multiple pass algorithm to learning
mixtures of k linear distributions.

We now describe the general technique for our
multiple pass algorithm. In a single pass, we partition
the domain into a set of intervals, based on samples
of the datastream. Our algorithm will then estimate
F on each of these intervals separately. In a second
pass, we count the number of points in X that lie in
each of these intervals, and run subroutine Constant?,
which determines whether or not F' is (approximately)
constant on each interval. If F' is constant on an interval

I, then the density of F' can be estimated easily by the
number of points of X that fall in the interval. If F' is
not constant on I, the algorithm recursively estimates
the density in the interval using subsequent passes, in
effect “zooming in” on these more troublesome intervals
until we are satisfied with our approximation.

A crucial part of the algorithm is subroutine Con-
stant?, which solves a problem of independent interest:
determining in a single pass over X whether or not F is
approximately constant on some interval. For any (5 >
0, Constant? uses only O((log(1/5) + logk)log(1/4))
bits of memory, provided that n = Q(k5 /3%), and de-
termines whether F is within 8 in L' distance of the
uniform distribution. Constant? first slightly perturbs
the data in X so that each point is drawn from an 7-
smoothed distribution, F, which is very close to F' in
variational distance. Fj, has the useful property that it
is constant on intervals that form a regular partition of
the domain. We then would like to compute the num-
ber of samples of X in each of the 1/n subintervals;
we look upon this as a vector v with 1/7 components.
1/n will be too large for us to store the entire vector;
however, using the known algorithm in [14], we find the
projection of v into a random low dimensional subspace,
from which we can glean a good approximation to ||v]];.
Pseudorandom generators for small space computation
are then used to compress the projection matrix (these
generators do not require the existence of one-way func-
tions).

In order to prove lower bounds for multiple pass al-
gorithms, we appeal to known results for the communi-
cation complexity of the GT (Greater Than) function,
which determines for two inputs a,b whether a > b.
Specifically, we show that any ¢ pass algorithm that
solves our problem will induce a (2¢ —1)-round protocol
for the GT function. Lower bounds on the (2¢ — 1)-
round communication complexity of GT will then pro-
vide lower bounds for the memory usage of ¢ pass
streaming algorithms.

1.1 Our Results The L' distance with respect to the
usual Lebesgue measure between measurable functions
f and g is defined as [, |f —g|. Given e > 0 and § > 0,
we describe various randomized pass-efficient algorithms
that find with probability at least 1—§ a function G that
is an approximation to F, with error measured by L!
distance, [, |F —G|:

1. In Section 3, a one pass algorithm with error at
most € that requires O(k?/€?) bits of memory.

2. In Section 4, an at most 2¢ pass algorithm with
error at most e using O(k*/e?/%) space for any
integer ¢ > 0, provided that n = (1.25/%%°/€%).

Alternatively, we can view this as an algorithm with
error at most €’ that uses O(k?/€* + (/¢) bits of
memory, provided that n = Q(1.25/%% /5¢).

3. In Section 5, we consider a slight generalization of
our main learning problem and prove a lower bound

of ((2%)1/(%71) 0*2”1) for the bits of memory

needed by any ¢ pass, randomized algorithm that
solves this new problem, for some constant ¢. The
algorithm from Section 4 can be modified to solve
this generalized problem. Thus, we modify the
multiple pass algorithm to provide an upper bound
of O(1/€*/%) on bits needed for an ¢ pass algorithm
when / is even, for the generalized problem.

4. In Sections 6 and 7, we generalize our multiple pass
algorithm to algorithms for learning a mizture of k
linear distributions and learning a mizture of k two
dimensional uniform distributions. If w is an upper
bound on the maximum density of the mixture, we
present a 2¢ pass algorithm that uses O(k®/e?/%)
bits of memory for the former problem and a 4¢+ 1
pass algorithm using O(k*/€3/%) bits of memory for
the latter.

These results show that making more passes over the
data allows our algorithms to use less space, thus
trading one resource in the pass-efficient model for
the other. This feature demonstrates the potential for
multiple passes in designing a streaming algorithm with
flexible performance guarantees on space needed and
passes used; the algorithm can be tailored to the specific
needs and limitations of a given application and system
configuration.

Some details and proofs have been omitted, but will
appear in the journal version.

1.2 Related Work: Lower bounds for multi-
pass algorithms. Papers with space lower bounds for
multiple pass algorithms include [9, 13]. These papers
consider streamed graphs and problems of the nature:
find all nodes at distance exactly k from a particular ver-
tex. The former paper considers lower bounds for deter-
ministic algorithms. The latter paper contains a lower
bound of Q(nk/¢) on randomized computation, as well
as a nearly matching upper bound. Bar-Yossef et al. [3]
have proved lower bounds for multiple pass algorithms
approximating frequency moments, which are, however,
independent of the number of passes taken. Matching
upper bounds are provided in [1, 15].

A more comparable work is that of Munro and
Paterson[19], who proved a lower bound of Q(n'/*) for
the number of storage locations needed for an ¢ pass
deterministic algorithm for median finding, and a nearly

matching upper bound. The model of computation is
more limited, since it is deterministic and assumes that
only input elements may be stored (not some sort of
sketch).

Streaming clustering algorithms. One pass stream-
ing algorithms have been designed for a wide array
of clustering problems. In contrast to our approxima-
tion schemes, these algorithms give constant factor (or
weaker) approximations; for our purposes and motiva-
tions, such coarse approximations may not be accept-
able. Charikar et al. [4] gave a streaming algorithm
that achieved a constant factor approximation for k-
center, using O(k) extra space. Also, Charikar et al. [5]
gave a streaming algorithm that achieved a constant fac-
tor approximation for k-median, using O(k log? n) extra
space.

Histogram problems. Another related problem that
has been studied in the theory and database literature
is the problem of histogram construction [6, 10, 16, 17].
Generally, these problems are similar to ours, but
there are some major distinctions. First, our paradigm
and algorithm generalize very naturally to mixtures
of other distributions; as we show in this paper, our
algorithm is easily adapted to two dimensions, and to
piecewise linear density functions. Histograms are only
comparable to the one dimensional uniform case.

Guha et al. [12] designed one pass algorithms for
the histogram construction problem. Gilbert et al.
[11] improved on this, designing one pass algorithms
for the maintenance problem, which is more general
than our uniform problem (but not the linear or two
dimensional cases), since it does not assume the input
comes from a mixture. However, we exploit the extra
mixture structure to give us the multiple pass aspect
of the algorithm to reduce the amount of memory.
Thus, in contrast to our space usage of O(k?/e%/*) and
O(log klog(1/€)) time per data element, their work uses
much more time per update and space (both polynomial
in (1/¢, k,logn)), where n is the size of the datastream.
Mixtures of Gaussians Algorithms for learning
mixtures of Gaussian distributions in high dimension
have been studied previously [2, 7], but these are not
streaming or pass efficient.

2 Preliminaries

We first give an alternate description of the structure of
the probability density function induced by a mixture
of uniform distributions.

LEMMA 2.1. Given a mixture of k uniform distribu-
tions (a;, b;), w;, let F be the induced probability density
function on R. F (except possibly at at most 2k points)
can be represented as a collection of at most 2k — 1 dis-

joint intervals, with a constant value on each interval.

Since the above characterization of F' holds except
on a set of measure zero, it will suffice for our algorithm
to learn F' with this representation. We will be some-
what lax in our language, and say that a set of intervals
partitions some larger interval I, even if there are a fi-
nite number of points of I that are not included in any
interval of the partition.

DEFINITION 2.1. The representation of a mizture of k
uniform intervals as a set of at most 2k — 1 pairs,
(i Tig1), hey for @ = 0,...,m —1 < 2k such that the
density of the mizture is a constant h; on the interval
(x4, xiy1) will be called the step function representation
of the mizture. We call each interval (z;,2;11) a step
of the mizture.

Implicit in this definition is the fact that the m
steps form a partition of the interval (xg,,,). The
support of a mixture given by step function representa-
tion (z;,x;41), h; consisting of m steps is the interval
(o, Tm). A jump of a step function is a point z where
the density changes (i.e. an endpoint shared by two
different steps of the mixture).

We will work exclusively with the step function
representation of the mixture.

3 A Single Pass Algorithm

In this section, we sketch a single pass algorithm that
with probability 1 — § will learn the density function of
a mixture of k uniform intervals within L' distance e
using memory O(k?/€?). The algorithm is a divide and
conquer algorithm reminiscent of merge sort.

In a single pass, we choose m = O(k?/e?) points
uniformly at random and store them in memory. The
algorithm divides the sample into two halves and recur-
sively approximates the density function F' in each half.
The approximation is given as a partition of the domain
into intervals on which the density function is estimated
as constant. We then apply a merging procedure that
decides whether or not the last interval of one half can
be merged with the first interval of the other half. We
omit the algorithm due to space constraints.

THEOREM 3.1. There exists a one pass algorithm that
will learn a mizture of k uniform intervals to within L'
distance € with probability at least 1 — §, using at most

0 (’:—; log(l/é)) bits of memory.

4 Multiple Passes

In this section, we show that additional passes can
significantly reduce the amount of memory needed to
achieve the same accuracy. Given a mixture of k

(A)

® ¢ e e
© OO
Figure 1: Zooming. (A) A step distribution. (B)

Intervals created in Step 3 of some call to Estimate.
One of them contains a jump and has been marked. (C)
Estimate is recursively called on the marked interval.

uniform distributions with density function F' and an
integer ¢, algorithm SmallRam can approximate F'
to within L' distance e with 2¢ passes, using at most
O(k? /€*/*) memory, provided that n = Q((1.25°%%5)/%).
We first give an algorithm with accuracy €’ using space
at most O(k3/e 4 £/e).

SmallRam makes use of a subroutine called Con-
stant?. Constant? is a single pass algorithm that will
determine whether or not a datastream contains points
drawn from a distribution with a constant density func-
tion. In Section 4.2, we describe the algorithm and
prove the following theorem about its performance:

THEOREM 4.1. Let H be a mizture of at most k uni-
form distributions. Given a datastream X consisting
of |1 X| = O(g—ilog(l/é)) samples drawn from H, with
probability 1 — & single pass algorithm Constant? will
accept if H is uniform, and will reject if H is not
within L' distance 8 of uniform. Constant? uses at
most O((log(1/3) + log k) log(1/4)) bits of memory.

4.1 The Algorithm Subroutine Estimate draws a
random sample S of size |S| = O(k?/e?) from the
input stream. It sorts S and partitions it into O(k/e)
intervals. Estimate then calls Constant? on each of
the intervals; Constant? uses the entire datastream
X to determine if the distribution is constant on the
interval. If F is close to constant on an interval, we
can output the interval as a step of the final output
G with a very accurate constant density estimate,
again using the large set of samples, X, read via the
datastream. However, if F' is far away from constant on
the interval, then estimating its density by a constant
is too coarse; thus we repeat the process by recursively
calling Estimate. This recursive call can be thought of
as “zooming in on the jumps.” See Figure 1.

Given a sequence of points X and an interval J, we
define X|; to be the subsequence of X that consists
of points that fall in J. X|; can be considered a

datastream; a pass over X can simulate a pass over
X|J.

Algorithm SmallRam input: datastream X of sam-
ples from distribution with density F', such that n =

| X| =0 (1'26‘2/2’“6 0 -log (%))

1. initialize p <« 1, J < Support(F) (Note that J
can be found in the first pass of the algorithm).

2. Call Estimate on p, J.

Subroutine Estimate: input: interval J, and level p.

1. Make a fresh pass, extracting a set S of size
m = © (Bei.;log (%)) from X|;, and store it in
memory.

2. Sort the samples in S in ascending order. If p =1,
let ¢ — 2%—Ekm; otherwise let ¢ < (9/10) - em.

3. Partition J into m/q = 20k /(9¢) or 10/(9¢) disjoint
intervals J!, such that [S N JF| = q.

4. Make an additional pass to count the exact number
of points of X, the entire datastream, that fall in
each of the J!’s.

5. Also in this pass, call subroutine Constant? on
X| v, for each of the m/q intervals J? in parallel,
with error parameter ¢‘/2k. Mark those intervals
JP that Constant? rejects. Let M? be the set of
marked intervals.

6. If interval J? is not marked in the previous step,
output it as a step of G with density |X N
JP|/(nlength(J?)).

7.If p < ¢, for each J’ € MP, run Estimate on
J — JP, p— p—+1, in parallel with all other level
p + 1 copies of Estimate.

If p = ¢, output each interval J¥ € MP? as a step
of G with density 0.

The order in which this recursive algorithm com-
putes each call to Estimate has a natural structure
defined by the level of the call (defined by its parameter
p): All level p copies of Estimate are run in parallel,
then all level p 4+ 1 copies are run in parallel, and so
forth. All copies of Estimate running in parallel may
read the datastream simultaneously, thus limiting the
total number of passes per level to two. The total num-
ber of passes is therefore 2¢.

LEMMA 4.1. Let J? be an interval created in Step 3 of
a level p call to Estimate. With probability at least
1 — d¢/(25k%¢), JP contains at most €?/2k proportion

of the total weight of F, and at least (8/10)PeP/2k
proportion of the total weight. That is,

P p
8 .E—</F<f.
10) 2k~ Jpo T2

The lemma follows from induction and VC bounds.

COROLLARY 4.1. Let JP be some interval created in
step 8 of Estimate, and suppose ¢ < 8/10. With
probability at least 1 — Se/(20k%(), the datastream X

satisfies
kS Kkl
Pl — _ /. _
a=a (X ().

Proof. Follows from the Chernoff bound.

(4.1)

LEMMA 4.2. With probability 1 — 6/2, the following is
true for all levels p: the aggregate number of intervals
marked in level p calls to Estimate is at most 2k — 1.

The idea behind this Lemma is that an interval may
only be marked if it contains a jump in the distribution,
and there are at most 2k — 1 jumps.

We summarize all the events that occurred in order
to derive the 1 — 6/2 bound from the previous lemma:

COROLLARY 4.2. With probability at least 1 — §/2, the
following are true:

1. Any level p interval contains at least (8/10)PeP/2k
proportion of the weight of F' and at most €?/2k.

2. Equation (4.1) holds for all intervals created in Step
8 of Estimate.

8. There are at most 2k — 1 calls to Estimate at any
level.

4. No calls to Constant? fail (i.e., the low probability
event that Constant? doesn’t work correctly does
not occur).

We now prove the main theorem of this section.

THEOREM 4.2. With probability at least 1 — §, Small-
Ram will compute an approzimation to F within L' dis-
tance €' of F, using at most 2¢ passes and O (k> /€4 /¢)
bits of memory.

Proof. We condition this proof on Corollary 4.2 occur-
ring, which has probability at least 1 — 6/2.

We first bound the amount of memory used. At
any level of the computation, we are running at most
2k — 1 parallel copies of Estimate. Since each copy

uses at most O(m) bits of memory, the total amount of
memory used is at most 2k times this amount:

4k? lk

We now prove that the algorithm outputs a good
approximation to F. After all £ levels of the algorithm,
we have density estimates for all of Support(F).

The intervals that define the steps of G are of two

types:
1. Intervals that had their density estimated in Step

6 of some call to Estimate. A type (1) interval J?
can further be classified into one of two cases:

(a) F does not contain a point in J? where there
is a jump from one step of F' to another, and
thus F is constant on J.

(b) F does contain such a jump in J7.

2. Intervals marked in level £ that had their density
estimated in Step 7 of a level £ call to Estimate.

A bound for the error from type (1), case (a)
intervals

Suppose J! belongs to case (a). It follows from the
Chernoff bound and Corollary 4.2, item 2, that with
probability at least 1 — de/(32k%(),

_/F
Iy

This inequality then implies that

/F
g

L

4k

||XnJ§’| B

n JP

el

ak J g

X077
n

F>

J? J?
/ |F_ G|7
7"

where the last equality follows from the fact that F' and
G are both constant on J?.

Let T' be the set of all type (1) case (a) intervals.
Since there are at most ((10/9)4¢k?/¢) intervals in T,
the probability that the above inequality holds for all of
them is at least 1 — 6/4. Then, the total error induced
by all such intervals is at most:

¥/
F-G F<S
Z/Jfl | < J;E:F/If <

JYer
A bound for the error from type (1), case (b)
intervals

<
4k

Suppose that J! belongs to case (b). It follows from
the Chernoff bound and Corollary 4.2, item 2, that with
probability 1 — de/(32k2(),

XnJ7l fJf F e
nlength(J?) length(J?) 8klength(J}) J»

el

8k2length(J?)

F

Define F‘|J§) mefF to be the average

density of F on J. Since J was not marked, we know
that subroutine Constant? accepted when run on J’.
This means that F is at most €//2k in L' distance from
constant on J7:

/,

Combining the two inequalities above gives us

/ F :/ F—al.
JP JP

If ¢; is the number of case (b) intervals, the total error
induced by all case (b) intervals is at most (e//2k +
€’ /8k?) - t1, with probability at least 1 — §/4.
A bound for the error from type (2) intervals
Each interval of type (2) was created at a level ¢
call to Constant?. Thus by Corollary 4.2, item 1, each
contains at most €’/2k proportion of the weight of F.
Estimating F' by 0 on an interval of type (2) will induce
an error of at most ¢//2k. The total error induced by
type (2) intervals is at most €“/2k - t5, where ¢, is the
number of type 2 intervals.
A bound for the total error
Since type (1) case (b) and type (2) intervals only
occur at jumps in steps of F', t; +ty < 2k — 1. Thus,
with probability at least 1 — ¢, the total error is at most

el

< —.
- 2k

FoFl,

€ et

>
2k+8k2_

X0 g
nlength(J?)

e n
4k

EE Ez Ez
o= <
% 8k;2> S mT
e (2k—1)f ¢
4k 2k

(t1 +t2) (

<
- 4k

If we analyze the algorithm with €'/¢ in lieu of €, we get

an e approximation requiring O(k?/€2/*) bits of memory
(note the ¢/e term disappears).

COROLLARY 4.3. There exists an algorithm that, with
probability at least 1 — 46, will compute an approximation
to F within L' distance € of F, using at most 20 passes

and O(k3/€2/*) bits of memory.

L

€Z €
(Qk— 1) (ﬂ + @

)

— — €.

4.2 Testing intervals for uniformity: Proof of
Theorem 4.1. We now describe the single pass subrou-
tine Constant? used by SmallRam. Given a datas-
tream of n samples from a mixture of k£ uniform distri-
butions, with H as its density function, Constant? will
accept H if it is constant, and reject if it is not within
B in L' distance of constant.

By suitably scaling and translating the input, we
may assume without loss of generality that the support
of H is exactly the interval [0, 1]. Thus, our subroutine

will determine whether fol |H — 1| < § or not.

4.2.1 Preliminaries: Approximating the /;
length of a vector given as a stream of dynamic
updates. Consider a datastream consisting of pairs of
the form (i,a) where i € [n] and ¢ € {—M,...,M}.

We define the quantity L,(S) = (Zie[n] Z(i,a)ESa’D'
Note that L;(S) is the ¢; length of the n dimensional
vector given by a; = Z(i,a) a.

Fact 4.1. [14] There is an algorithm which estimates
L1(S) up to a factor of 1/2 with probability 1—¢6 and uses
O(log Mlog(1/6)) bits of memory, O(log M log(n/d))
random bits, and O(logn/d) arithmetic operations per
pair (i,a).

The n-smoothed distribution of H. For ease of
exposition of the proof of Theorem 4.1, we introduce
the n-smoothed distribution of H, which is a smoothed
version of H.

DEFINITION 4.1. Given a mizture of k uniform distri-
butions that defines a probability density H and a num-
ber 0 < n < 1, define the n-smoothed distribution
to be the following distribution, with density H,. Let
i < 1/n—1 be the integer such that x € (in, (i + 1)n].
Then

1 G+

@ = [Hd.

n in
It is immediate that H, is a step distribution consisting
of at most 1/n steps. Thus, let h; be the constant
density of H, on each of the intervals (in, (i +1)n). Let
a; = |h; — 1| be the distance from 1 of the density of
H,, on the ith interval. Our interest in H,, lies in the
following useful properties.

LeEMMA 4.3. If H is uniform, then Hy, is also uniform.

LEMMA 4.4. Let n < 8/5k. Let I = (z;,24+1),w; be a
step of H, and suppose that

|wilength(I) — length(I)| > B/2k.

For some step I' of H,, we have |Hy(x)—1| > 3/2k for
zel.

COROLLARY 4.4. If n < 3/5k and H is not within L'
distance [of uniform, there exists a step of H, such
that a; > /2k.

The two lemmas establish the connection between
H and H,. An algorithm that rejects if there is at least
one step 4 such that o; > /2k, and that accepts if H,
is uniform (i.e. all @; = 0) will be sufficient for the
guarantee of Theorem 4.1.

4.2.2 The algorithm and its proof of correct-
ness First, we define a number of random variables
based on the datastream that can be used to estimate
(678

1. Let N; = | X N(in, (i+1)n)| be the number of points
of X that fall into the interval (in, (i + 1)n). It is
important to note that X consists of samples of H,
but that E[N;/nn| = h;.

2. Let O?z = ‘%ZZ’

the datastream. Note that E[d;] = «.

— 1‘ be an estimate of «; based on

The random variable ¢; gives an estimate of «;, the
quantity we are interested in. However, in a single pass
we do not have enough space to compute and store @;
for all 1/n values of i. The proof of the next lemma
uses Indyk’s algorithm to estimate ||&||1 using a small
amount of space. From the value of ||&||1, we can glean
our desired information: a small value of ||&||; implies
that all @; are small, whereas a large value implies that
at least one @; is large.

LEMMA 4.5. In a single pass over X we can compute
an estimate ¢ such that (1/2)||&|1 < ¢ < (3/2)||&]|1
with probability at least 1 — §, using space at most
O(log(nn) log(1/4)).

Proof. First consider the construction of a datastream
Sx derived from X:

1. For each element z € X, let j, € [1/n] be the
integer such that © € (jn, (j= + 1)n). We append
(jm,].) to Sx.

2. We append to Sx the 1/7 elements (i,
i€ [1/n].

Clearly Indyk’s algorithm on input Sx can be simulated
in a single pass over X. We have:

1/n 1N
Li(Sx) =) |N; —nn| = ”"be — 1] = mmlla]h-
=0 [

—nmn), for all

Thus, in a single pass we can derive an esti-
mate ¢ of ||&||x such that (1/2)||a]1 < ¢ <
(3/2)||&|]1 with Indyk’s algorithm using space at most
O(log(nn) log(1/4)).

We now formally describe the algorithm:

Constant? input: datastream X such that

(/EN? 1. 1 K1
'X':O<<B) $10g5> (5 s3)
1. Set n — 3/(5k).

2. Simulate Indyk’s algorithm on X, as described in
Lemma 4.5. Let ¢ be the estimate of [|&||; output
by the algorithm.

3. accept if ¢ < 3/5k. Otherwise, reject.

Proof. (of Theorem 4.1) Since n = O(k?/(3%*?)), an
application of Hoeffding’s bound implies that with prob-
ability at least 1 — 4, for all 1/n = O(k/5) ch01ces of ¢
simultaneously: if h; < 2 then |N; —h;nn| < 4% L Jwinm,
which implies that

. Bn

i — 0] <
s — il < 55p

If h; > 2 then |N; — hynn| < 20kw/wmn which implies
that

d; > - >

| =
Cal S

We prove the correctness of Constant? by consid-
ering two cases:

Case 1: H, is uniform. Then h; = 1 for all ¢, and
a; = 0 for all 5. Thus, a; < ﬁﬂn for all i. By
Lemma 4.5, this implies that ¢ < 3||a| < 3/5k;
therefore Constant? will accept H,. Appealing to
Lemma 4.3 it follows that Constant? will accept if H
is uniform.

Case 2: There exists at least one h; such that |h; —1] >
B/2k. Then ||&|1 > B/2k — 2%577 > (/(2.5k). By
Lemma 4.5, this implies that ¢ > i||&|; > B/5k;
therefore Constant? will reject H,. Appealing to
Corollary 4.4, it follows that Constant? will reject if
H is not within L' distance 8 of uniform.

5 Matching bounds on memory usage of
randomized algorithms

In this section, we consider lower bounds on the amount
of memory needed by any ¢ pass randomized algorithm
for a generalization of our learning problem. We then
sketch a pass-efficient algorithm for this problem.

PROBLEM 5.1. (GENERALIZED LEARNING PROBLEM)
Let F' be the density function of a mixture of at most
1/e uniform distributions on [0,1]. Let ¢t € [0,1] be
the largest number such that F' is a step distribution
with at most k steps on [0,¢]. Given a datastream

X consisting of sufficiently many iid samples from F,
with probability at least 1 — 4§, find a function G and a

number ¢ > ¢ such that fot, |F - G| <e.

Intuitively, the problem is to learn the density function
of the first k steps of a distribution containing 1/e steps.

We use known lower bounds for the communication
complexity of r-round protocols to prove that any £ pass

algorithm needs at least 2 ((E)l/(% 2 *2”1) bits of

memory to solve this problem for the k£ = 3 case. We
then generalize our algorithms for learning mixtures
of k-uniform distributions to solving the generalized
learning problem. These algorithms will provide an
upper bound of O(k®/€*/*) on the number of bits of
memory needed by an £ pass algorithms, for even /.

5.1 A Lower Bound Consider the following com-
munication problem: Alice and Bob are given vectors
a,b € {0,1}" respectively and wish to compute f(a,b)
for some Boolean function f.

An r-round protocol is a protocol with the restric-
tion that Alice and Bob may exchange at most r mes-
sages, where Alice must send the first message and only
one of the players need output the answer. The r-round
probabilistic communication complezity of f, denoted by
R"(f), is the number of bits in the largest message, min-
imized over all r-round protocols that output f correctly
with probability at least 2/3.

For the function GT,, : {0,1}" x {0,1}" — {0,1}
defined by GT,(a,b) = 1 iff @ > b, a lower bound
of R"(GT,) = Q(n'/"¢™"), for some fixed constant c,
and a nearly matching upper bound of R"(GT,) =
O(n'/"logn) are known [18]. We will use R"(GT,,) to
prove lower bounds for multiple pass algorithms:

THEOREM 5.1. Any ¢ pass randomized algorithm that
solves the Generalized Learning Problem for k = 3 with
probability at least 2/3 and error € requires at least

Q ((25)1/(22 2 _2“1) bits of memory, for some fized
constant c.

Proof. Fixk = 3,¢, m = 1/(2¢), and an £ pass algorithm
A that solves the Generalized Learning Problem with
probability 2/3 and that uses at most M(A) bits of
memory. We will prove that A induces a 2¢ — 1-
round protocol for GT,, that uses at most M (A) bits
of communication per message. This will prove that
M(A) > R?*YGT,,) = Q(1/(26)% 126+,

Suppose that Alice and Bob are given vectors a,b €
{0,1}™. Alice will construct a probability distribution
pd. pu2 will be constructed as a piecewise constant
function on each of the 2m intervals (i/m, (i + 1/2)/m]
and ((i +1/2)/m, (i + 1)/m] as follows: Set u(z) =

2a,—; for x € (i/m, (i +1/2)/m] and pi(z) =
am—;) for x € ((i +1/2)/m, (i + 1)/m].

Bob will construct a similar function pZ, but “re-
versed”: pf(z) = 2(1—by,—;) for x € (i/m, (i+1/2)/m]
and pP(z) = 2by,—; for z € ((i +1/2)/m, (i + 1)/m].

Alice (Bob) generates an arbitrarily large sample
of points drawn iid according to p, (up) of arbitrary
precision and places them in a datastream X, (Xj).
We require that | X,| = | Xp|. The datastream formed by
appending X; to X, denoted by X, 0 X3, can be viewed
as having been drawn from the distribution defined by

2(1 —

density function p = % + g Note that p is a step
function with at most 1/e steps.
Claim: If Bob is given the solution to the Generalized
Learning Problem on datastream X = X, o X; with
parameters €, k = 3, he can compute GT,,(a, b).

Bob has in his possession the vector b and the
output of the algorithm: a number ¢ such that on
(0,t"), u is comprised of at least 3 steps, and a function

Happrox such that f(f |‘LL — ‘Ll,approx| < €.
In order to compute GT,,(a,b), all Bob needs to

do is learn the bits a; for ¢ > j*, where j* is the
highest order bit for which a; and b; differ. Note
that p is a step function consisting of 3 steps on the
interval (0, (j* + 1)/m): It has a constant value of 1
on (0,j*/m) since a; = b; for bits i > j*. If aj« =1
(and correspondingly b;» = 0) then it has a constant
value of 2 on (j*/m,(j* + 1/2)/m) and a value of
0 on ((j* + 1/2)/m,(j* + 1)/m). If aj» = 0 (and
correspondingly b;« = 1), the situation is reversed. Note
that ¢ > (j* +1)/m

Bob can compute GT,,(a,b) in the following man-

ner. He finds (by enumeration) a vector a € {0,1}"

A B
that induces the probability density g = ”7“ + ”Tb, such

that fot |[i— papprox| < €. Bob then outputs 1iff @ > b.

The correctness of this scheme follows from the
observation that d; = a; for all bits ¢ > j*. Suppose
this were not the case, that a differed from a by a bit
a; for ¢ > j* then f(f | — p| > 2e, but since Bob is
guaranteed that fg l | — papprox| < ¢, it follows from
the triangle inequality that fot |ft — papprox| > €.

The 2¢ — 1-round protocol for computing GT,,(a, b)
is as follows: Alice simulates the first pass of algorithm
A on X, to find the contents of memory at this
intermediate point of the pass. She sends these M (A)
bits of memory to Bob. Bob continues the simulation
of the first pass of A on X, and sends his M (A) bits
to Alice. They simulate each pass of A in this fashion
until all ¢ passes have been completed, sending a total
of 2¢ — 1 messages of size at most M (A).

After the completion of the communication, Bob

will have the output of A run on datastream X, o Xp,
from which he can determine GT,,(a,b).

5.2 An Upper Bound Using the full power of Con-
stant? (it can decide whether or not a mixture of
1/e uniform distributions is within € of uniform using
at most O(log(1/¢)log(1/d)) bits of memory), we can
strengthen SmallRam:

THEOREM 5.2. For even £, there exists an ¢ pass al-
gorithm that can solve the Generalized Learning Prob-

lem with probability 2/3 and error e using at most
O (k3 /€¥*) bits of memory.

For SmallRam to learn a mixture of k£ uniform intervals
using O(k3/€%/%) bits of memory, it was crucial that
at each level the algorithm only zooms in on 2k — 1
intervals (the intervals that contain jumps). If we want
to learn the first k4 1 steps of a mixture of 1/¢ uniform
distribution using the same amount of memory, it is only
necessary to zoom in on the first k + 1 subintervals that
contain a jump (rather than all 1/e intervals).

6 Learning mixtures of linear distributions

Let F be the density function of a mixture of k linear
distributions. We will need to make the assumption
that the algorithm is given an upper bound on F', call
it w: F(z) < w for all in the domain. As with
mixtures of uniform distributions, we can describe F' as
a piecewise linear density function with at most O(k)
different pieces: a;x + b; for x € (2, xi41)-

Let X be a datastream of points drawn from
distribution H. There exists a single pass algorithm
that will determine whether or not a distribution H is
within 8 of linear, using at most O((log(1/3) + logk +
logw)log(1/4)) bits of memory. A mixture of linear
distributions can then be learned in the same way as
uniform distributions, with only minor modifications.

THEOREM 6.1. There exists a 2¢ pass algorithm that,
with probability at least 1 — 6 can learn a mizture of k
linear distributions within L' distance € using at most
O(k3 €2/ bits of memory. The algorithm requires the
datastream to have size Q(kPw®/éd).

7 Learning mixtures of uniform distributions in
two dimensions

Let F' be the density function of a mixture of k& uni-
form distributions on axis-aligned rectangles in (0, 1) x
(0,1) € R%. We call such a distribution a mizture of
k uniform(2) distributions. F is thus given by k axis
aligned rectangles, R;, i = 1,...,k, each with weight
w;. Note that each of these rectangles is defined by four
boundary lines, for a total of 4k boundary lines.

We say that F' is wvertical on a rectangle R =
(0,a) x (0,b) if it does not contain any horizontal
boundary line. Let X be a datastream of points drawn
from F. There exists a one pass algorithm that will
determine if F' is within [of vertical using at most
O((log1/8 + logk + logw)log(1/4)) bits of memory.

Our 4¢ + 1 pass algorithm for learning a mixture
of k uniform(2) distributions is similar to the algorithm
for the one dimensional case. As before, we organize
the algorithm into ¢ pairs of passes. In the first pass
of each pair, we partition the domain into rectangles of
roughly equal weight. In the second pass of each pair,
we test each of these horizontal rectangles for verticality:
if the rectangle S is close to vertical, we can project
the points of X that lie in S onto the horizontal axis
and learn a mixture of O(k) uniform distributions using
SmallRam in 2/ passes, from which we can derive a
good approximation to F on S. Otherwise, we zoom in
on S in subsequent passes.

THEOREM 7.1. Let F be the density function of a miz-
ture of k uniform(2) distributions, such that F(z) < w
for all x € R. Suppose X is a datastream drawn accord-
ing to F, with a sufficient number of elements. There
exists a 40 + 1-pass algorithm that approximate F to
within L' distance € using at most O(k*/e¥/%) bits of
memory.

8 Open Problems

Our learning problem is very flexible; possible exten-
sions include algorithms for learning mixtures of uni-
form distributions in three or more dimensions, or mix-
tures of Gaussian distributions in constant dimension.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proceedings of the 28th Annual ACM Symposium on
the Theory of Computing, pages 20—-29, 1996.

[2] S. Arora and R. Kannan. Learning mixtures of ar-
bitrary gaussians. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing, pages
247-257, 2001.

[3] Z.Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivaku-
mar. An information statistics approach to data
stream and communication complexity. In Proceedings
of the 43rd IEEE Symposium on Foundations of Com-
puter Science, pages 209-218, 2002.

[4] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information re-
trieval. In Proceedings of the 29th Annual ACM Sym-
posium on the Theory of Computing, pages 626—635,
1997.

5]

(13]

(14]

(15]

(16]

M. Charikar, L. O’Callaghan, and R. Panigrahy. Bet-
ter streaming algorithms for clustering problems. In
Proceedings of the 35th Annual ACM Symposium on
the Theory of Computing, pages 30-39, 2003.

S. Chaudhuri, R. Motwani, and V. R. Narasayya.
Random sampling for histogram construction: How
much is enough? In SIGMOD Conference, pages 436—
447, 1998.

S. DasGupta. Learning mixtures of gaussians. In Pro-
ceedings of the 40th IEEE Symposium on Foundations
of Computer Science, pages 634—644, 1999.

P. Drineas and R. Kannan. Pass efficient algorithm for
large matrices. In Proceedings of the Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 223-232, 2003.

J. Feigenbaum, S. Kannan, A. McGregor, and S. Suri.
Graph distances in the streaming model: The value
of space. In Proceedings of the 16th Symposium on
Discrete Algorithms, pages 745-754, 2005.

P. B. Gibbons, Y. Matias, and V. Poosala. Fast
incremental maintenance of approximate histograms.
In Proceedings of 23th International Conference on
Very Large Data Bases, pages 266275, 1997.

A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss. Fast, small-space
algorithms for approximate histogram maintenance. In
Proceedings of the 34th Annual ACM Symposium on
the Theory of Computing, pages 389-398, 2002.

S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing, pages 471—
475, 2001.

M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Faxternal memory algo-
rithms, pages 107-118, 1999.

P. Indyk. Stable distributions, pseudorandom gener-
ators, embeddings, and data stream computation. In
Proceedings of the 41th IEEE Symposium on Founda-
tions of Computer Science, pages 189-197, 2000.

P. indyk and D. Woodruff. Optimal approximations of
the frequency moments of data streams. In Proceedings
of the 37th Annual ACM Symposium on the Theory of
Computing, pages 202208, 2005.

H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poos-
ala, K. C. Sevcik, and T. Suel. Optimal histograms
with quality guarantees. In Proceedings of 24th Inter-
national Conference on Very Large Data Bases, pages
275-286, 1998.

Y. Matias, J. S. Vitter, and M. Wang. Dynamic main-
tenance of wavelet-based histograms. In Proceedings
of 26th International Conference on Very Large Data
Bases, pages 101-110, 2000.

P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. J. Comput. Syst. Sci., 57(1):37-49, 1998.
J. I. Munro and M. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
12:315-323, 1980.

