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Preface

To Economists: This thesis investigates a classic impossibility result from economics—

the non-existence of cost-sharing mechanisms that are efficient, budget-balanced and

incentive compatible—using an approach standard in computer science. For a specific

cost-sharing problem, we ask: How much efficiency does the best incentive compati-

ble, budget-balanced mechanism achieve in comparison to the efficient allocation?

Unlike an impossibility result, this approach is entirely constructive, and results in

a concrete prescription for what mechanism we should deploy. This thesis identifies

optimal mechanisms for a wide variety of cost-sharing problems, discusses how we

can trade budget-balance for efficiency, and what makes some cost-sharing problems

harder than others.

To Computer Scientists: This thesis investigates resource allocation where

some of the problem parameters are privately held by agents that vie for the resources.

We must find algorithms that elicit the privately held parameters, allocate resources

optimally, and recover the cost of the allocated resources from the agents. Just as we

must deal with lack of knowledge of future demand when designing online algorithms,

we must now deal with economically and game-theoretically motivated constraints.

Welcome to a parallel universe replete with hardness results, optimal algorithms and

complexity classes.
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Chapter 1

Introduction

1.1 A Motivating Example

How should the cost of a joint project be shared by its participants? Here is a

motivating example paraphrased from Young et al. [67].

Example 1.1.1 In the early 1940s some municipalities in southern Sweden formed

an association to tackle a potential water scarcity problem. In the late 1960s this

group started to design a major project for obtaining water from a lake outside the

region via a 80-km long tunnel. Besides the tunnel, water treatment systems at the

source and water distribution systems also needed to be built.

The viability of this project depended on how many municipalities could be in-

duced to participate and bear the cost of the project. This in turn depended on how

much each of these municipalities would be obliged to pay for participation, bearing

in mind the availability and costs of developing their own on-site resources.

The above example is characteristic of the circle of issues we investigate in this

thesis: We would like to determine an economically efficient level of resource allocation

in a public project that involves several potential participants. The cost of the project

depends on who participates in it. In the above example, the necessary capacity, and

hence the cost of the tunnel, depended on the set of municipalities that actually

took part. Part of the problem data—namely, the value of the public project to

1



2 CHAPTER 1. INTRODUCTION

the various participants—is privately held. The participants are self-interested, and

might lie about this information if it benefits them. For the project to be feasible,

the cost incurred by it should be recovered from the eventual participants.

1.2 Mechanism Design

Such optimization settings, where part of the input is privately held by self-interested

agents, are the topic of study of a field of economics called mechanism design (see for

instance Chapter 23 of [58]). Mechanism design has numerous applications to, for

example, auction design, pricing problems, and network protocol design [34, 42, 58,

66].

An illustrative, paradigmatic problem in mechanism design is allocating a single

unit of an indivisible good to one of n potential buyers. Each bidder i has a valuation

vi, expressing its maximum willingness to pay for the good. We assume that this

value is known only to the bidder, and not to the auctioneer. A mechanism for selling

a single good is a protocol that determines the winner and the selling price. Each

bidder i is “selfish” in that it wants to maximize its “net gain” (vi − p)xi from the

auction, where p is the price, and xi is 1 if the bidder wins and 0 if the bidder loses.

What optimization problem underlies a single-good auction? One natural goal is

economic efficiency, which in this context demands that the good is allocated to the

bidder with the highest valuation. This goal is trivial to accomplish if the valuations

are known a priori. Can it be achieved when the valuations are private?

Vickrey [74] provided an elegant solution. First, each player submits a sealed

bid bi to the seller, which is a proxy for its true valuation vi. Second, the seller

awards the good to the highest bidder. This achieves the efficient allocation if we can

be sure that players bid their true valuations—if bi = vi for every i. To encourage

players to bid truthfully, we must charge the winner a non-zero price. (Otherwise,

all players will bid gargantuan amounts in an effort to be the highest.) On the other

hand, if we charge the winning player its bid, it encourages players to underbid.

(Bidding your maximum willingness to pay ensures a net gain of zero, win or lose.)

Vickrey [74] suggested charging the winner the value of the second-highest bid, and
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proved that this price transforms truthful bidding into an optimal strategy for each

bidder, independent of the bids of the other players. In turn, the Vickrey auction is

guaranteed to produce an efficient allocation of the good, provided all players bid in

the obvious, optimal way.

1.3 Cost-Sharing Problems

Unlike the single-item auctions, the problems we are interested in have no explicit

limit on the number of winners (players who eventually participate). On the other

hand, servicing many or all the players may require vast resources. So, we must

take into account the cost of providing service. Formally, a cost-sharing problem

is defined by a set U of players vying to receive some good or service, and a cost

function C : 2U → R+ describing the cost incurred by the mechanism as a function

of the outcome — the set S of winners. We assume that C(∅) = 0 and that C is

nondecreasing (i.e., S ⊆ T implies C(S) ≤ C(T )). In Example 1.1.1, for a set S of

municipalities, C(S) represents the total cost—incurred from the construction of a

water treatment plant, a tunnel of sufficient capacity, and a distribution network—of

delivering water of adequate quality and quantity to the municipalities.

As in the previous section, every player i ∈ U has a private value vi for service.

And every bidder is self-interested, i.e. it maximizes its “net gain” (vi − pi)xi from

the mechanism, where pi is the price it is charged, and xi is 1 if the bidder wins and 0

if the bidder loses. In Example 1.1.1, the value vi represents municipality i’s value

for the water project.

For a given set U and function C, a cost-sharing mechanism is a protocol that

takes the cost function C and bids as input and decides which players win (the xi’s)

and at what prices (the pi’s).

1.3.1 Desiderata

As this is a public project, the primary goal should be to come up with a solution

that is economically efficient for the society at large, i.e. for every valuation profile,
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we would like to pick an allocation that embodies the optimal trade-off between total

value serviced and total cost incurred. Formally, for a cost function C and a valuation

profile {vi}i∈U , the efficient allocation is the subset that maximizes the social welfare:

W (S) = v(S) − C(S)

Here v(S) denotes
∑

i∈S vi. Of course, as in the single-item auction example, values

are private information, and we would like mechanisms that are incentive compatible,

i.e. the cost-sharing mechanism should encourage players to bid truthfully. However,

there is an additional constraint: For the project to be feasible, the mechanism should

recover the cost of the project from the winners, i.e., it should be no-deficit.

Summarizing, we have identified three natural goals in cost-sharing mechanism

design: incentive-compatibility, meaning that every player’s optimal strategy is to

bid its true private value vi for receiving the service; no-deficit, meaning that the

mechanism recovers its incurred cost with the prices charged; and efficiency, meaning

that the cost and valuations are traded off in an optimal way. (For the most part we

will identify computationally efficiency mechanisms, though our hardness results will

not reference this constraint.)

1.3.2 Motivating Related Work

Unfortunately, even for very simple cost-sharing problems, there are no mechanisms

that simultaneously satisfy these three constraints (see Example 3.1.1). Intuitively,

this impossibility stems from the payments having to play two distinct, incompatible

roles—to ensure incentive compatibility, and to recover cost. Chapter 3 discusses this

issue further.

This impossibility result motivates relaxing at least one of these properties. Until

recently, nearly all work in cost-sharing mechanism design completely ignored either

the cost-recover constraint or efficiency. Without the cost-recovery constraint, there

is an extremely powerful and flexible mechanism that is incentive-compatible and

efficient: the VCG mechanism (see e.g. [33, 63]). This mechanism specializes to

the Vickrey auction when selling a single good, but it is far more general. The
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VCG mechanism typically does not satisfy the cost-recovery constraint within any

approximation factor (assuming “individually rational” prices, see e.g. [32] for details).

A second approach is to discard economic efficiency as an objective and insist

on incentive-compatibility and the no-deficit condition. Until very recently (see

Chapter 4)), the only general technique for designing mechanisms of this type was

due to Moulin [62]. Researchers have developed numerous approximately no-deficit

Moulin mechanisms for cost-sharing problems arising from different combinatorial op-

timization problems, including fixed-tree multicast problems [5, 32, 33]; more general

submodular problems [62, 63]; scheduling problems [11, 17]; network design prob-

lems [37, 39, 47, 48, 51, 55, 68]; facility location problems [56, 68]; and various cov-

ering problems [26, 45]. With one exception discussed in Section 4.5.1, none of these

works provided any guarantees on the economic efficiency achieved by the proposed

mechanisms.

1.4 What Is in this Thesis?

Here is a brief overview of the results in this thesis.

1.4.1 Measuring Efficiency Loss via Approximation

Impossibility results are common in computer science. There are, for instance, the

(conditional) impossibility of polynomial time implementation motivated by Cook’s

theorem [23], and the information theoretic lower bounds stemming from lack of

information in restricted models of computation such as the online model [16] or the

streaming model [64]. When faced with such hardness results computer scientists

are accustomed to devising heuristics and proving worst-case guarantees about them

using the notion of approximation.

Following this approach, we quantify the efficiency loss of incentive compatible,

no-deficit mechanisms via approximation ratios. That is, we discuss, for a fixed cost-

sharing problem, what approximation of the optimal welfare does a specific truthful,

no-deficit mechanism achieve? Chapter 3 describes this approach.
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1.4.2 Optimal Moulin Mechanisms

Given this quantitative measure of efficiency loss, we can rigorously compare the

economic efficiency of different mechanisms for a cost-sharing problem. Given two

mechanisms A and B, mechanism A has better economic efficiency that mechanism

B if it provides a better worst-case approximation to economic efficiency. Given this

ability to rank mechanisms, we can then identify a mechanism as “optimally efficient”

subject to cost-recovery and incentive compatibility constraints.

We apply this approach to Moulin mechanisms, which until very recently were the

only general framework for designing mechanisms that are no-deficit and incentive

compatible. All Moulin mechanisms use carefully designed pricing oracles to simulate

ascending auctions. Our analysis reveals that the a certain combinatorial property of

the pricing oracle, called its summability, characterizes (lower and upper bounds) the

worst-case efficiency loss of the Moulin mechanism that employs it. Chapter 5 uses

this characterization to identify optimal Moulin mechanisms for various cost-sharing

problems. (In general, different public projects will induce different cost functions;

Chapter 2 defines several types of cost-sharing problems.) All of the mechanisms

we identify as optimal Moulin mechanisms are polynomial-time implementable, and

optimal even among Moulin mechanisms not restricted to run in polynomial time.

Our proofs include ideas inspired by primal-dual and online algorithms.

1.4.3 A Hierarchy of Cost-Sharing Problems

Cost-sharing problems vary in difficulty (in terms of achieving our desiderata). We

identify the intrinsic complexity of a cost-sharing problems with the worst-case ap-

proximation achieved by an optimal Moulin mechanism for it. As an analogy recall

that the “difficulty” of an NP-hard optimization problem is often identified with the

best-possible approximation ratio achievable by a polynomial-time algorithm for it,

assuming P 6= NP . Different NP-Hard problems admit different approximation ratios

(see e.g. [7]).

Our analysis reveals a hierarchy of cost-sharing problems: Problems involving sub-

modular cost and facility location always admit a logarithmic approximation (in the
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number of players), and in the worst case, nothing better. Network design problems

that are variants of Steiner tree cost functions admit a polylogarithmic approxima-

tion, and in the worst case, no better. Finally, problems that involve variants of

set-cover admit no better than a polynomial approximation in the worst case. See

Section 4.3.

1.4.4 New Mechanisms: Acylic Mechanisms

Having identified optimal Moulin mechanisms for various cost-sharing problems, we

ask if there is a better alternative to the Moulin framework. We identify a new frame-

work for designing truthful and no-deficit cost-sharing mechanisms, called acyclic

mechanisms.

Like Moulin mechanisms, acyclic mechanisms are ascending auctions. However,

careful resolution of certain non-determinism present in Moulin mechanisms permits

acyclic mechanisms to employ a wider class of pricing oracles. Thus, acyclic mech-

anisms strictly generalize Moulin mechanisms and offer two important advantages.

First, it is easier to design acyclic mechanisms than Moulin mechanisms: many clas-

sical combinatorial algorithms (based on the primal-dual method) naturally induce

non-Moulin, polynomial-time implementable acyclic mechanisms with good perfor-

mance guarantees. Second, for important classes of cost-sharing problems, acyclic

mechanisms have exponentially better economic efficiency than Moulin mechanisms.

The only, minor drawback of acyclic mechanisms is that they sacrifice a modicum of

incentive compatibility: Moulin mechanisms are slightly more robust to coalitional

manipulations compared to acyclic mechanisms. See Chapters 6 and 7 for details.

1.4.5 Lower Bounds on Truthful Mechanisms

Are there mechanisms, not necessarily computationally efficient, that are superior

to acyclic mechanisms? We identify a no-deficit, incentive compatible non-acyclic

mechanism that achieves a logarithmic approximation (in the number of players) of

the optimal efficiency for all cost-sharing problems with underlying monotone cost

functions. In contrast, for acyclic mechanisms, we only know of an analogous result
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for the narrower class of subadditive cost-sharing problems.

Are there no-deficit mechanisms, not necessarily computationally efficient, that

achieve a constant factor approximation of the optimal efficiency? We show that, in

the worst case, the answer is negative. We identify a logarithmic lower bound on

the worst-case efficiency approximation of every truthful, no-deficit mechanism, ap-

plicable to a simple and central cost-sharing problem. The lower bound is robust and

even applies to all truthful, randomized cost-sharing mechanisms, and randomized

mechanisms that are only truthful in expectation. See Chapter 8.

We conclude with a list of open questions in Chapter 9.

Remark 1.4.1 This thesis is based on the following papers. Roughgarden and Sun-

dararajan [72] formulates the approximation based measure of efficiency loss. Rough-

garden and Sundararajan [72], Roughgarden and Sundararajan [71], and Chawla et

al. [19] use this to identify optimal Moulin mechanisms for various cost-sharing prob-

lems. Mehta et al. [59] introduces acyclic mechanisms, and bounds their performance.

Dobzinski et al. [27] establishes fundamental lower bounds on the efficiency loss of all

incentive compatible, approximately budget-balanced mechanisms.

1.5 Notes

1.5.1 Binary Service

A key restriction of our model is that the mechanism offers each player only one

of two levels of participation, service or no service. One could take instead model

and determine the extent of players’ participation in the project. (Clarke [22] and

Groves [36]) allow for this possibility.)

However, this restriction offers two technical advantages. First, from a mechanism

design point of view, players are single-parameter agents, i.e. each player’s private

information is a single number. Incentive compatible mechanisms for single-parameter

settings are better understood than those for multi-parameter settings, a fact we

leverage throughout this thesis, especially in Chapter 8 1.

1Admittedly there do exist more general single-parameter models that allow for multiple levels of
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Second, for cost functions that are defined implicitly as the optimal solution of

an instance of a combinatorial optimization problem (see Section 2.2), we also hold

the mechanism M responsible for constructing a feasible solution to the optimization

problem induced by the served set S. When there is a binary notion of service, several

previously developed algorithmic techniques are useful for this task.

Even with this restriction, we can model several natural resource allocation set-

tings, and, further, our ideas have found application in settings with multiple levels

of service. See [59, 14].

1.5.2 Excludability

Another restriction on our model is that we assume that the mechanism can exclude

players from participation. The ability to exclude players is vital to recovering the

cost of the constructed solution, without which we encounter the free rider problem,

i.e., participants can enjoy the benefits of participation without contributing to the

cost of the resources (see for instance [2]). Implementing exclusion may however

require special effort:

Example 1.5.1 An interesting historical example of exclusion is Foothills Park, a

park adjoining three cities, Palo Alto, Mountain View, and Los Altos. During the

planning phase, all three cities considered participating in a project to turn this land

into a park. Eventually, Mountain View and Los Altos felt their money could be

better spent and refused to take part. As a result Palo Alto bought and developed

the land, turning it into what is now Foothills Park. However, they also ensured that

only residents of Palo Alto have access to the park. Proof of residency in Palo Alto

is required at the gate [1]!

Of course, exclusion need not imply lack of service. For instance, in Example 1.1.1,

exclusion may mean that municipalities develop and use on-site water resources; in

the above example, residents of Mountain View and Los Altos have access to other

parks.

service. However, these prevent us from leveraging the rich literature on combinatorial algorithms .
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Admittedly, for some public projects, exclusion is not feasible, and our model is not

applicable to these. For instance, consider a public project involving municipalities to

ensure clean air. It is not (yet?) possible to exclude non-participating municipalities

from enjoying the benefits of cleaner air.

1.5.3 Cooperative Game theory

Part of our model—the cost function on subsets of players—defines a cost game from

cooperative game theory (see for instance Osborne and Rubinstein [66], Chapter 13).

A solution in cooperative game theory, given a set of potentially cooperating

players, describes a putative assignment of prices to these players that cover the cost

of service, i.e. for all sets S ⊆ U of cooperating players, a set of numbers χ(i, S)

for all i ∈ S such that
∑

i∈S χ(i, S) = C(S). This corresponds to our cost-recovery

requirement.

Unlike mechanism design, cooperative game theory does not deal with private

information, in fact it does not include the notion of value for service, and presumes

that all players desire service, no matter what they are charged. Consequently, there

is no notion of computing an optimal trade-off between value and cost, i.e. no no-

tion of economic efficiency. And, there is no notion of incentive compatibility as all

information is considered public.

The key issues in cooperative game theory are core stability–which means no

coalition has an incentive to secede from the project—and fairness. Both issues are

valid concerns in our motivating examples, but we choose the mechanism design

approach and focus on the private information and economic efficiency aspects. That

said, some of the mechanisms we study inadvertently satisfy (approximate) versions

of core stability and fairness.

Our work is related to cooperative game-theory in the broader sense of Moulin [61].

Moulin [61] proposes three modes of cooperation. The direct agreement mode—where

players arrive at consensus by face-to-face bargaining, the decentralized mode—where

the outcome results from players acting in a decentralized, self-interested way, and

the justice mode where decision power is vested in a central arbitrator, whose choices
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follow some normative principles, presumably arrived at by consensus among the

players. The model that we study corresponds to the third mode, with the normative

principles being efficiency, no-deficit and incentive compatibility.

1.5.4 Profit Maximization

An alternative route to the one we take in this thesis (maximizing social welfare

and ensuring cost-recovery) is to maximize the mechanism’s profit, like Myerson [65]

does in the context of single-item auctions. A straightforward generalization of Myer-

son [65] identifies revenue-maximizing, incentive-compatible cost-sharing mechanisms

under Bayesian assumptions on player valuations. Beyond this observation, we are

unaware of any cost-sharing work that takes this route.



Chapter 2

Preliminaries

This chapter includes definitions and preliminary results used throughout this thesis.

Treat this chapter as a reference. Section 2.1 describes our mechanism design set-

ting. Section 2.2 defines several types of cost-sharing problems. Section 2.3 defines

our desiderata—budget-balance and efficiency. Section 2.4 discusses and defines the

various notions of incentive compatibility used in this thesis. Section 2.5 discusses

cost-sharing methods, a combinatorial abstraction used extensively in the literature

on cost-sharing mechanisms.

2.1 Mechanism Design Setting

This section describes the inputs to the mechanism, the outputs of the mechanism,

the basic protocol, and the knowledge assumptions.

The problem input is a set U of n players and a cost function C that assigns a cost

C(S) to every set S ⊆ U of players. We assume that C(∅) = 0 and that C(S) ≤ C(T )

for all S ⊆ T ⊆ U . In addition, every player i ∈ U possesses a private, nonnegative

valuation vi, representing player i’s maximum willingness to pay for being included

in the chosen set S.

A mechanism collects a nonnegative bid bi from each player i ∈ U , selects a set

S ⊆ U of players, and charges every player i a price pi. For cost functions that are

12
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defined implicitly as the optimal solution of an instance of a combinatorial optimiza-

tion problem (see Section 2.2 for several examples), we also hold the mechanism M

responsible for constructing a feasible solution to the optimization problem induced

by the served set S. The cost CM(S) of this feasible solution is in general larger than

the cost C(S) of an optimal solution; indeed, many of the underlying combinatorial

optimization problems we study are NP-Hard and the mechanisms we propose will

run in polynomial time.

Remark 2.1.1 Mechanisms can be defined more generally, but the Revelation Prin-

ciple [58, P.871] justifies restricting attention to the class of “direct-revelation mech-

anisms” defined above.

2.2 A Hierarchy of Cost-Sharing Problems

One of the main points of this thesis is to contrast the intrinsic difficulty of vari-

ous cost-sharing problems, as a function of the underlying cost-function (recall Sec-

tion 1.4.3). To this end we define, and will later study, several types of cost-sharing

problems. Many of these are motivated by standard combinatorial optimization prob-

lems. We now define these cost-sharing problems via their underlying cost functions.

These cost-sharing problems are in a hierarchy as Figure 2.1 shows; for instance ev-

ery fixed-tree multicast problem (Example 2.2.8) is also a submodular cost-sharing

problem (Example 2.2.2).

We start by defining a class of cost-sharing problems that encompasses all those

we study. In several resource allocation settings, a feasible way to service a set S1 of

players can be combined with a feasible way to service a set S2 of players to serve

the union S1 ∪ S2 of players, at no additional cost. The cost function defined by the

optimal solutions (ranging over subsets of U) of such an optimization problem defines

a subadditive cost function in the following sense.

Example 2.2.1 (Subadditive Cost Function) A subadditive cost-sharing problem

is defined by a player set U and a nondecreasing cost function C such that, for every
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Figure 2.1: A hierarchy of cost-sharing problems. Nodes are families of cost-sharing
problems. Edges between nodes assert that every problem instance of the destination
node is also a problem instance of the source node.

S1 ⊆ U , S2 ⊆ U ,

C(S1) + C(S2) ≥ C(S1 ∪ S2). (2.1)

Next, we define a family of cost-sharing problems whose underlying cost function

exhibits diminishing returns, i.e., the incremental cost of servicing a player falls as

the set of players already serviced grows. If players are symmetric, this corresponds

to a cost-sharing problem with a concave cost function. In general, we have:

Example 2.2.2 (Submodular Cost Function) A submodular cost-sharing prob-

lem is defined by a player set U and a nondecreasing cost function C such that, for
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Figure 2.2: An instance of uncapacitated facility location (NMUFL)(Example 2.2.3)

every S1 ⊆ S2 ⊆ U and i ∈ U , i /∈ S2,

C(S2 ∪ {i}) − C(S2) ≤ C(S1 ∪ {i}) − C(S1). (2.2)

We now discuss types of cost-sharing problems defined implicitly by combinatorial

optimization problems. Though subadditive, these cost-sharing problems are not

submodular in general (as depicted in Figure 2.1). We begin with a family of cost-

sharing problems based on the well-known facility location problem.

Example 2.2.3 (Non-Metric Uncapacitated Facility Location (NMUFL)) An

uncapacitated facility location (NMUFL) cost-sharing problem is defined by a player

set U and a nondecreasing cost function C, defined implicitly by a set F of facilities,

an opening cost fq for each facility q ∈ F , and a nonnegative cost function c defined

on F × U . In Figure 2.2, for example, the universe contains three players, there are

two facilities with opening costs f1 = 1 and f2 = 2, and the connection costs between

facilities and players are as shown. For a subset S ⊆ U of the players, the cost C(S)

is defined as the cost of the cheapest way to open a non-empty subset of facilities and

connect all of the players in S to open facilities. Formally,

C(S) = min
∅6=F ∗⊆F

(

∑

q∈F ∗

fq +
∑

i∈S

min
q∈F ∗

c(q, i)

)

.

For instance, in Figure 2.2, the cost C({A, B, C}) of servicing all of the players is 7.

We pay special attention to NMUFL cost-sharing problems that have metric con-

nection costs:
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Example 2.2.4 (Metric Uncapacitated Facility Location) A metric uncapaci-

tated facility location cost-sharing problem is a NMUFL cost-sharing problem in which

the connection costs satisfy the triangle inequality: for every pair i, i′ ∈ U of demands

and pair q, q′ ∈ F of facilities,

c(q, i) ≤ c(q, i′) + c(q′, i′) + c(q′, i).

Another sub-class of NMUFL cost-sharing problems have connection costs that

are either zero or ∞. The underlying cost functions are equivalent to the well-known

set-cover problem, where the elements correspond to demands, sets and their costs

correspond to facilities and their opening costs, and connection costs are either 0 ( if

the given element belongs to the given set) or +∞ (otherwise).

Example 2.2.5 (Set Cover) A set cover cost-sharing problem is defined by a player

set U and a nondecreasing cost function C defined as follows. There is a collection

C = {A1, . . . , Am} of subsets of U with nonnegative costs c1, . . . , cm. For a subset S ⊆
U , C(S) is defined as the cost of the cheapest way of covering the elements of S using

subsets from C.

Some instances of set cover cost-sharing problems are also instances of the vertex

cover optimization problem: Edges correspond to elements, and sets of edges incident

on a common vertex form the subsets.

Example 2.2.6 (Vertex Cover) A vertex cover cost-sharing problem is defined by

a player set U and a nondecreasing cost function C defined implicitly by an undirected

graph G = (V, U) with nonnegative vertex weights. For a subset S ⊆ U , C(S) is

defined as the minimum weight vertex cover of the graph V, S—a subset of vertices

that includes at least one endpoint of each edge in S.

An important class of non-NMUFL cost-sharing problems have the well-known

Steiner tree problem, or a variant of it, as the underlying cost function:

Example 2.2.7 (Steiner Tree) A Steiner tree cost-sharing problem [47] is defined

by a player set U and a nondecreasing cost function C implicitly defined by the
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following. There is an undirected graph G = (V, E) with non-negative weights on

the edges. There is a designated vertex t ∈ V called the root. Every player i ∈ U

is associated with a node in V . The cost C(S) of a subset S of players is defined as

that of a minimum-cost subgraph of G that spans all of the players of S as well as

the root t.

While Steiner tree cost-sharing problems are not in general submodular, a sub-

class of these problems are:

Example 2.2.8 (Fixed-Tree Multicast) A fixed-tree multicast cost-sharing prob-

lem [33, 63], is a Steiner tree cost-sharing problem where the input graph is a tree.

We next list three generalizations of Steiner tree cost-sharing problems.

Example 2.2.9 (Steiner Forest) In a Steiner forest cost-sharing problem with player

set U , the cost function is defined as follows. There is an undirected graph G =

(V, E), a non-negative cost function c : E → R+, and a set R of terminal pairs

{(s1, t1), (s2, t2) . . . (sk, tk)} ⊆ V × V . The cost of servicing a subset S ⊆ U of termi-

nal pairs is the cost of the minimum weight subgraph of G that connects the terminal

pairs together.

A different generalization of Steiner Tree problems models a setting where the

cost of an edge is a function of the number of nodes that use it to connect to the root.

Example 2.2.10 (Single-Sink Rent-or-Buy (SSRoB)) In a single-sink rent-or-

buy (SSRoB) cost-sharing problem with player set U , the cost function is defined

as follows. There is a graph G = (V, E) with edge costs that satisfy the Triangle

Inequality, a root vertex t and a parameter M ≥ 1. Each player i ∈ U is located

at a vertex of G. For any set S ⊆ U of players, a feasible solution to the SSRoB

problem induced by S is a way of installing sufficient capacity on the edges of G so

that every player in S can simultaneously route one unit of flow to t. Installing x units

of capacity on an edge e costs ce · min{x, M}; the parameter M can be interpreted

as the ratio between the cost of “buying” infinite capacity for a flat fee and the cost

of “renting” a single unit of capacity. The cost C(S) of a subset S ⊆ U of players is
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then defined as the cost of an optimal solution to the SSRoB problem induced by the

set S.

We now define a set of cost-sharing problems that simultaneously generalize

Steiner forest and SSRoB cost-sharing problems.

Example 2.2.11 (Multicommodity Rent-or-Buy(MRoB)) In a MRoB cost-sharing

problem, each player i corresponds to a pair of nodes si, ti. All other aspects of the

problem are similar to SSRoB cost-sharing problems.

The following cost-sharing problem is fundamental, because it is an instance of

every one of the cost-sharing problems defined above. Thus every negative result that

applies to this problem automatically applies to all of the other cost-sharing problem

families.

Example 2.2.12 (Excludable Public Good) In the excludable public good cost-

sharing problem with player set U , the cost function is defined as follows. The cost

of any non-empty subset S ⊆ U of players is 1 and the cost of the empty set is 0.

To conclude, we mention a simple cost-sharing problem based on pure marginal

cost.

Example 2.2.13 (Marginal Cost) In an additive cost-sharing problem with player

set U , the cost function is defined as follows. Every player i ∈ U is associated with a

cost ci. The cost of any non-empty subset S ⊆ U of players is
∑

i∈S ci and the cost

of the empty set is 0.

2.3 Budget-Balance and Efficiency

We now formally define two of our mechanism design objectives, budget-balance and

efficiency.
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Definition 2.3.1 A mechanism M for the cost-sharing problem C is (β, γ)-budget-

balanced if
CM(S)

γ
≤
∑

i∈S

pi ≤ β · C(S)

for every outcome — set S, prices p, and, if applicable, feasible solution with service

cost CM(S) — of the mechanism. Recall from Section 2.1 that the cost of the solution

produced by the mechanism may not be optimal, and hence, in general CM(S) 6=
C(S).

A mechanism is competitive in the sense of Pál and Tardos [68] if it is (1, γ)

budget-balanced for some γ ≥ 1. A β-budget-balanced mechanism is, by definition,

(β, 1)-budget-balanced. A no-deficit mechanism is β-budget-balanced for some β ≥ 1.

A budget-balanced mechanism is 1-budget-balanced.

Remark 2.3.2 Our definition of budget-balance includes an upper and a lower bound

on the total payment. The lower bound assert that we would like the mechanism to

(approximately) recover the cost that it incurs, i.e., be budget-feasible. The upper

bound asserts that the mechanism should not end up with a budget surplus, a sec-

ondary requirement that obviates the need to determine how to expend the surplus.

For the most part we shall focus on no-deficit mechanisms.

Remark 2.3.3 Most previous works on approximately budget-balanced cost-sharing

mechanisms define β-budget-balance to mean (1, β)-budget-balance rather than (β, 1)-

budget-balance. For the cost-sharing mechanisms that we study, a mechanism meet-

ing one definition can be modified to satisfy the other by scaling its prices accordingly,

and thus the two definitions are in some sense equivalent. In this thesis, we adopt

the definition that is more convenient for stating and proving efficiency guarantees.

All our results have obvious analogs for the alternative definition.

Remark 2.3.4 There are two reasons to study approximate budget-balance. The

first, is the impossibility result discussed in Section 3.1, which states that there are

no efficient, no-deficit, truthful mechanisms. So, it is interesting to relax the cost-

recovery constraint to see how efficiency improves. The second is the impossibility
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results from [45], which identify several non-trivial, interesting cost-sharing problems

that do not permit any budget-balanced Moulin mechanisms. (Prior to our work, this

was the only framework for designing approximately budget-balanced mechanisms.)

Given a mechanism M , the social welfare from servicing a set T , W (T ), is defined

as the difference between value generated by servicing the set v(T ) =
∑

i∈T vi and

the cost incurred CM . Given valuations, the optimal social welfare W ∗ is

max
S⊆U

(v(S) − C(S))

This quantity is independent of any concrete mechanism. We shall often use S∗ to de-

note an element of the set argmaxS⊆U (v(S) − C(S)). See Chapter 3, and specifically

Section 3.2.3, for the definition of approximate efficiency.

Asymptotic Notation: Some of our approximation bounds use standard asymp-

totic notation. Here f(n) = O(g(n)), f(n) = Ω(g(n)), and f(n) = o(g(n)) means

that limn→∞ f(n)/g(n) is bounded above by a positive constant, bounded below by

a positive constant, and equal to zero, respectively.

2.4 Private Information and Incentive Compati-

bility

We implicitly impose two natural constraints on all our mechanisms. First, a mech-

anism satisfies no positive transfers if it never pays players, i.e., prices are always

nonnegative. A mechanism is individually rational (or synonymously, satisfies volun-

tary participation), if truthful players derive non-negative utility from participation.

Without the individual rationality constraints, players may sometimes prefer to not

participate once the outcome is known, which is undesirable. For truthful, direct

revelation mechanisms these requirements together imply: if the serviced set is S,

then pi = 0 for players i /∈ S and pi ≤ bi for players i ∈ S.

We now define our incentive compatibility constraints. As is standard, we assume

that every player aims to maximize the quasilinear utility function ui(S, pi) = vi ·xi−
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pi, where xi = 1 if i ∈ S and xi = 0 if i /∈ S. Our incentive-compatibility constraint is

the well-known strategyproof condition, stating that truthful bidding is a dominant

strategy for every player.

Definition 2.4.1 (Strategyproofness) A mechanism is strategyproof (SP) or truth-

ful if for every player i, every bid vector b with bi = vi, and every bid vector b′ with

b′j = bj for all j 6= i, ui(S, pi) ≥ ui(S
′, p′i), where (S, p) and (S ′, p′) denote the outputs

of the mechanism for the bid vectors b and b′, respectively.

Some of our mechanisms will also satisfy stronger incentive compatibility con-

straints.

Definition 2.4.2 (Groupstrategyproofness) A mechanism is groupstrategyproof

(GSP) if for every subset of players S ⊆ U , bid vectors b, b′, such that bi = vi for

i ∈ S and b′i = bi for all i /∈ S, we have that if there exists a player i ∈ S such that

ui(S, pi) < ui(S
′, p′i), then there exists a player j ∈ S such that uj(S, pj) > ui(S

′, p′j);

here (S, p) and (S ′, p′) denote the outputs of the mechanism for the bid vectors b and

b′, respectively.

Definition 2.4.3 (Weak Groupstrategyproofness) A mechanism is weakly group-

strategyproof (WGSP) if for every subset of players S ⊆ U , bid vectors b, b′, such that

bi = vi for i ∈ S and b′i = bi for all i /∈ S, we have that if there exists a player

i ∈ S such that ui(S, pi) < ui(S
′, p′i), then there exists a player j ∈ S such that

uj(S, pj) = ui(S
′, p′j); here (S, p) and (S ′, p′) denote the outputs of the mechanism for

the bid vectors b and b′, respectively.

Informally, a mechanism is groupstrategyproof [63] if no coordinated false bid by

a subset of players can ever strictly increase the utility of one of its members with-

out strictly decreasing the utility of some other member; transfers between coalition

members are not allowed. Informally, a mechanism is weakly groupstrategyproof [26]

if no coordinated false bid by a subset of players can ever strictly increase the utility

of every one of its members. Thus, in a WGSP mechanism, every deviating coalition

has at least one indifferent member.
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Note that GSP implies WGSP, and WGSP implies SP, however the converse does

not generally hold. For example, VCG mechanisms (Section 2.4.1) are SP, but typi-

cally not WGSP. And acyclic mechanisms (Chapter 6) are WGSP, but not in general

GSP.

We now mention two characterizations of truthful mechanisms. The first is a

payment centric view that we use in Section 8.2. The forward direction is trivial, for

the reverse consult e.g. [60].

Proposition 2.4.4 Define property Π of a mechanism as follows: For every i ∈ U

and bid vector b−i for players other than i, there is a threshold ti(b−i) such that: (i)

if i bids more than ti(b−i), then it receives service at price ti(b−i); (ii) if i bids less

than ti(b−i), then it does not receive service.

Then, M is a truthful cost-sharing mechanism that satisfies voluntary participation

with the player set U if and only if it satisfies property Π.

The second is an essentially equivalent allocation centric view that we use in

Section 8.1. See Archer and Tardos [6] for a proof. An mechanism is monotone if for

every player i and fixed bids b−i of the other players, if player i receives service with

a bid bi, then it also receives service for a bid b′i > bi. A mechanism is a threshold

mechanism if for every player i and fixed set of bids b−i of the other players, it charges

every winning player i the minimum bid that wins it service.

Proposition 2.4.5 A mechanism is truthful and satisfies voluntary participation if

and only if it is a monotone, threshold mechanism.

Randomization makes a brief appearance in Chapter 8. A randomized mechanism

is, by definition, a probability distribution over deterministic mechanisms. Such a

mechanism is universally truthful if every mechanism in its support is truthful. Such

a mechanism is truthful in expectation if no player can ever strictly increase its expected

utility by misreporting its valuation. Every universally truthful mechanism is truthful

in expectation, but the converse need not hold.
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2.4.1 VCG Mechanisms

The well-known Vickrey-Clarke-Groves (VCG) mechanism is a truthful and efficient

mechanism, applicable to several mechanism design settings. We define it in the

context of cost-sharing (following Moulin and Shenker [63]). Given a profile v of

bids, the mechanism allocates service to the set S∗ that maximizes social welfare.

Each player i is charged hi(v−i)−
(

∑

j∈S∗\{i} vj − C(S∗)
)

. Intuitively the mechanism

is truthful because the prices align the global objective (social welfare) with each

player’s utility function—so the player should bid truthfully to maximize utility, up

to a term hi(v−i) that is independent of player i’s bid.

An important type of VCG mechanism is the VCG mechanism with Clarke tax,

where the functions hi are defined to be the optimal social welfare without player i (al-

ternatively with player i’s value set to zero). As discussed in Moulin and Shenker [63],

this mechanism is truthful, efficient, and also satisfies no positive transfers and vol-

untary participation; in fact it is the unique such mechanism. Unfortunately, as

discussed in Chapter 3, it has a large budget deficit.

2.5 Cost-Sharing Methods

The mechanism design frameworks we study, i.e., acyclic mechanisms and Moulin

mechanisms, localize the problem specific aspects into a pricing oracle called a cost-

sharing method. A cost-sharing method χ is a function that assigns a non-negative

cost share χ(i, S) for every subset S ⊆ U of players and every player i ∈ S.

For cost functions induced by combinatorial optimization problems (such as Ex-

amples 2.2.7 and 2.2.8), a cost-sharing method outputs both cost shares and a feasible

solution for the optimization problem induced by S. A cost-sharing method is (β, γ)-

budget balanced for a cost function C and parameters β, γ ≥ 1 if

Cχ(S)

γ
≤
∑

i∈S

χ(i, S) ≤ β · C(S), (2.3)

where Cχ(S) is the cost of the feasible solution produced by the method χ. As usual,
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β-budget-balance is short for (β, 1)-budget-balance, and such methods are also called

no-deficit. Moulin mechanisms (Chapter 4) require cost-sharing methods that are

cross-monotonic in order to be SP.

Definition 2.5.1 A cost-sharing method is cross-monotonic if the cost share of a

player only increases as other players are removed: for all S ⊆ T ⊆ U and i ∈ S,

χ(i, S) ≥ χ(i, T ).

Here is an example that illustrates the definitions in this section.

Example 2.5.2 (Shapley and Sequential Cost-Sharing) Consider an instance

of fixed-tree multicast (Example 2.2.8) with tree T and player set U = {1, 2, . . . , n}.
Two 1-budget-balanced cost-sharing methods are as follows. In the sequential cost-

sharing method χseq, given a subset S ⊆ U , each player i ∈ S pays the full cost of

each edge of its (unique) path to the root of T that is not used by a player of S with

lower index. In the Shapley method χsh, each player i ∈ S pays a “fair share” of each

of the edges in its path — ce/ne for an edge e of cost ce, where ne denotes the number

of players of S using edge e to the reach the root of T . Since the amount a player

pays for each edge in its path can only increase as other players are removed from S,

both of these methods are cross-monotonic.
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Quantifying Inefficiency

In this chapter we discuss why efficiency loss arises in truthful, approximately budget-

balanced mechanisms, and introduce our approximation based approach to measuring

efficiency loss.

3.1 A Motivating Impossibility Result

Recall our desiderata from Chapter 1. Are there efficient, no-deficit, truthful mecha-

nisms? Here is an example that shows that in general the answer is negative.

Example 3.1.1 Consider the excludable public good cost-sharing problem (Exam-

ple 2.2.12) with n > 1 players. Fix any truthful, efficient mechanism. Recall that

every truthful, individually-rational mechanism must offer a bid-independent take-it-

or-leave it price in the sense of Proposition 2.4.4. Fix a player i ∈ 1 . . . n. Suppose

that the sum of the valuations of all the players other than i (
∑

j 6=i vi) is strictly

larger than one. What take-it-or-leave-it price does the mechanism offer player i?

For the mechanism to be optimally efficient, the player i should be serviced if it has

any strictly positive valuation. So it must be offered a price of 0.

Now consider the valuation profile 1 + ǫ, . . . , 1 + ǫ for some positive ǫ. As the

mechanism is efficient, it services all the players, and incurs a cost of 1. But, by the

above argument, the mechanism does not collect any revenue, and thus has arbitrarily
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bad deficit.

What just happened? When we insist on a truthful, efficient, budget-balanced

mechanism, we are really asking if the prices can play two different roles simultane-

ously. Can they help incentivize an efficient allocation, while recovering cost? The

above example shows that the unique prices that support the efficient allocation do

not in general recover cost.

For readers familiar with the mechanism design literature, here is a slicker way to

see where this impossibility comes from. Recall that every direct revelation mecha-

nism consists of an allocation rule and a payment rule. Arguably, the central result of

single-parameter mechanism design (see for instance Myerson [65] or Archer and Tar-

dos [6]) states that the allocation rule of a truthful mechanism determines its payment

function up to certain bid-independent terms. When we insist on voluntary participa-

tion, these bid-independent terms are uniformly zero. Consequently, there is a unique

efficient mechanism that satisfies voluntary participation (Moulin and Shenker [63],

Proposition 3 proves this uniqueness result from first principles). This happens to

be the VCG mechanism with Clarke tax (Section 2.4.1). Unfortunately, this mech-

anism happens to have arbitrarily bad budget balance, even for simple cost-sharing

problems such as the excludable public good cost-sharing problem. This mechanism

charges a player only if it is pivotal—a player is pivotal if reducing its valuation to

zero changes the allocation of at least one of the other players. For the excludable

public good cost-sharing problem, when every player has a value larger than the cost

of the good, no player is pivotal. (Our example above confirms this phenomenon.)

Finally, recall that the excludable public good cost-sharing problem is an instance

of all the cost-sharing problems listed in the previous chapter other than the additive

cost-sharing problem. So, the impossibility result applies to many interesting cost-

sharing problem families.

3.2 How to Quantify Inefficiency?

How should we proceed?
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3.2.1 Approximation

Impossibility results are common in optimization. Motivated by conditional impossi-

bility results like Cook’s Theorem [23], as well as information-theoretic lower bounds

in restricted models of computation like online [16] and streaming algorithms [64],

algorithm designers are accustomed to devising heuristics and proving worst-case

guarantees about them using approximation measures. This approach can also be

applied to cost-sharing mechanism design to quantify the inevitable efficiency loss in

incentive-compatible, budget-balanced cost-sharing mechanisms. As worst-case ap-

proximation measures are rarely used in economics, this research direction has not

been pursued previously.

3.2.2 The Obvious Approach Does Not Work

Several definitions of approximate efficiency are possible. Arguably, the most natural

requirement is to insist that a mechanism always computes an outcome S that is a

ρ-approximation of the social welfare: W (S) ≥ ρ · W (S∗), where S∗ is the econom-

ically efficient solution. Unfortunately, Feigenbaum et al. [32] shattered any hope

for such a guarantee: For the excludable public good cost-sharing problem, for ev-

ery γ, β ≥ 1 and β, γ-budget-balanced incentive-compatible mechanism, there is a

valuation profile such that the efficient solution has strictly positive welfare but the

mechanism produces the empty outcome (with zero welfare). Thus every mechanism,

no matter how intuitively “good” or “bad”, is a 0-approximation algorithm for the

social welfare objective. This inapproximability result is characteristic of mixed-sign

objective functions such as the social welfare.

3.2.3 Our Approach, and Its Interpretations

We must therefore measure efficiency loss in a different way. Our basic efficiency

guarantees have the following form, for a parameter ρ ≥ 0 and a mechanism for the

cost-sharing problem C: for every valuation profile,

W (S∗) − W (S) ≤ ρ · C(S∗), (3.1)
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where S is the output of the mechanism and S∗ is an efficient outcome. In this case,

we call the mechanism ρ-approximate.

We have chosen to present this efficiency guarantee in terms of additive welfare

loss, but it is robust and admits several different interpretations. For example, the

bound in (3.1) implies a relative approximation guarantee for a different formulation

of economic efficiency. Precisely, define the social cost π(S) of an outcome S to be

the cost incurred by the mechanism plus the sum of the excluded valuations (i.e.,

opportunity cost):

π(S) = C(S) + v(U \ S). (3.2)

Since social cost and social welfare are related by the affine transformation π(S) =

−W (S)+v(U), minimizing the social cost is ordinally equivalent to maximizing the so-

cial welfare. The two objective functions are not, of course, equivalent from an approx-

imation perspective. Indeed, while the impossibility result in Feigenbaum et al. [32]

precludes any relative approximation of the social welfare, every ρ-approximate cost-

sharing mechanism also (ρ+1)-approximates the social cost. Such non-approximation-

preserving transformations are common in applications with mixed-sign objective

functions, including prize-collecting combinatorial optimization problems (e.g. [10])

and discrete maximum-likelihood problems (e.g. [54]).

A second interpretation of the bound in (3.1) is motivated by the examples used

in the impossibility result in [32]. These examples are intuitively difficult because the

optimal outcome S∗ has large cost C(S∗) and value v(S∗) only slightly larger than

C(S∗), leaving the mechanism with no “margin for error”. Can we obtain a relative

approximation of welfare when the value of an optimal outcome is bounded away

from its cost? To formalize this question, we say that an outcome S is η-separated if

W (S) ≥ η ·C(S) or, equivalently, if v(S) ≥ (η + 1) ·C(S). The punchline, proved via

a simple calculation, is this: if a mechanism is ρ-approximate, then ρ is the separation

threshold beyond which non-trivial welfare approximation is possible. Precisely, a ρ-

approximate mechanism extracts at least a (1 − ρ/η) fraction of the optimal welfare

when the optimal outcome is η-separated.
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3.2.4 Justifying our Approach

We next establish the robustness of such an approximation bound by demonstrating

its consequences for alternative definitions of approximate economic efficiency.

Not all definitions of approximate efficiency provide meaningful information for

cost-sharing mechanism design. As noted in Section 3.2, for each β, γ ≥ 1 there are

simple cost-sharing problems such that no incentive-compatible, β, γ-budget-balanced

mechanism obtains a non-zero fraction of the optimal welfare [32]. Thus, if we insist

on adopting a relative approximation measure — by far the most ubiquitous kind

across theoretical computer science — we must either change the objective function

or restrict the allowable instances. We explore these two approaches in turn.

What is the “smallest perturbation” of the welfare objective that admits non-

trivial approximation results? A minimal requirement for a credible reformulation is

ordinal equivalence — for a fixed cost-sharing function and valuation profile, a subset

S should be “better” than a subset T if and only if S has higher welfare than T . This

requirement suggests either maximizing f(W (S)) for a strictly increasing function f or

minimizing f(W (S)) for a strictly decreasing function f . Affine functions are in some

sense the “least distorting” candidate functions f , and for relative approximation

guarantees there is no loss of generality in considering only: (1) minimizing −W (S)+

g(C, v) = C(S) − v(S) + g(C, v), where the additive term g(C, v) is positive and

independent of S; and (2) maximizing v(S) − C(S) + h(C, v) for a positive additive

term h(C, v). Since costs and valuations already occur positively in (1) and (2),

respectively, we take g to be independent of C and h to be independent of v. The

examples in [32] are strong enough to imply that no non-trivial relative approximation

is possible for these objectives unless g(C, v) ≥ v(S∗) and h(C, v) ≥ C(S∗). To avoid

the awkwardness of referencing the optimal solution in the objective function itself,

we take g(C, v) = v(U) and h(C, v) = C(U), leading to the objectives of minimizing

social cost:

min
S⊆U

π(S) ≡ −W (S) + v(U) = C(S) + v(U \ S); (3.3)
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and maximizing social reward:

max
S⊆U

R(S) ≡ W (S) + C(U) = v(S) + [C(U) − C(S)]. (3.4)

These answers to our initial question conform to previous approaches to approxi-

mating mixed-sign objective functions in other application domains, including prize-

collecting combinatorial optimization (e.g. [10]) and maximum-likelihood inference

(e.g. [54]).

Simple algebra shows that an efficiency guarantee of the form (3.1) implies relative

approximation guarantees for the social cost and social reward objectives.

Proposition 3.2.1 (From Additive to Relative Approximation) If M is a ρ-

approximate mechanism for a cost-sharing problem C, then, assuming truthful bids:

(a) M is a (ρ + 1)-approximation algorithm for minimizing social cost; and

(b) M is a 1/(ρ + 1)-approximation algorithm for maximizing social reward.

The guarantees in Proposition 3.2.1 hold even if the constants g(C, v) and h(C, v) in

the definitions of social cost (3.3) and social reward (3.4) are reduced to v(S∗) and

C(S∗), respectively.

A second approach to efficiency guarantees is to seek a relative approximation of

welfare for the widest class of problems possible. The impossibility result from [32]

applies to the excludable public good cost-sharing problem, which is an instance of

almost all other problem families (recall Figure 2.1). So, restricting only the cost

function is in general uninteresting for non-trivial relative welfare guarantees.

We instead study “promise problems” in which the value served by an optimal

solution is bounded away from its service cost. Recall from the Introduction that an

outcome S is η-separated for a parameter η ≥ 0 if W (S) ≥ η ·C(S). Call a valuation

profile η-separated if there is an η-separated efficient outcome. Simple algebra implies

the following.
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Proposition 3.2.2 (From Additive Approximation to Promise Problems) If M

is a ρ-approximate mechanism for a cost-sharing problem C, then, assuming truth-

ful bids, M is a (1 − ρ
η
)-approximation algorithm for social welfare for η-separated

valuation profiles.

Thus the approximation factor ρ is the separation threshold beyond which the mech-

anism is guaranteed to approximate the social welfare.

Finally, recall that our critique of the social welfare objective was rooted in the fact

that it fails to differentiate between “better” and “worse” cost-sharing mechanisms.

Does the approximation framework detailed in this section suffer the same flaw?

The answer is “no”: the approximation factors (in the sense of (3.1)) of different

mechanisms for a problem can vary widely (Example 2.2.12 and Proposition 4.2.12),

and the best-achievable approximation factor is different for different types of cost-

sharing problems (Section 5.1 and Theorem 5.3.10).

3.3 Notes

3.3.1 Beyond Impossibility: A Bayesian Approach

Dropping the voluntary participation constraint makes the impossibility result go

away—there is an efficient, truthful, no-deficit mechanism (VCG with a large, bid-

independent tax). However, arguably, the voluntary participation constraint is vital.

Suppose that the valuation distributions of the players are known to the mechanism.

Then, there is a mechanism that is efficient, truthful, budget-balanced in expectation

over the valuation distributions (ex-ante budget-balanced), and that satisfies volun-

tary participation in expectation over the valuation distributions (ex-ante voluntary

participation).

We start from the basic VCG mechanism. For every bid vector v, every player j is

paid an amount
∑

j 6=i,j∈S∗ vj −C(S∗) to align its utility to the global objective (social

welfare); here S∗ is the set that maximizes social welfare. So, each player enjoys an

expected utility equal to E[
∑

j∈S∗ vj − C(S∗)], where the expectations are over the

valuations. The mechanism suffers an expected deficit of E[(n − 1) ·∑j∈S∗ vj − n ·
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C(S∗) + C(S∗)].

As this mechanism optimizes social welfare, we have that E[
∑

i∈S∗ vi] ≥ E[C(S∗)].

So the expected deficit and the expected surplus are both non-negative. Introducing

an additional bid-independent tax for each player leaves the mechanism efficient and

truthful. Each player can be charged an additional amount (n − 1)/n · E[
∑

j∈S∗ vj −
C(S∗)], resulting in ex-ante budget-balance, ex-ante voluntary participation.

Can we improve on this? d’Aspremont, Gerard-Varet [24] propose a mechanism

which is efficient, Bayesian incentive compatible (truthtelling maximizes expected

utility where the expectation is over the other players’ valuations), and satisfies the

property that the payments sum to zero; this needs an assumption that the players’

valuations are distributed independently. As in VCG the idea is to pay each player an

amount that, in expectation over other players’ values, aligns its utility with the wel-

fare objective, yielding bayesian incentive compatibility. Call this payment to player

i, Xi(vi). Now, each player is charged further amount
∑

j 6=i Xj(vj). These additional

payments balance the budget, and do not violate bayesian incentive compatibility as

they are bid-independent (the terms Xi(vi) are in expectation over the other players’

valuations).

Can we instead get the payments to sum to the cost of the efficient solution, C(S∗)?

The problem is that the quantity C(S∗) depends on the players’ bids. Following the

above paragraph we could achieve ex-ante budget-balance, i.e. recover E[C(S∗)], a

bid independent quantity. However, this gives us a result weaker than the one above

based on VCG.



Chapter 4

Moulin Mechanisms

Until recently almost all known approximately budget-balanced cost-sharing mech-

anisms were Moulin mechanisms [11, 17, 37, 39, 45, 47, 48, 51, 55, 56, 68]. As

Section 4.1 reviews, Moulin mechanisms are ascending auctions that consist of a

problem-independent protocol together with a problem-dependent pricing oracle (i.e.

cost-sharing method). Section 4.2 characterizes the efficiency loss of Moulin mech-

anisms in terms of a combinatorial property of the cost-sharing method, called its

summability. In the next chapter we use this characterization to identify optimal

Moulin mechanisms for a wide variety of cost-sharing problems. Section 4.3 summa-

rizes the results of our analysis and compares the hardness of various cost-sharing

problems. Section 4.4 shows how we can trade cost-recovery for increased efficiency.

4.1 Moulin Mechanisms

We first review Moulin mechanisms. A Moulin mechanism is driven by a cross-

monotonic cost-sharing method (recall Section 2.5)—a function χ that assigns a non-

negative cost share χ(i, S) for every subset S ⊆ U of players and every player i ∈ S.

Given a cross-monotonic cost-sharing method χ for a cost function C, we obtain

the corresponding Moulin mechanism by simulating an iterative ascending auction,

with the method χ suggesting prices for the remaining players at each iteration.

33
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Definition 4.1.1 (Moulin Mechanisms) Let U be a universe of players and χ a

cross-monotonic cost-sharing method defined on U . The Moulin mechanism M(χ)

induced by χ is the following.

1. Collect a bid bi from each player i ∈ U .

2. Initialize S := U .

3. If bi ≥ χ(i, S) for every i ∈ S, then halt. Output the set S, the feasible solution

constructed by χ, and charge each player i ∈ S the price pi = χ(i, S).

4. Let i∗ ∈ S be a player with bi∗ < χ(i∗, S).

5. Set S := S \ {i∗} and return to Step 3.

The cross-monotonicity constraint ensures that the simulated auction is ascending,

in the sense that the prices offered to a player progressively increase with time. This

implies that the outcome of a Moulin mechanism is uniquely defined, independent of

the choices made in Step 4. Also, the Moulin mechanism M(χ) clearly inherits the

budget-balance factors of the cost-sharing method χ. Finally, Moulin [62] proved the

following.

Theorem 4.1.2 (Strategyproofness of Moulin Mechanisms [62]) If χ is a cross-

monotonic cost-sharing method, then the corresponding Moulin mechanism M(χ) is

strategyproof.

Theorem 4.1.2 reduces the problem of designing an strategyproof (Definition 2.4.1),

(β, γ)-budget-balanced (Definition 2.3.1) cost-sharing mechanism to that of designing

a cross-monotonic, (β, γ)-budget-balanced cost-sharing method (see Section 2.5 for

definitions).

Remark 4.1.3 Moulin mechanisms also satisfy a stronger notion of incentive com-

patibility called groupstrategyproofness [62, 63], which states that every coordinated

set of false bids by a coalition should decrease the utility of some player in the coalition

(or should have no effect).
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By Theorem 4.1.2, the sequential and Shapley cost-sharing methods of Exam-

ple 2.5.2 induce strategyproof and fully budget-balanced mechanisms for fixed-tree

multicast cost-sharing problems. The impossibility result discussed in Section 3.1

implies that neither mechanism can be fully efficient. We conclude the section with

concrete examples demonstrating this.

Example 4.1.4 Recall the excludable public good cost-sharing problem (Example 2.2.12).

For a valuation profile v, the efficient outcome is U if v(U) > 1 and ∅ otherwise. The

idea is to determine “worst-case valuations” for the Moulin mechanisms M(χseq)

and M(χsh) induced by the sequential and Shapley cost-sharing methods (recall Sec-

tion 2.5), respectively. We do this by setting the valuations of players to be as large

as possible, subject to the constraint that the mechanism terminates with the empty

outcome.

Fix a small positive number ǫ. If all players have valuation 1 − ǫ and bid truth-

fully, then M(χseq) outputs the empty outcome. If player i has valuation 1/i − ǫ

for i ∈ {1, 2, . . . , n} and players bid truthfully, then M(χsh) outputs the empty out-

come. These examples show (for arbitrarily small ǫ) that the first mechanism is no

better than ≈ (n − 1)-approximate, while the second is no better than ≈ (Hn − 1)-

approximate (in the sense of Equation (3.1)), where Hn =
∑n

i=1 1/i denotes the nth

Harmonic number.

4.2 Summability Characterizes Approximate Effi-

ciency

This section proves that the summability of a cost-sharing method characterizes the

approximate efficiency of the corresponding Moulin mechanism. After Section 4.2.1

defines summability, Section 4.2.2 proves that it upper bounds approximate efficiency

and Section 4.2.3 explores the senses in which this bound is tight.
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4.2.1 Summability

Intuitively, summability quantifies the efficiency loss from the overly aggressive re-

moval of players by a Moulin mechanism. We motivate the formal definition via

a generalization of Example 2.2.12, which strongly suggests that summability lower

bounds the approximate efficiency of a Moulin mechanism.

Example 4.2.1 (Generic Lower Bound on Efficiency Loss) Let χ be a cross-

monotonic cost-sharing method for the cost function C, defined on the universe U .

Assume for simplicity that the method only assigns positive cost shares: χ(i, S) > 0

for all S ⊆ U and i ∈ S. Pick an ordering σ of the players of U and a subset S. Let

iℓ denote the ℓth player and Sℓ the first ℓ players of S with respect to σ and define

the parameter αS,σ by

αS,σ =
1

C(S)

|S|
∑

ℓ=1

χ(iℓ, Sℓ). (4.1)

In other words, we start with the empty set, add players of S one-by-one according

to σ, and consider the cost share of the ℓth player when it is initially added. The

parameter αS,σ is the factor by which the sum of these cost shares overestimates the

cost C(S) of serving all of the players.

We claim that the Moulin mechanism M(χ) is no better than (αS,σ−1)-approximate

for C. To see this, define the valuation vℓ of the ℓth player of S (according to σ) to

be χ(iℓ, Sℓ) − ǫ, where ǫ > 0 is arbitrarily small. Give players of U \ S zero valua-

tions. The Moulin mechanism M(χ) will output the empty set. The optimal welfare

is bounded below by v(S) − C(S) ≈ αS,σ · C(S) − C(S) = (αS,σ − 1) · C(S). Since

valuations outside S are zero, there is an efficient outcome S∗ ⊆ S. Further, C is

non-decreasing, and hence the welfare loss of M(χ) on this valuation profile is at least

(αS,σ − 1) · C(S∗).

The summability of a cost-sharing method is then defined as the worst-case ratio

of the form (4.1) over choices of sets S and orderings σ.

Definition 4.2.2 (Summability) Let C and χ be a cost function and a cost-sharing

method, respectively, defined on a common universe U of n players. The method χ
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is α-summable for C for a function α : {0, 1, 2, . . . , n} → R+ if

|S|
∑

ℓ=1

χ(iℓ, Sℓ) ≤ α(|S|) · C(S) (4.2)

for every ordering σ of U and every set S ⊆ U , where Sℓ and iℓ denote the set of the

first ℓ players of S and the ℓth player of S (with respect to σ), respectively.

Remark 4.2.3 We define summability as a function rather than a scalar in order

to parametrize our efficiency guarantees by the number k of players served in an

efficient outcome (which can be much smaller than the universe size). For example, in

Chapter 5 Sections 5.1 and 5.3 we establish summability bounds of the form α(|S|) ≤
H|S| and α(|S|) = O(log2 |S|) for all S ⊆ U , which will lead to Moulin mechanisms

that are Hk − 1 and O(log2 k)-approximate, respectively.

4.2.2 Efficiency Guarantees

The central result of this section is the following efficiency guarantee for Moulin

mechanisms derived from cost-sharing methods with bounded summability.

Theorem 4.2.4 (Summability Upper Bounds Approximate Efficiency) Let C

be a cost function defined on a universe U and χ a cross-monotonic, no-deficit, α-

summable cost-sharing method for C. Then M(χ) is an (α(k)−1)-approximate mech-

anism, where k is the size of an efficient outcome.

Propositions 3.2.1 and 3.2.2 immediately give the following corollaries.

Corollary 4.2.5 Let C be a cost function defined on a universe U and χ a cross-

monotonic, no-deficit, α-summable cost-sharing method for C. Then M(χ) is:

(a) an α(k)-approximation algorithm for minimizing the social cost (3.2);

(b) a 1/α(k)-approximation algorithm for maximizing the social reward;

(c) a [1 − (α(k) − 1)/η]-approximation algorithm for maximizing welfare for η-

separated valuation profiles.
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We emphasize that Theorem 4.2.4 is completely problem-independent. Together

with Definition 4.2.2, it distills the problem-specific aspect of simultaneously achiev-

ing good budget-balance and efficiency in Moulin mechanisms: designing a cross-

monotonic, approximately budget-balanced cost-sharing method with small summa-

bility. The generality of Theorem 4.2.4 is evident from its application to identify

optimal Moulin mechanisms for various cost-sharing problems (Section 4.3), and to

quantifiable trade-offs between budget-balance and economic efficiency (Section 4.4).

We now build up to a proof of Theorem 4.2.4. Fix a cost function C defined

on a universe U , a valuation profile v, and an α-summable and a no-deficit cross-

monotonic cost-sharing method for C. Let σ denote the reversal of the order in which

the mechanism M(χ) deletes players (in some fixed trajectory), with players in the

final output set SM ordered arbitrarily among the first |SM | positions.

A crucial tool in our proof is the following potential function Φσ, which we define

for each subset S ⊆ U as

Φσ(S) = v(U \ S) +
∑

iℓ∈S

χ(iℓ, Sℓ), (4.3)

where for every ℓ ∈ {1, 2, . . . , |S|}, Sℓ denotes the first ℓ players of S and iℓ the ℓth

player of S according to σ.

The ordering σ and the potential function Φσ are defined to ensure that the

potential function value decreases with each iteration in our fixed trajectory of M(χ).

We use this fact in the next lemma.

Lemma 4.2.6 If SM is the final output of M(χ) and S∗ is an efficient outcome for

a valuation profile v, then

Φσ(SM ∩ S∗) ≤ Φσ(S∗).

Proof: The idea is to delete players from S∗ in the same order as M(χ) to obtain

the set SM ∩ S∗. More precisely, order the players i1, i2, . . . , im of S∗ \ SM according

to their deletion by M(χ), with player i1 deleted first. This ordering is consistent

with σ. For a player ij ∈ S∗ \ SM , let Sj denote the set of players from which it
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was removed by M(χ), and let S∗
j denote S∗ \ {i1, . . . , ij−1}. Note that Sj ⊇ S∗

j for

every j. By the definition of M(χ), the valuation vj of player ij is less than χ(ij, Sj).

Cross-monotonicity of χ then implies that vj < χ(ij , S
∗
j ) for every player ij ∈ S∗\SM .

Using the definition of Φσ, we have

Φσ(S∗) = Φσ(S∗
1) > Φσ(S∗

2) > · · · > Φσ(S∗
m+1) = Φσ(SM ∩ S∗).

�

Also, by definition, summability (4.2) bounds the distance between the potential

function (4.3) and the social cost (3.2) in the following sense.

Lemma 4.2.7 For every subset S ⊆ U ,

Φσ(S) ≤ v(U \ S) + α(|S|) · C(S).

We are now prepared to prove Theorem 4.2.4.

Proof of Theorem 4.2.4: Fix a universe U , a cost function C, and a set v of truthful

bids. Let S∗ be an efficient outcome. Let χ be an α-summable, no-deficit, cross-

monotonic cost-sharing method for C and SM the output of the corresponding Moulin

mechanism M(χ) for the profile v. Define the player ordering σ and the potential

function Φσ as in (4.3). We can then derive

v(U \ SM) + C(SM) ≤ v(U \ SM) +
∑

i∈SM

χ(i, SM)

≤ v(U \ SM) + v(SM \ S∗) +
∑

i∈SM∩S∗

χ(i, SM)

≤ Φσ(SM ∩ S∗)

≤ Φσ(S∗)

≤ v(U \ S∗) + α(|S∗|) · C(S∗),

where the first inequality follows from the no-deficit condition (2.3), the second from

the fact that χ(i, SM) ≤ vi for every i ∈ SM , the third from the cross-monotonicity
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of χ, the fourth from Lemma 4.2.6, and the fifth from Lemma 4.2.7. Rearranging

terms then proves the theorem. �

Remark 4.2.8 When the method χ is the Shapley cost-sharing method (see Sec-

tion 5.1), our definition (4.3) of the potential function Φσ essentially coincides with

that of Hart and Mas-Colell [41] for cooperative games.

Remark 4.2.9 The results of this section can be interpreted as efficiency guarantees

for the noncooperative participation games studied by Monderer and Shapley [63]

and Moulin [62]. For example, Corollary 4.2.5(a) implies that for the social cost

objective (3.3), the “strong price of anarchy” [4] in such a game is at most the

summability of the underlying cost-sharing method.

4.2.3 Matching Lower Bounds

We now discuss the senses in which the bound in Theorem 4.2.4 is tight. The argument

in Example 4.2.1 implies the following lower bound for strictly positive cost-sharing

methods.

Proposition 4.2.10 (Summability Lower Bounds Approximate Efficiency I)

Let χ be a cross-monotonic cost-sharing method for a cost-sharing problem C with uni-

verse U that is everywhere positive and at least α-summable. Then M(χ) is no better

than (α(k) − 1)-approximate, where k is the size of an efficient outcome.

The assumption that all cost shares are positive is similar to the “strong consumer

sovereignty” assumption in Moulin [62], which states that each player has winning

and losing bids for every fixed set of bids of the other players.

For technical reasons, summability need not lower bound the approximate ef-

ficiency of cost-sharing methods that can employ zero cost shares. To informally

illustrate the issue, consider a cost-sharing problem with universe U = {1, 2, . . . , n}
and two cost-sharing methods χ1, χ2 defined for the restriction of this problem to

U \ {1}, where the summability of χ2 is much larger than that of χ1. Define χ on U

by setting cost shares equals to those of χ1 for sets that include the first player and
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equal to those of χ2 for sets that do not; the first player always receives a zero cost

share. The summability of χ is as large as that of χ2, but the Moulin mechanism

M(χ) will never delete the first player and will therefore only assign cost shares ac-

cording to the method χ1 that has small summability. Thus the summability of χ is

strictly larger than the approximate efficiency of the induced Moulin mechanism.

There is nevertheless a variant of Proposition 4.2.10 for non-positive cost-sharing

methods. To state it, note that a Moulin mechanism M(χ) for a cost-sharing problem

naturally induces a Moulin mechanism for each induced sub-universe U ′ of U (via the

restriction of χ to this set U ′). We say that a Moulin mechanism M(χ) is strongly

ρ-approximate if every induced mechanism is ρ-approximate for the corresponding

induced cost-sharing problem. The proof of Theorem 4.2.4 extends directly to this

notion of strong approximation.

Corollary 4.2.11 Let C be a cost function defined on a universe U and χ a cross-

monotonic, no-deficit, α-summable cost-sharing method for C. Then M(χ) is a

strongly (α(k) − 1)-approximate mechanism, where k is the size of an efficient out-

come.

Summability is a valid lower bound for strong approximate efficiency, even for

cost-sharing methods that use zero cost shares.

Proposition 4.2.12 (Summability Lower Bounds Approximate Efficiency II)

Let χ be a cross-monotonic cost-sharing method for a cost-sharing problem C with uni-

verse U that is at least α-summable. Then M(χ) is no better than strongly (α(k)−1)-

approximate, where k is the size of an efficient outcome.

Proof Sketch: Choose k, a set S with |S| = k, and an ordering of the players of S so

that
∑k

ℓ=1 χ(iℓ, Sℓ) ≥ α(k)·C(S), where Sℓ and iℓ are defined in the usual way. Obtain

R from S by discarding players with χ(iℓ, Sℓ) = 0. Since χ is cross-monotonic and C

is nondecreasing, the induced ordering on R satisfies
∑|R|

ℓ=1 χ(iℓ, Rℓ) ≥ α(k) · C(R)

with all cost shares positive. Mimicking Example 4.2.1 in the problem induced by R,

the welfare loss of the induced Moulin mechanism is at least (α(k)−1) ·C(R∗), where

R∗ denotes an optimal outcome to this induced problem. �
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The construction in Example 4.2.1 also demonstrates the tightness of the alterna-

tive guarantees in Corollary 4.2.5.

Proposition 4.2.13 Let χ be a cross-monotonic cost-sharing method for a cost-

sharing problem C with universe U that is everywhere positive and at least α-summable.

Then:

(a) M(χ) is no better than an α(k)-approximation algorithm for minimizing social

cost;

(b) M(χ) is no better than a 1/α(k)-approximation algorithm for maximizing social

reward;

(c) there are (α(k) − 1)-separated valuation profiles for which M(χ) obtains zero

welfare.

Similar results apply for non-positive cost-sharing methods and “strong” versions of

these three types of efficiency guarantees.

4.3 Applications of the Summability Framework

Theorem 4.2.4 and Propositions 4.2.10 and 4.2.12 show that summability of the cost-

sharing method χ characterizes (i.e., lower and upper bounds) the efficiency loss of

the Moulin mechanism, M(χ). In the next chapter we identify optimal Moulin mech-

anisms for various cost-sharing problem families (see Section 2.2 for the definitions of

these families). That is, for a specific cost-sharing problem family, we establish lower

bounds on the summability attainable by any no-deficit, cross-monotonic cost-sharing

method, and we identify cost-sharing methods that match this lower bound up to a

constant factor. The table below summarizes our results. All the results are worst

case with respect to the valuation profile and the cost function in the problem family;

k is the size of the optimally efficient solution and recall that Hk ≈ ln k.
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Problem Optimal Worst Case Optimal mechanism

Efficiency Loss

Marginal Cost 1 (below) Trivial

Excludable Public Good Hk − 1 (Section 5.1) Shapley [63]

Fixed Tree Multicast Hk − 1 (Section 5.1) Shapley [63]

Submodular Cost Hk − 1 (Section 5.1) Shapley [63]

Metric UFL Θ(log k) (Section 5.2) Pal and Tardos [68]

Steiner Tree Θ(log2 k) (Section 5.3) Jain and Vazirani [48]

Steiner Forest Θ(log2 k) (Section 5.4) Könemann, Leonardi and Schäfer [55]

SSRoB Θ(log2 k) (Section 5.5) Gupta, Srinivasan and Tardos [39]

Marginal Cost cost-sharing problems admit a Moulin mechanism that is truthful,

budget-balanced and efficient—the (obviously cross-monotonic and budget-balanced)

cost-sharing method always offers each player a price equal to its marginal cost ci. In

contrast, the excludable public good cost-sharing problem, which models pure fixed

cost, only admits a Θ(log k)-approximate no-deficit mechanism; the optimal Moulin

mechanism uses the Shapley value cost-sharing method. This result extends to all

submodular cost-sharing problems, including fixed tree multicast problems.

It is now tempting to think of pure fixed cost and pure marginal cost as two

extremes, and extrapolate that all cost-sharing problems admit O(log k)-approximate

Moulin mechanisms via the Shapley value cost-sharing method. In fact, the proof of

Proposition 2 from Moulin and Shenker [63] essentially shows that if the Shapley

value cost-sharing method is cross-monotonic for a cost-sharing problem, then it has

optimal summability, and the resulting Moulin mechanism is O(log k)-approximate.

The fly in the ointment is that the Shapley value cost-sharing method is not in general

cross-monotonic for non-submodular cost-sharing problems.

Metric facility location problems admit a O(log k) approximate Moulin mecha-

nism via the cost-sharing method of Pal and Tardos [68]. Steiner tree cost-sharing

problems, and their generalizations (Steiner forest and SSRoB) only admit Θ(log2 k)-

approximate Moulin mechanisms.
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See Section 4.5.2 for further applications of this summability framework to other

cost-sharing problems. In particular, there exist cost-sharing problems do not admit

any O(polylog(k))-approximate Moulin mechanisms, a fact that motivates the search

for better mechanism design frameworks such as acyclic mechanisms (Chapter 6).

In conclusion, if we define the complexity of a problem family by the optimal

worst-case approximation of efficiency achievable by a Moulin mechanism (recall Sec-

tion 1.4.3), problem families fall into four classes. There are those with Θ(1) com-

plexity like edge-cover [45] and marginal cost. Others have Θ(log k) complexity like

metric UFL and submodular cost. Some have Θ(log2 k) complexity like Steiner tree,

Steiner forest, SSRoB and MRoB. Finally, there are those with Ω(poly(k)) complexity

like Vertex cover and Set cover.

4.4 Budget-Balance vs. Economic Efficiency Trade-

Offs

No-deficit Moulin mechanisms are inefficient because of their overzealous removal

of players that cannot pay their cost share (cf., Examples 2.2.12 and 4.2.1). This

suggests a possible trade-off between budget-balance and economic efficiency: if we

relax the requirement that the prices charged cover the cost incurred, then a Moulin

mechanism can employ smaller cost shares and reduce the worst-case efficiency loss

from regrettable player deletions. This section extends the efficiency guarantees of

Section 4.2 to mechanisms that need not cover the incurred cost, and uses these

extensions to quantify the trade-off between budget-balance and economic efficiency

in Moulin mechanisms. In particular, we show that relaxing budget-balance permits

mechanisms with strictly better efficiency guarantees than those possible for no-deficit

Moulin mechanisms.

Recall that a Moulin mechanism is (β, γ)-budget-balanced if the sum of the prices

charged is at least 1/γ and at most β times the incurred service cost. When γ > 1,

Moulin mechanisms can suffer efficiency loss from the unjustified service of play-

ers with low valuations. (See Example 4.4.4 below.) For this reason, an efficiency
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guarantee for a (β, γ)-budget-balanced Moulin mechanism must reference both the

parameter γ and the summability of its underlying cost-sharing method. We provide

such a guarantee next.

Theorem 4.4.1 Let C be a cost function defined on a universe U and χ a cross-

monotonic, (β, γ)-budget-balanced, α-summable cost-sharing method for C. Let SM

and S∗ denote the outcome chosen by M(χ) and an optimal outcome, respectively, for

a valuation profile v. Then,

W (S∗) − W (SM) ≤ (α(|S∗|) − 1 + β(γ − 1)) · C(S∗) + (γ − 1) · v(SM \ S∗).

Proof: Define an ordering σ on U and a potential function Φσ as in the proof of

Theorem 4.2.4. By following the steps in that proof and using the (β, γ)-budget-

balance of χ, we obtain

v(U \ SM) + C(SM) ≤ v(U \ SM) + γ
∑

i∈SM

χ(i, SM)

≤ v(U \ SM) + γ · v(SM \ S∗) + γ
∑

i∈SM∩S∗

χ(i, SM)

≤ Φσ(SM ∩ S∗) + (γ − 1) · v(SM \ S∗) + (γ − 1)
∑

i∈SM∩S∗

χ(i, SM ∩ S∗)

≤ Φσ(S∗) + (γ − 1) · v(SM \ S∗) + (γ − 1)β · C(S∗)

≤ (α(|S∗|) + β(γ − 1)) · C(S∗) + v(U \ S∗) + (γ − 1) · v(SM \ S∗).

Rearranging terms proves the theorem. �

Like Theorem 4.2.4, the guarantee on additive welfare loss in Theorem 4.4.1 can

be interpreted in several different ways. We mention only the cleanest such interpre-

tation, in terms of minimizing the social cost objective (3.2).

Corollary 4.4.2 Let C be a cost function defined on a universe U and χ a cross-

monotonic, (β, γ)-budget-balanced, α-summable cost-sharing method for C. Then

M(χ) is a (max{α(k) + β(γ − 1), γ})-approximation algorithm for the social cost

objective, where k is the size of an efficient outcome.
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We can use Theorem 4.4.1 and Corollary 4.4.2 to trade cost-recovery for increased

efficiency. For example, an easy consequence of the upper bound on summability of

Shapley cost-shares from Section 5.1 is that for a submodular cost-sharing problem

with n players, dividing the corresponding Shapley cost shares by an
√
Hn factor

yields a (1,
√
Hn)-budget-balanced and

√
Hn-summable cost-sharing method.

Corollary 4.4.2 implies the following guarantee for the induced Moulin mechanism

(the scaled Shapley mechanism).

Corollary 4.4.3 For every n-player submodular cost-sharing problem, the scaled Shap-

ley mechanism is (1,
√
Hn)-budget-balanced and a (2

√
Hn − 1)-approximation algo-

rithm for the social cost objective.

The efficiency guarantee in Corollary 4.4.3 is better than the best possible for

no-deficit Moulin mechanisms ( see Section 5.1). There are analogous improvements

possible for the other cost-sharing problems, also via scaling the no-deficit cost-sharing

method with the optimal summability.

Corollary 4.4.3 is optimal in the following senses. First, a simple example shows

that a Moulin mechanism that is no better than (β, γ)-budget-balanced is no better

than a γ-approximation algorithm for the social cost objective.

Example 4.4.4 Let χ be a cross-monotonic cost-sharing method for a cost function

C defined on a universe U , and suppose that χ is no better than (β, γ)-budget-

balanced for C. By definition, there is a subset S ⊆ U of players with
∑

i∈S χ(i, S) ≤
C(S)/γ. Give each player i ∈ S the valuation χ(i, S) and other players zero val-

uations. With this valuation profile, the Moulin mechanism M(χ) outputs a set

containing all of the players of S, with social cost at least C(S). The optimal social

cost is at most that of the empty set, which is at most C(S)/γ.

Second, the lower bound proofs in Section 5.1 and Theorem 5.3.10 extend easily

to show that all (β, γ)-budget-balanced Moulin mechanisms for the excludable public

good and the Steiner tree cost-sharing problems are Ω((log k)/γ)- and Ω((log2 k)/γ)-

approximation algorithms for the social cost, respectively. Thus no Moulin mecha-

nism, no matter how poor its budget-balance, obtains an o(
√

log k)-approximation of
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the social cost for submodular or UFL cost-sharing problems or an o(log k)-approximation

of the social cost for Steiner tree, Steiner Forest of SSRoB cost-sharing problems.

4.5 Notes

4.5.1 Prior Work on the Efficiency of Moulin Mechanisms

The sole previous work on quantifying efficiency loss in no-deficit cost-sharing mech-

anisms is Moulin and Shenker [63], which studies submodular cost-sharing problems.

Their results successfully rank different no-deficit mechanisms for an arbitrary but

fixed submodular cost-sharing problem according to worst-case efficiency loss (see

also Section 5.1). However, it is not obvious how to use their efficiency loss measure

to make comparisons between different cost-sharing problems. Additionally, the ap-

proach in [63] has not yet been extended beyond submodular cost-sharing problems,

and many problems studied in the computer science literature fall outside of this

class [11, 17, 37, 39, 45, 47, 48, 51, 55, 56, 68].

4.5.2 Other Applications of the Summability Framework

We mention some applications of the summability based framework for measuring the

efficiency loss of Moulin mechanisms, besides the ones mentioned in Section 4.3. All

of the results are worst-case approximation bounds over valuation profiles and cost

functions in the problem family; k is the size of the optimally efficient solution.

Problem Summability Bounds Paper

Identical Machines Θ(log k) See Brenner and Schäfer [17]

Related Machines Θ(log k), See Bleischwitz and Schoppmann [15]

Prize Collecting Θ(log2 k) See Gupta et al. [37]

Steiner Forest

MRoB Θ(log2 k) See Roughgarden and Sundararajan [71]

Vertex Cover Ω(k1/3) See Immorlica et al. [45]

Set Cover Ω(
√

k) See Immorlica et al. [45]
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Brenner and Schäfer [17] identify an optimal mechanism for scheduling identical

machines. Bleischwitz and Schoppmann [15] generalizes this to related machines.

Gupta et al. [37] and Roughgarden and Sundararajan [71] identify optimal mecha-

nisms for two generalizations of the Steiner tree cost-sharing problem. Immorlica

et al. [45] in conjunction with Theorem 4.2.4 shows that not all subadditive cost

functions admit Moulin mechanism with polylog approximate efficiency: There are

no o(k1/3)-budget balanced Moulin mechanism for Vertex cover, or o(
√

k)-budget

balanced Moulin mechanism for set-cover [45]. Further, an easy consequence of cross-

monotonicity is that the budget-balance factor is a lower bound on summability and

hence by Theorem 4.2.4 these lower bounds apply to the efficiency approximations

achievable for these cost-sharing problems.

4.5.3 Groupstrategyproofness

Recall from Section 2.4 the definition of groupstrategyproofness. As mentioned in Re-

mark 4.1.3, Moulin mechanisms are groupstrategyproof. In fact, the converse is almost

true: Theorem 4.2 from Immorlica et al. [45] states that the only groupstrategyproof

mechanisms that satisfy an additional continuity condition and a strong version of

consumer sovereignty (i.e. every player has a winning and losing bid, no matter what

the bids of the other players), are Moulin mechanisms. Alternatively, Theorem 2

from Moulin [62] (also Proposition 1 from Moulin and Shenker [63]) states that the

only groupstrategyproof, budget-balanced, voluntary mechanisms that satisfy an ad-

ditional natural technical condition (consumer sovereignty) are Moulin mechanisms.

4.5.4 Multiple Levels of Service

Most of the literature on Moulin mechanisms focuses on a binary notion of service.

A notable exception is Bleischwitz and Schoppmann [14], which generalizes Moulin

mechanisms to settings with multiple levels of service, and applies it to generalizations

of the UFL and Steiner tree cost-sharing problems where players demand redundancy

in connectivity; they quantify efficiency loss of the mechanisms they propose using a

generalization of our summability framework.



Chapter 5

Summability Bounds

Theorem 4.2.4 and Propositions 4.2.10 and 4.2.12 from the previous chapter show that

summability of the cost-sharing method χ characterizes (lower bounds and upper

bounds) the efficiency loss of the Moulin mechanism, M(χ). In this chapter we

identify optimal Moulin mechanisms for various cost-sharing problem families (recall

Section 2.2). That is, for a specific cost-sharing problem family, we establish lower

bounds on the summability attainable by any no-deficit, cross-monotonic cost-sharing

method. We then identify cost-sharing methods that match this lower bound, up to

constant factors.

Section 5.1 studies submodular cost-sharing problems (Example 2.2.2), Section 5.2

studies metric UFL problems (Example 2.2.4), Section 5.3 studies Steiner tree prob-

lems (Example 2.2.7), Section 5.4 studies Steiner forest problems (Example 2.2.9) and

Section 5.5 studies SSRoB problems (Example 2.2.10).

5.1 Submodular Cost-Sharing Problems

We show how existing results of Moulin and Shenker [63] imply approximation bounds

for submodular cost-sharing problems, and also derive identical bounds using the

summability approach of Section 4.2.

We first recall a mechanism based on a generalization of the Shapley method χsh

described in Example 2.5.2. Let C be a submodular cost function (recall (2.2))

49



50 CHAPTER 5. SUMMABILITY BOUNDS

defined on a player set U . The Shapley cost share χsh(i, S) of player i in the set S

is defined as follows. For a permutation σ of the players of S, let ∆σ(i) denote the

increase C(A ∪ {i}) − C(A) in cost due to i’s arrival, where A ⊆ S is the set of

players that precede i in σ. The Shapley cost share χsh(i, S) is then the expected

value of ∆σ(i), where the expectation is over the (uniform at random) choice of σ.

As is well known and easily checked, Shapley cost shares are 1-budget-balanced, and

are cross-monotonic when the function C is submodular. The corresponding Moulin

mechanism M(χsh) is called the Shapley mechanism for C [63].

Moulin and Shenker [63, Proposition 2] proved that, for every submodular cost

function C defined on a universe U of n players, the corresponding Shapley mechanism

minimizes the worst-case (over valuation profiles) additive welfare loss, over all 1-

budget-balanced Moulin mechanisms. Precisely, they showed that this worst-case

welfare loss, compared to an efficient solution, is at least

∑

S⊆U

(|S| − 1)!(n − |S|)!
n!

C(S) − C(U) (5.1)

for every 1-budget-balanced Moulin mechanism, with equality holding for the Shapley

mechanism. Since C(S) ≤ C(U) for every S ⊆ U , the worst-case welfare loss for the

Shapley mechanism is at most

C(U) ·





n
∑

|S|=1

(

n

|S|

)

(|S| − 1)!(n − |S|)!
n!



− C(U) = C(U) ·





n
∑

|S|=1

1

|S|



− C(U)

= (Hn − 1) · C(U),

and thus this mechanism is at most (Hn − 1)-approximate for every submodular

cost-sharing problem. Since C(S) = C(U) for every non-empty set S ⊆ U in the ex-

cludable public good problem (Example 2.2.12), it provides a matching lower bound:

there is a submodular cost-sharing problem for which every 1-budget-balanced Moulin

mechanism is no better than (Hn − 1)-approximate.

These bounds can also be derived from summability arguments, and in the process

extended to all no-deficit (not necessarily 1-budget-balanced) Moulin mechanisms.
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The lower bound is again for the special case of an excludable public good with n

players. For every Moulin mechanism M(χ) induced by a cross-monotonic, no-deficit

cost-sharing method χ, we can inductively order the players 1, 2, . . . , n such that

χ(i, {i, i+1, . . . , n}) ≥ 1/(n−i+1) for every i. Defining valuations as in Example 4.2.1

then shows that M(χ) is no better than (Hn − 1)-approximate. Formally we have:

Proposition 5.1.1 For every β ≥ 1, no β-budget-balanced Moulin mechanism is

better than (Hk − 1)-approximate for the excludable public good cost-sharing problem,

where k is the size of an efficient outcome. Here Hm = 1 + 1/2 + . . . 1/m is the mth

harmonic number.

To obtain an upper bound of (Hk −1) for the approximation factor of the Shapley

mechanism, where k is the number of players served in an optimal solution, fix a

submodular cost function C with players U , with χsh the corresponding Shapley

cost-sharing method. By Definition 4.2.2 and Theorem 4.2.4, we only need to show

that
|S|
∑

ℓ=1

χsh(iℓ, Sℓ) ≤ H|S| · C(S) (5.2)

for every S ⊆ U and ordering σ of U , where Sℓ and iℓ are defined in the usual way. A

remarkable result of Hart and Mas-Colell [41, Footnote 7], a variant of which is also

used in [63] to establish (5.1), implies that the left-hand side of (5.2) is independent of

the ordering induced by σ on the players of S. (This can also be established directly

by a counting argument.) Choosing an ordering of the players of S uniformly at

random, the facts that C is nondecreasing and χsh is 1-budget-balanced imply that

E[χsh(iℓ, Sℓ)] = E[C(Sℓ)]/ℓ ≤ C(S)/ℓ for each ℓ. Summing over all ℓ and using

the linearity of expectation shows that the expected value under a random ordering

(and hence the value under every ordering) of the left-hand side of (5.2) is at most

H|S| · C(S), completing the argument.

Remark 5.1.2 While the approximation bound of Hk − 1 is tight for an excludable

public good, both of the derivations above can obviously be sharpened for particular

cost functions. For example, for the cost function C(S) = |S|d with d ∈ (0, 1] and n
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large, the Shapley mechanism remains optimal and is roughly (1
d
− 1)-approximate.

See Brenner and Schäfer [17] for a related discussion.

Remark 5.1.3 We note in passing that Shapley cost shares are generally hard to

compute, in myriad senses, even for monotone and submodular cost functions [8].

The following randomized variant of the Shapley cost-sharing method is polynomial-

time computable, cross-monotonic with probability 1, and arbitrarily close to Hk-

summable with high probability: choose in advance a sufficiently large polynomial

number of player permutations uniformly at random, and estimate every expecta-

tion of the form E[∆σ(i)] by the average value of ∆σ(i) over the randomly chosen

permutations.

5.2 Metric Facility Location Cost-Sharing Prob-

lems

In this section we identify an optimal Moulin mechanism for metric uncapacitated

facility location (UFL) cost-sharing problem defined by Example 2.2.4. We seek a

no-deficit Moulin mechanism for UFL with the best-possible approximate efficiency.

Section 5.2.1 describes the previously proposed Pál and Tardos [68] mechanism for

the UFL cost-sharing problem. Section 5.2.2 bounds the efficiency of this mechanism

and shows that this mechanism is optimal, up to constants.

5.2.1 The PT UFL Mechanism

Pál and Tardos [68] showed that every UFL cost function admits a 3-budget-balanced

(in the sense of Section 2.3) cross-monotonic cost-sharing method χPT . We call this

the PT method, and the induced Moulin mechanism the PT mechanism. Immorlica

et al. [45] shows that no cross-monotonic cost-sharing methods can be (3− ǫ)-budget-

balanced, for any ǫ > 0.

Given an instance of the UFL cost-sharing problem defined by players U , facilities

F with opening costs f , and a metric c on U ∪F , the corresponding PT cost-sharing
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method χPT is defined as follows. Fix an arbitrary subset S ⊆ U of players. First,

there is a notion of time, which is initially 0 and increases at a uniform rate. At a

time t ≥ 0, we associate with each player i ∈ S a ball of radius t with center i, where

distances are with respect to the given metric c; a ball centered at player i with radius

r is defined as the set of facilities at a distance at most r from i. Once a ball includes

a facility q ∈ F , the subsequent growth of this ball contributes toward “filling” this

facility. Once these contributions equal the facility’s opening cost fq, we declare the

facility q to be full. Precisely, facility q becomes full at the time tq defined by the

equation
∑

i∈S

max{0, tq − c(q, i)} = fq. (5.3)

The PT cost share χPT (i, S) of a player i in S, as defined by [68], is the length of

time during which there is no full facility in player i’s ball. We multiply these cost-

shares by a factor 3 to ensure that the cost of the constructed solution is recovered.

Proofs from [68] along with this scaling show that the PT cost-sharing method is

3-budget-balanced, and cross-monotone.

5.2.2 The PT mechanism is O(log k)-approximate

In this section we bound the worst-case efficiency of the PT mechanism. We start

by identifying a lower bound. We first note that the excludable public good cost-

sharing problem defined by Example 2.2.12 is an instance of a UFL cost-sharing

problem: There is single facility q with opening cost 1 and the metric c(q, i) is 0 for

all i ∈ U . Thus, by Proposition 5.1.1 every no-deficit Moulin mechanism is at least

Hk-approximate. The main result of this section is that the PT mechanism matches

this lower bound, up to a constant factor. Recall that Hk ≈ ln k).

Theorem 5.2.1 The PT mechanism is O(log k)-approximate for every UFL cost-

sharing problem, where k is the size of an efficient outcome.

By Theorem 4.2.4 it suffices to show that PT cost-shares are O(log k)-summable

(Definition 4.2.2). This will follow from Lemma 5.2.3, which shows that single-facility

instances supply worst-case examples for the summability of the PT cost-sharing
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method, and Lemma 5.2.4, which bounds the summability of single-facility instances.

We bulld up towards the proof of Lemma 5.2.3. We establish that increasing distances

between demands and facilities can only increase PT cost shares.

Lemma 5.2.2 Let I and I ′ denote two instances of uncapacitated facility location

with the same player set U , facility sets F , and facility opening costs f . Assume that

the metric c′ on U ∪ F of the second instance dominates the first, in that c′(i, j) ≥
c(i, j) for every i, j ∈ U ∪ F . Let χPT and χ′

PT be the PT cost-sharing methods

corresponding to I and I ′, respectively. Then χ′
PT (i, S) ≥ χPT (i, S) for every set

S ⊆ U and player i ∈ S.

Proof: Fix a set S ⊆ U . First, equation (5.3) immediately implies that facilities can

only become full later in the instance I ′ than in I. Second, note that the PT cost

share of a player i ∈ S is defined as thrice the earliest time at which a full facility lies

in player i’s ball. It follows that PT cost shares for I ′ can only be larger than those

for I. �

This monotonicity property allows us to argue that in worst-case UFL instances,

players are partitioned into non-interacting groups, each clustered around one facility.

Lemma 5.2.3 For any monotone function α : {0, 1, 2, . . . n} → R∗, if the PT cost-

sharing method is α-summable for all single facility UFL cost functions, then it is

α-summable for every UFL cost function.

Proof: Fix an arbitrary UFL cost function C0, given by a player set U , a facility set

F , facility opening costs f , and a metric c0 on U ∪ F . Suppose that single facility

instances are α-summable. We must show for an arbitrary set S ⊆ U , an arbitrary

ordering σ of the players in S that:

|S|
∑

ℓ=1

χ0
PT (iℓ, Sℓ) ≤ α(|S|) · C0(S)

Here Sℓ and iℓ denote the set of the first ℓ players and the ℓth player of S in the

ordering σ, respectively.
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Fix an optimal solution to the facility location instance induced by the players in

S. Let F ∗ denote the facilities opened by this solution, and let Sq denote the players

of S assigned to the facility q ∈ F ∗ in this solution. This solution has cost

C0(S) =
∑

q∈F ∗

(

fq +
∑

i∈Sq

c0(i, q)

)

.

We obtain the instance I1 from I0 by modifying distances as follows. If a player i ∈
S is assigned to the facility q ∈ F ∗ in the fixed optimal solution to the instance induced

by S, then set c1(i, q) = c0(i, q). All other distances between players and facilities are

set to a sufficiently large number. Let C1 denote the cost function corresponding to

I1 and χ1
PT the corresponding PT cost-sharing method. By construction, C1(S) =

C0(S). Lemma 5.2.2 implies that

|S|
∑

ℓ=1

χ1
PT (iℓ, Sℓ) ≥

|S|
∑

ℓ=1

χ0
PT (iℓ, Sℓ) (5.4)

Thus it suffices to prove the claim that
∑|S|

ℓ=1 χ1
PT (iℓ, Sℓ) ≤ α(|S|) · C1(S)

The instance I1 is essentially a collection of independent single-facility instances.

To make this precise, for a facility q ∈ F ∗, let Iq denote the facility location instance

with player set Sq, facility set {q}, opening cost fq, and with distances inherited from

I1. Let Cq and χq
PT denote the corresponding cost function and PT cost-sharing

method, respectively. By construction, we have

C1(S) =
∑

q∈F ∗

Cq(Sq). (5.5)

Further, our definition of the distances in I1 ensures that the PT cost share χ1(iℓ, Sℓ)

for a player iℓ ∈ Sq is a function only of the set of players of Sq that precede iℓ in

the ordering σ. (Only players of Sq contribute to the filling of facility q.) Because of

this, we have
|S|
∑

ℓ=1

χ1
PT (iℓ, Sℓ) =

∑

q∈F ∗

|Sq|
∑

p=1

χq
PT (ip, S

q
p), (5.6)
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where Sq
p and ip denote the first p players and the pth player of Sq, respectively,

according to σ.

Finally, as PT cost-shares are by assumption α-summable for every single facility

instance, and because α is non-decreasing, for every q ∈ F ∗ we have that:

|Sq|
∑

p=1

χq
PT (ip, S

q
p) ≤ α(|S|) · Cq(Sq) (5.7)

Equations (5.5), (5.6), (5.7) easily prove the claim. �

We can now focus our attention on single facility instances. The next lemma

bounds the summability of the PT cost-sharing method on such instances.

Lemma 5.2.4 The PT cost-sharing method is 3 · Hk-summable for every single fa-

cility UFL cost-funciton. Here Hm = 1 +1/2 + . . . 1/m is the mth harmonic number.

Proof: Consider an arbitrary facility location problem with a single facility q and

a player set U . Let fq denote the opening cost for q and c(i, q) denote the distance

between the player i and the facility q. For a set S of players, let c(S, q) denote the sum

of the distances of the demands in the set S to the facility q: c(S, q) =
∑

i∈S c(i, q).

Because there is only one facility, we have C(S) = fq + c(S, q) for every S ⊆ U .

Fix an arbitrary ordering σ of the players in U and a subset S ⊆ U . Let Sℓ be

the first ℓ players of S in the ordering and iℓ the ℓth player. By Definition 4.2.2, we

need to show that
|S|
∑

ℓ=1

χPT (iℓ, Sℓ) ≤ H|S| · C(S). (5.8)

Fix an ℓ ∈ {1, 2, . . . , |S|} and consider the run of the PT algorithm on the set Sl.

Recall from the definition of PT cost shares that there is a time t at which the facility

q becomes full. There are two cases. If c(iℓ, q) > t, then we have that:

χ(iℓ, Sℓ) = 3 · c(iℓ, q) (5.9)

This is because, by the time q lies in player iℓ’s ball, it is already full. If c(iℓ, q) ≤ t,

then the PT cost share χPT (iℓ, Sℓ) is 3 · t—by the time facility q is full, it already lies
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in player iℓ’s ball.

In the latter case, the growth of player iℓ’s ball contributes toward filling the

facility q during the time interval [c(iℓ, q), t]. Since q is the only facility and it is

not full during this time, the cost shares of all of the players in Sℓ are accumulating

during this time. All but c(i, q) of the increase in the cost share of a player i ∈ Sℓ−1

during this time must contribute toward the filling of facility q. Thus,

[t − c(iℓ, q)] +
∑

i∈Sℓ−1

[t − c(iℓ, q) − c(i, q)] ≤ fq.

Rewriting,

t − c(iℓ, q) ≤
1

ℓ



fq +
∑

i∈Sℓ−1

c(i, q)



 . (5.10)

Combining Equations (5.9) and (5.10), we can bound the PT cost share χPT (iℓ, Sℓ)

of player iℓ by

χPT (iℓ, Sℓ) ≤ 3 · c(iℓ, q) +
3

ℓ



fq +
∑

i∈Sℓ−1

c(i, q)



 .

Summing over all ℓ ∈ {1, 2, . . . , |S|} then gives

|S|
∑

ℓ=1

χPT (iℓ, Sℓ) ≤
|S|
∑

ℓ=1



3 · c(iℓ, q) +
3

ℓ



fq +
∑

i∈Sℓ−1

c(i, q)









= fq

|S|
∑

ℓ=1

3

ℓ
+

|S|
∑

ℓ=1

3 · c(iℓ, q) ·



1 +

|S|
∑

p=ℓ+1

1

p





≤ 3 · Hk ·



fq +

|S|
∑

ℓ=1

c(iℓ, q)





= 3 · Hk · C(S),

completing the proof of (5.8) and hence the lemma. �
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Though we are primarily interested in studying the worst-case approximation of

efficiency over facility location instances, we point out that when facility opening

costs are zero, we have an instance of a marginal cost cost-sharing problem (Exam-

ple 2.2.13), for which we have a truthful, budget-balanced, optimally efficient mecha-

nism (recall Section 4.3). On the flip side, Proposition 5.1.1 shows that the worst-case

efficiency is achieved by a single facility instance with zero connetion costs.

5.3 Steiner Tree Cost-Sharing Problems

This section uses the summability framework of Section 4.2 to prove matching upper

and lower bounds on the best-possible approximate efficiency of no-deficit Moulin

mechanisms for Steiner tree cost-sharing problems (Example 2.2.7). Both the upper

and lower bounds are much more intricate than those for submodular or UFL cost-

sharing problems. Section 5.3.1 reviews a mechanism of Jain and Vazirani [47], and

Section 5.3.2 proves that this mechanism is O(log2 k)-approximate for all Steiner

tree problems. Section 5.3.3 proves that this mechanism is optimally approximately

efficient (up to constant factors).

5.3.1 The JV Steiner Tree Mechanism

Recall that a Steiner tree cost-sharing problem (Example 2.2.7) is defined via an

undirected graph G = (V, E) with nonnegative edge costs, a root vertex t, and a

set U of players that inhabit the vertices of G. The cost C(S) of a subset S ⊆ U

is defined as the cost of an optimal Steiner tree of G that spans S ∪ {t}. Such cost

functions are not generally submodular, and the corresponding Shapley cost-sharing

methods are not generally cross-monotonic. Several researchers have designed 2-

budget-balanced and cross-monotonic Steiner tree cost-sharing methods [47, 48, 55],

and no cross-monotonic method can have better budget-balance [45, 55]. We work

with the first of these, designed by Jain and Vazirani [47].

Put succinctly, the JV cost-sharing method χJV for a Steiner tree problem is

defined by equally sharing the dual growth that occurs in Edmonds’s primal-dual
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branching algorithm [29]. In more detail, this method works as follows.

First, given a subset S ⊆ U , form a complete directed graph H = (VH , AH). The

vertices VH are t and the vertices of G that contain at least one player of S. The

cost cuw of an arc (u, w) of H equals the length of a minimum-cost u-w path in G.

(Since G is undirected, arcs (u, w) and (w, u) of H have equal cost.) We then define

both a feasible Steiner tree and cost shares using Edmonds’s algorithm, as follows.

Initialize a timer to time τ = 0 and increase time at a uniform rate. Initialize a

subset F ⊆ AH to ∅. At every moment in time, the algorithm increases at unit rate

a variable yA for every weakly connected component A of (VH , F ) other than the one

containing the root t. When an inequality of the form

∑

A⊆VH :u∈A,w/∈A

yA ≤ cuw

first holds with equality, the corresponding arc (u, w) is added to F and the algo-

rithm continues. (When this occurs for several inequalities simultaneously, all of the

corresponding arcs are added.) When the algorithm terminates, the graph (VH , F )

contains a directed path from every vertex to the root t. To obtain a subgraph of G

that spans t and the players of S, select an arbitrary branching B (a spanning tree

directed toward t) of (VH , F ) and output the union of the minimum-cost paths of G

that correspond to the arcs of B. To obtain cost shares, let ui denote the vertex of VH

at which player i resides and set

χJV (i, S) =
∑

A⊆VH :ui∈A

yA

κ(A)
,

where κ(A) is the population of S in A. Equivalently, cost shares can be defined in

tandem with the above algorithm: whenever a variable yA is increased, this increase

is distributed equally among the cost shares of the players of S contained in A.

Jain and Vazirani [47] proved that the method χJV is cross-monotonic and 2-

budget-balanced in the sense of the inequalities (2.3). The next proposition summa-

rizes the additional properties of the JV cost-sharing method that are important for

bounding its summability. To state them, we say that a player i ∈ S is active at time
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τ in Edmonds’s algorithm if it is not in the same weakly connected component as the

root t at time τ . The activity time of a player is the latest moment in time at which

it is active. The notation dG(i, j) refers to the minimum cost of an i-j path in the

graph G.

Proposition 5.3.1 Let G = (V, E) be a Steiner tree instance with root t and player

set S.

(a) While player i is active in Edmonds’s algorithm and belongs to a component

with m−1 other (active) players, it accumulates an instantaneous cost share of
dt
m

. The final JV cost share for player i equals the integral of its instantaneous

cost share up to its activity time.

(b) The activity time of a player i ∈ S in Edmonds’s algorithm is at most the length

of a shortest i-t path in G.

(c) For every pair i, j ∈ S, by the time dG(i, j) in Edmonds’s algorithm, players i

and j are in the same weakly connected component.

Proposition 5.3.1 follows easily from the definition of Edmonds’s algorithm and the

JV cost shares.

5.3.2 The JV Mechanism is O(log2 k)-Approximate

The main result in this section is that, for every Steiner tree cost-sharing prob-

lem, the Moulin mechanism induced by the corresponding JV method is O(log2 k)-

approximate.

Theorem 5.3.2 There are constants a, b > 0 such that the following statement holds:

for every Steiner tree cost-sharing problem, the Moulin mechanism induced by the

corresponding JV method is (a log2 k + b)-approximate, where k is the size of an

efficient outcome.
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Next we discuss our high-level proof approach. By Theorem 4.2.4, it suffices to

show that
|S|
∑

ℓ=1

χJV (iℓ, Sℓ) = O(log2 |S|) · C(S)

for every Steiner tree problem C with JV method χJV , every subset S of players,

and every ordering of the players (where iℓ and Sℓ are defined in the usual way).

The challenge in proving this stems from the adversarial ordering of the players (cf.,

Example 5.3.9 below). Our proof of Theorem 5.3.2 resolves this difficulty with the

following three-step approach. First, we build a tree T on the player set, with the

same root as the given Steiner tree problem, that intuitively “inverts” an arbitrary

ordering so that players closer to the root in T appear earlier in the ordering than

their descendants. We pay a price for this inversion: the sum of the edge costs of T

is O(log |S|) times the cost of an optimal Steiner tree.

In the second step we define “artificial cost shares” for the players. These cost

shares will approximate the JV cost shares of players in G, but it will also be straight-

forward to upper bound their sum. More precisely, we define the artificial cost share

of the ith player (according to the given adversarial ordering) as its Shapley cost

share in the tree T , assuming that precisely the first i players are present. By in-

equality (5.2), the sum of these artificial cost shares is at most H|S| times the sum of

the edge costs of T , which in turn is O(log2 |S|) times the cost of an optimal Steiner

tree in G.

In the third step, we prove that Shapley cost shares in T approximate JV cost

shares in G: for every player, the former is at least a constant fraction of the latter.

We feel that this final step is by far the most surprising, as it relates two sets of cost

shares that are defined by different methods as well as in different graphs. This final

step uses properties of both the JV dual growth process and the edge cost structure

in the tree T .

We now supply the details. Fix a Steiner tree cost-sharing problem with uni-

verse U , graph G = (V, E) with edge costs c, and root vertex t ∈ V . We begin with

the construction of the tree T , given a subset S ⊆ U of players and an ordering σ of

the players. The tree T will contain a root vertex t0 that corresponds to t, and will
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contain one additional vertex for each player in S. We refer to a non-root node of T

and to the corresponding player of S in G interchangeably.

Each vertex i 6= t0 of T will be associated with a radius ri that serves distinct

purposes in the tree T and the original graph G. First, the edge from i to its parent

in T will have cost ri. Second, ri will denote the radius of a ball Bi in the graph G

centered at the player i. These balls will be used to determine ancestor-descendant

relationships in T .

We initialize the tree T to contain only the root vertex t0. We give t0 a radius of

+∞, and the ball Bt0 of t0 is defined as the entire player set S. We then add players of

S to the tree T one-by-one, in the order prescribed by σ. When adding a new player

i, we consider all of the balls of previously added players that contain i. If nothing

else, the ball Bt0 contains i. Among all such balls, let Bj be one of minimum radius

rj. First, we add the node i to the tree T by making i a child of j. Second, we define

the radius ri as follows. If j = t0, then ri is half the shortest-path distance between

the root t and the player i in the graph G. If j 6= t0, then we define ri = rj/2. Third,

we set the cost of the edge (i, j) in T to be this radius ri. Finally, we define the ball

Bi of player i to be the players of S that lie within distance ri of i in the graph G.

See Figure 5.1 for an instance of this construction.

To begin, we record some simple relations between shortest-path distances in T

and in G.

Lemma 5.3.3 Let i, j be a pair of vertices in T and Pij the unique i-j path in T .

(a) The cost of Pij is at most four times the cost of its most expensive edge.

(b) The cost of Pij is at least dG(i, j)/2.

Proof Sketch: Edge costs in T decrease by factors of 2 along every root-leaf path.

If Pij contains at most one edge incident to t0, then the sum of the edge costs of Pij

is at most twice the cost of its most expensive edge. Otherwise Pij comprises two

paths of this type and its cost is at most four times that of its most expensive edge.

Part (b) holds for players i, j that are adjacent in T by the definition of the tree

construction. To extend the inequality to a longer path Pij , sum over its constituent

edges and use the Triangle Inequality of shortest-path distances in G. �
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Figure 5.1: Proof of Theorem 5.3.2: the construction of the tree T (Figs. B and C)
from the graph G (Fig. A) and ordering σ = a, b, c of the players. Fig. B depicts T
after players a and b have been considered, and Fig. A shows the balls corresponding
to these players.
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Now let OPT denote the cost of a minimum-cost Steiner tree in G that spans S ∪
{t}. We next give a series of three lemmas, culminating in a proof that the sum of the

costs of the edges of T exceeds OPT by an O(log |S|) factor. The first lemma states

that two edges of the tree T that have roughly equal cost correspond to well-separated

players in the graph G; it follows easily from the way we construct T .

Lemma 5.3.4 Suppose (i1, j1) and (i2, j2) are edges of T , directed toward the root

t0, with costs c1 and c2, respectively. If c1 ≤ c2 < 2c1, then dG(i1, i2) ≥ c1.

We next show how to use Lemma 5.3.4 to upper bound the number of edges of T

with cost in a given range.

Lemma 5.3.5 For every ν ≥ 1, the number of edges of T that have cost in the

interval [OPT/ν, 2OPT/ν) is at most 2ν.

Proof: Fix ν ≥ 1 and suppose that q edges of T have cost at least OPT/ν and less

than 2OPT/ν. Lemma 5.3.4 implies that there is a set A ⊆ S of q players that are

mutually far apart in G: dG(i, i′) ≥ OPT/ν for every pair i, i′ of distinct players of

A.

Consider an optimal Steiner tree T ∗ in G that spans S ∪ {t} (with cost OPT ).

Order the players of A = {i1, . . . , iq} according to a pre-order traversal of T ∗ (starting

from the root, say). As is well known, we can double every edge of T ∗ and decompose

the resulting multigraph into a collection of paths that connect pairs of adjacent

players (including i1 and iq). This proves that
∑q

j=1 dG(ij , ij+1) ≤ 2OPT , where iq+1

refers to player i1. Thus dG(ij, ij+1) ≤ 2OPT/q for some j ∈ {1, 2, . . . , q}. Since

dG(i, i′) ≥ OPT/ν for every i, i′ ∈ A, q ≤ 2ν. �

We now combine Lemma 5.3.5 with a grouping argument to upper bound the sum

of the edge costs in the tree T .

Lemma 5.3.6 The sum of the costs of the edges in T is at most (4 log2 |S|+5)·OPT .

Proof: First, note that every edge cost in T is bounded above by the distance dG(i, t)

in G between the root t and some player i of S. Since every such distance is a lower

bound on OPT , every edge of T has cost at most OPT .
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Next, let k = |S| and consider the edges with cost in the interval [2iOPT/k, 2i+1OPT/k)

for some i ∈ {0, 1, . . . , ⌊log2 k⌋}. By Lemma 5.3.5, there are at most k/2i−1 edges in

this group. The sum of the edge costs in each of the ⌈log2 k⌉ groups is therefore at

most 4OPT . Since T has k + 1 vertices, it has k edges, and thus the total cost of the

edges not in any of these groups — each of which has cost less than OPT/k — is at

most OPT . Summing over all of the edges proves the lemma. �

Next, let χT
sh(iℓ, Sℓ) denote the Shapley cost share of the ℓth player (in the given

ordering σ) in the fixed-tree multicast instance corresponding to the tree T and the set

Sℓ of the first ℓ players according to σ. Since fixed-tree multicast cost-sharing prob-

lems are submodular (Example 2.2.8), inequality (5.2) and Lemma 5.3.6 immediately

give the following upper bound on the sum of these Shapley cost shares.

Lemma 5.3.7 Let iℓ denote the ℓth player and Sℓ the first ℓ players of S according

to σ, respectively. Then

|S|
∑

ℓ=1

χT
sh(iℓ, Sℓ) ≤ (ln |S| + 1) · (4 log2 |S| + 5) · OPT.

Finally, we show that the JV cost share of a player in G is at most a constant

factor times its Shapley cost share in T . This is the step of the proof of Theorem 5.3.2

where we use specific properties of the JV cost-sharing method (Proposition 5.3.1).

Lemma 5.3.8 Let iℓ denote the ℓth player and Sℓ the first ℓ players of S according

to σ, respectively. For every ℓ ∈ {1, 2, . . . , |S|},

χJV (iℓ, Sℓ) ≤ 8 · χT
sh(iℓ, Sℓ).

Proof: Fix ℓ ∈ {1, 2, . . . , |S|} and let e1, e2, . . . , ep denote the sequence of edges in the

iℓ-t0 path in T . Let cj denote the cost of edge ej . Let Aj ⊆ Sℓ denote the players

of Sℓ whose path to t0 in T contains the edge ej . Let mj denote the number |Aj| of

such players.

Our tree construction ensures that children of iℓ correspond only to players sub-

sequent to iℓ in the ordering σ, and no such players are in Sℓ. Thus A1 = {iℓ}, and
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of course A1 ⊆ · · · ⊆ Ap ⊆ Sℓ. First, observe that

χT
sh(iℓ, Sℓ) =

p
∑

j=1

cj

mj
. (5.11)

Next, fix j ∈ {2, 3, . . . , p} and consider a player i ∈ Aj distinct from iℓ. Since the edge

ej separates players i and iℓ from t0 in T , the most expensive edge on the iℓ-i path P

in T has cost at most cj−1. By Lemma 5.3.3(a), the path P has cost at most 4cj−1.

By Lemma 5.3.3(b), the distance dG(iℓ, i) between the players in G is at most 8cj−1.

By Proposition 5.3.1(c), the players iℓ and i are in a common connected component

by the time 8cj−1 in the execution of Edmonds’s algorithm that defines the JV cost

share χJV (iℓ, Sℓ). Crucially, it follows that if player iℓ is active at a time subsequent

to 8cj−1 in this execution, then its weakly connected component at this time does

not contain the root t and contains at least the mj (active) players of Aj. Similarly,

Lemma 5.3.3 and Proposition 5.3.1(b) imply that player iℓ is inactive by the time 8cp.

Combining these observations with Proposition 5.3.1(a), we obtain

χJV (iℓ, Sℓ) ≤
p
∑

j=1

∫ 8cj

8cj−1

dt

mj
≤ 8

p
∑

j=1

cj

mj
, (5.12)

where we are interpreting c0 as 0. Comparing equality (5.11) and inequality (5.12)

proves the lemma. �

Theorem 5.3.2 now follows immediately from Lemma 5.3.7, Lemma 5.3.8, and

Theorem 4.2.4.

5.3.3 Every Moulin Mechanism is Ω(log2 k)-Approximate

This section proves that the JV mechanism is an optimal Moulin mechanism for

Steiner tree cost-sharing problems, in the sense that every no-deficit mechanism for

such problems is Ω(log2 k)-approximate, where k is the size of an efficient outcome.

To motivate our proof of this result, we begin with an example showing that our

analysis of the JV mechanism is tight up to constant factors.
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Example 5.3.9 We construct a Steiner tree instance (Figure 5.2) in rounds by iter-

atively bisecting an edge of cost 1 as follows. Initially we place the root t at one end

of the edge and
√

n players at the other end of the edge. (Think of n as a large power

of 4.) In the second round, we bisect the edge with a new vertex in the middle and

add
√

n further players co-located at this vertex. In round j, we bisect the existing

2j−1 edge segments and, for each new node, we add
√

n new co-located players. The

construction concludes when there are n players, after Θ(log n) rounds.

Order the players in the same order in which they were added during the construc-

tion; break ties among players added in the same round arbitrarily. This defines n

successive Steiner tree instances. Consider the cost share of the most recently added

player of one of these instances. The JV cost-sharing method satisfies the following

property: if a player is co-located with i − 1 other players (all added earlier) and is

distance c away from the nearest non-co-located player that was added in an earlier

round, then its cost share in this instance is Ω(c/i). Because of this, the sum of the

cost shares of players added in the jth round of the above construction is Ω(log n).

Since there are Ω(log n) rounds, the sum of all of these successive cost shares is

Ω(log2 n). Since the minimum-cost Steiner tree of the full instance has cost 1 and the

JV cost-sharing method is positive in this instance, Proposition 4.2.10 implies that

the induced Moulin mechanism is Ω(log2 n)-approximate.

The main result of this section is a comparable lower bound for every O(1)-budget-

balanced Moulin mechanism.

Theorem 5.3.10 There is a constant c > 0 such that, for every constant β ≥ 1,

every β-budget-balanced Moulin mechanism for Steiner tree cost-sharing problems is

no better than strongly (c log2 k)-approximate, where k is the number of players served

in an optimal outcome.

Theorem 5.3.10 implies that Steiner tree cost-sharing problems are fundamentally

more difficult for Moulin mechanisms than submodular cost-sharing problems (cf.,

Section 5.1).

We now outline the proof of Theorem 5.3.10. At the highest level, our goal is to

exhibit a (large) network G such that every O(1)-budget-balanced Steiner tree Moulin
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Figure 5.2: The bad example for n = 16. One terminal from every terminal pair, the
si’s, are located at one end of the path. Every other node is labeled with the distance
from the end with the si’s and the group of terminals located at that node. Terminals
are numbered consistent with the order induced by the construction sequence.

root t

Figure 5.3: Network G2 in the proof of Theorem 5.3.10, with m = 3. All edges have
length 1/4.

mechanism behaves like the JV mechanism in Example 5.3.9 on some subnetwork of G.

Fix values for the parameters k and β, where k is a power of 4. Let m be an

integer with m ≥ 8β
√

k · (2β)
√

k. We construct a sequence of networks, culminating

in G. The network G0 consists of a set V0 of two nodes connected by an edge of cost 1.

One of these is the root t. The player set U0 is
√

k players that are co-located at the

non-root node. For j > 0, we obtain the network Gj from Gj−1 by replacing each

edge (u, w) of Gj−1 with m internally disjoint two-hop paths between u and w. See

Figure 5.3. The cost of each of these 2m edges is half of the cost of the edge (u, w).

Thus every edge in Gj has cost 2−j.



5.3. STEINER TREE COST-SHARING PROBLEMS 69

Let Vj denote the vertices of Gj that are not also present in Gj−1. We augment

the universe by placing
√

k new co-located players at each vertex of Vj; call each of

these groups a j-group and denote the union of them by Uj . The final network G is

then Gp, where p = (log2 k)/2. Let V = V0∪· · ·∪Vp and U = U0∪· · ·∪Up denote the

corresponding vertex and player sets. Let C denote the corresponding Steiner tree

cost function.

A line in Gj is a subgraph defined inductively as follows. The only line in G0 is all

of G0. Each line Lj−1 of Gj−1 gives rise to a set of m2j

lines in Gj, each obtained by

replacing each edge of Lj−1 by one of the m two-hop paths to which it corresponds

in Gj . Every line in the network Gj has 2j vertices other than the root, 2j edges, and

unit total cost. In Gp,
√

k players inhabit each of the 2p =
√

k non-root vertices on

a line.

Now fix an arbitrary cross-monotonic, β-budget-balanced Steiner tree cost-sharing

method χ. Our plan is to identify a line of Gp and an ordering of the players on this

line such that χ behaves like the JV cost-sharing method in Example 5.3.9. We

construct this line iteratively via the following key technical lemma.

Lemma 5.3.11 Let S ⊆ U be a subset of players that lies on a line in Gp, includes

at least one player of U0, and includes at least one player each from a pair u, w of

vertices that are adjacent in Gj−1. Let A1, . . . , Am denote the j-groups that correspond

to the edge (u, w). Then for some group Aq, its players can be ordered i1, . . . , i√k so

that

χ(iℓ, S ∪ {i1, . . . , iℓ}) ≥
2−j

4ℓ
(5.13)

for every ℓ ∈ {1, 2, . . . ,
√

k}.

Before proving Lemma 5.3.11, we use it to prove Theorem 5.3.10 by inductively

constructing player sets S0, . . . , Sp and orderings σ0, . . . , σp with the following prop-

erties.

(1) For every j ∈ {0, 1, 2, . . . , p}, Sj corresponds to the
√

k · 2j players occupying

some line Lj of Gj.

(2) σj is an ordering of Sj that orders the
√

k players of each of its j-groups A
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consecutively and in a way that (5.13) holds with S equal to the predecessors

of A in σj .

For the base case, set S0 = U0. Since χ is no-deficit, the players of S0 can be ordered

i1, . . . , i√k so that χ(iℓ, {i1, . . . , iℓ}) ≥ C({i1, . . . , iℓ})/ℓ = 1/ℓ for every ℓ. Let σ0

denote this ordering of S0.

For the inductive step, let Lj−1 be the line of Gj−1 corresponding to Sj−1, and

consider the edges of Lj−1 in an arbitrary order. Each such edge gives rise to m

j-groups; applying Lemma 5.3.11 with S equal to the players already chosen (in this

and previous steps), one of these j-groups can be ordered so that (5.13) holds. Add an

arbitrary such group to the player set, ordered after all previously chosen players and

so that (5.13) holds. After all of the edges of Lj−1 have been processed, we obtain a

player set Sj and ordering σj of them that satisfy the inductive invariants (1) and (2).

Now consider the sum
∑k

ℓ=1 χ(iℓ, Sℓ), where iℓ and Sℓ denote the ℓth player and

the first ℓ players of Sp with respect to σp, respectively. For j > 0, the 2j−1 j-groups

of Sp each contribute at least

√
k

∑

ℓ=1

2−j

4ℓ
=

2−jH√
k

4

to this sum; the 0-group S0 also contributes at least
H√

k

4
. Thus the sum

∑k
ℓ=1 χ(iℓ, Sℓ)

is at least

H√
k

4



1 +

(log k)/2
∑

j=1

2j−1 · 2−j



 ≥ c log2 k =
(

c log2 k
)

· C(S)

for a constant c > 0 that is independent of k. This, combined with Proposition 4.2.12,

completes the proof of Theorem 5.3.10.

To conclude, we provide a proof of Lemma 5.3.11.

Proof of Lemma 5.3.11: Let A1
1, . . . , A

1
m denote the j-groups corresponding to the

edge (u, w) of Gj−1 and set X1 = ∪m
r=1A

1
r . The proof plan is to inductively identify

subcollections of these j-groups such that inequality (5.13) holds for an increasing
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number of the players in the remaining j-groups. Toward this end, call a set A1
r

1-eligible if
∑

i∈A1
r

χ(i, S ∪ X1) ≥ 2−j

4
. (5.14)

Every 1-eligible group contains a player i for which χ(i, S ∪ X1) ≥ 2−j/4
√

k.

Our key claim is that at least m/2β groups are 1-eligible. We prove this claim via

an averaging argument that relies on the β-budget-balance and cross-monotonicity

of χ. Precisely, reindex the 1-eligible groups A1
1, . . . , A

1
q and let Y 1 denote their

union. An optimal Steiner tree spanning S ∪ Y 1 consists of a line through S and one

group of Y 1, plus q − 1 “spokes” attaching the rest of the groups to either u or w.

Thus C(S ∪Y 1) = 1+(q−1)2−j. Since χ is cross-monotonic and β-budget-balanced,

we have

∑

i∈S∪Y 1

χ(i, S ∪ X1) ≤
∑

i∈S∪Y 1

χ(i, S ∪ Y 1) ≤ β(1 + (q − 1)2−j).

Since (5.14) fails for ineligible groups, and there at most m such groups,

∑

i∈X1\Y 1

χ(i, S ∪ X1) ≤ m2−j

4
.

On the other hand, since C(S ∪ X1) = 1 + (m − 1)2−j and χ is no-deficit,

∑

i∈S∪X1

χ(i, S ∪ X1) ≥ 1 + (m − 1)2−j.

Combining these three inequalities and rearranging gives the constraint

q ≥ 3m

4β
− 2j − 1

β
≥ m

2β
,

where the second inequality holds because m is sufficiently large.

Now we iterate the process. In more detail, obtain A2
r from each 1-eligible group

A1
r by removing a player i for which χ(i, S ∪ X1) ≥ 2−j/4

√
k. (Such a player must

exist by 1-eligibility.) Let X2 denote the union of these sets. Such a set A2
r is 2-eligible
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if
∑

i∈A2
r

χ(i, S ∪ X2) ≥ 2−j

4
.

Every 2-eligible j-group contains a player i for which χ(i, S ∪ X2) ≥ 2−j/4(
√

k − 1).

Arguing as above, at least a 1/2β fraction of the sets A2
r are 2-eligible.

Iterating this procedure and reindexing the eligible groups after each iteration, we

inductively obtain a collection of disjoint sets Ah
1 , . . . , A

h
qh

for each h ∈ {1, 2, . . . ,
√

k}
with the following properties:

(1) qh ≥ m/(2β)h;

(2) for each r ∈ {1, . . . , qh}, Ah
r contains a player ihr such that χ(ihr , S ∪ Xh) ≥

2−j/4(
√

k − h + 1), where Xh = ∪rA
h
r ;

(3) for each r ∈ {1, . . . , qh} and h > 1, Ah
r = Ah−1

r \ {ih−1
r }.

Since m is sufficiently large, q√k ≥ 1. By properties (2) and (3) and cross-monotonicity

of χ, the group A1
1 that corresponds to A

√
k

1 satisfies the requirements of the lemma.

�

5.4 Steiner Forest Cost-sharing Problems

In this section we identify an optimal Moulin mechanism for the Steiner forest cost-

sharing problem defined in Example 2.2.9. We seek an no-deficit Moulin mecha-

nism for this problem with the best-possible approximate efficiency. Section 5.4.1

describes the previously proposed Könemann, Leonardi and Schäfer mechanism [55].

Section 5.4.2 bounds the efficiency of this mechanism and proves that it is optimal.

5.4.1 The KLS Cost-Sharing Method

We describe the KLS cost-sharing method, due to Könemann, Leonardi and Schäfer [55];

it is a cross-monotonic, 2-budget-balanced cost-sharing method for every Steiner forest

cost function, and no cross-monotonic method can have better budget-balance [45, 55].

We call the induced Moulin mechanism the KLS mechanism.
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The KLS cost-sharing method modifies the primal-dual Steiner forest algorithms

of Agrawal, Klein and Ravi [3] and Goemans and Williamson [35] in a novel way to

ensure cross-monotonicity. The method takes as input a graph G = (V, E) with edge

costs and a set of players S, where each player i ∈ S is identified with a source-sink

pair (si, ti). It outputs a feasible Steiner forest (a subgraph containing an si-ti path

for all i ∈ S) and a cost share for each player.

The Steiner forest and cost shares are defined in tandem via the following primal-

dual algorithm, which we describe as a process over time. Primal variables correspond

to edges and dual variables correspond to subsets of nodes in the graph. The algorithm

maintains an acyclic set F of edges (initially empty) and a set of feasible dual variables

{yA} (initially zero). By feasible, we mean that for every edge e ∈ E, the sum

of the dual variables
∑

A⊆S : e∈δ(A) yA corresponding to sets A that contain exactly

one endpoint of e is at most the edge cost ce; this is the dual packing constraint

corresponding to the edge e.

The algorithm proceeds by uniformly raising the values of active dual variables,

which correspond to a subset of the connected components of the current subgraph

(V, F ). We define the activity criterion soon. These variables are increased until an

edge e becomes tight, in the sense that the dual packing inequality corresponding to e

holds with equality. At this point, the edge e is added to the set F and the set of

active dual variables is updated. The algorithm continues in this way until no active

dual variables remain.

A key definition in [55], which determines the active dual variables, is that of the

death time of a terminal. The death time of both si and ti is defined as half of the

length of a shortest si-ti path. The active dual variables at time τ with respect to

the subgraph (V, F ) are then defined as the variables yA such that A is a connected

component of (V, F ) containing at least one terminal with a death time larger than

τ . Intuitively, the death times of si and ti are defined as the smallest value that

ensures si-ti connectivity in the final output of the above primal-dual algorithm,

while conservatively ignoring the contributions of other source-sink pairs.

Cost shares for the players of S are defined using the dual variables as follows. At

each instant, the increase in an active dual variable is split equally among the active
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terminals in the corresponding connected component. The cost share of a terminal is

then defined as the total cost that it accumulates over time. The KLS cost shares of a

player, as described by [55], is simply the sum of the cost-shares of the corresponding

terminals. We muliply these cost-shares by a factor of 4 to ensure that the cost of

the constructed solution is recovered.

Results from [55] immediately show that these cost shares are cross-monotonic;

with the scaling, their sum is at least the cost of the constructed Steiner forest and

is at most twice the cost of an optimal Steiner forest. Further, by weak duality, the

cost of the constructed Steiner forest is at most twice that of an optimal solution.

5.4.2 The KLS Mechanism Is O(log2 k)-Approximate

We now analyze the efficiency of the KLS mechanism. The main result of this section

is the following.

Theorem 5.4.1 The KLS mechanism is O(log2 k)-approximate for every Steiner for-

est cost-sharing problem, where k is the size of an efficient outcome.

Recall from Section 5.3.3 that every O(1)-budget-balanced Moulin mechanism is

Ω(log2 k)-approximate, and that Steiner tree cost functions are instances of Steiner

forest cost functions (one terminal from every terminal pair is located at a fixed

node called the root). The KLS mechanism is thus an optimal O(1)-budget-balanced

Moulin mechanism, up to constant factors.

Overview of the Proof of Theorem 5.4.1

The proof of the theorem is technical and so we start by providing an overview. By

Theorem 4.2.4 it suffices to show that the KLS cost-sharing method is is O(log2 k)-

summable. By the definition of summability (Definition 4.2.2), we need to analyze

the following procedure. Given an arbitrary Steiner forest instance and an arbitrary

ordering of the players (source-sink pairs), we add the players to the instance one-by-

one, according to the given ordering. Each time we add a new player, we compute

its KLS cost share in the instance induced by the set of players added thus far. The
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key question is: by how much can the sum of these successive cost shares exceed the

cost of servicing all of the players?

The problem has an online flavor as we add players one-by-one. However, rather

than bounding the cost of the online solution as is typical in online analysis, we are

interested in the sum of cost shares.

Our analysis proceeds in two steps. The first step is motivated by the difficulty

in directly bounding the above successive cost shares in a general network. The

idea of this step is to replace the given network by a forest with cost at most an

O(log k) times that of an optimal Steiner forest. The construction resembles that of

an online Steiner tree using the standard greedy strategy [44]. However, to facilitate

our charging argument in the second step, we require that each tree of this forest be

an ultrametric—i.e., all root-leaf paths have equal length.

The goal of the first step is also reminiscent of probabilistic tree embeddings (see

e.g. [9, 30]). However we cannot apply such an embedding as a black box. The

reason is that our charging argument in the second step requires structure beyond

the low distortion guarantee—it also needs the distances in the ultrametric to be

tightly coupled with the dual growth process used to define the KLS cost-shares.

In the second step, we demonstrate how to charge the k successive KLS cost shares

to the ultrametrics constructed in the first step. Loosely speaking, we show how

subtrees in each ultrametric correspond to active components during the execution

of the primal-dual algorithm that defines the KLS cost shares. Our charging scheme

charges each point of each ultrametric O(log k) times, proving an O(log2 k) bound on

the summability of the KLS cost-sharing method.

While portions of this argument are similar to that used in Section 5.3.2 to upper

bound the summability of the Jain-Vazirani (JV) Steiner tree cost-sharing method,

the refined ultrametric structure and the charging argument in this section are new.

One reason we require the ultrametric structure is that the primal-dual algorithm un-

derlying the KLS mechanism determines cost shares using fixed “death times”, rather

than via the component structure in the dual growth process as in JV, where a player

becomes inactive once it belongs to the root’s component. While crucial for cross-

monotonicity of the KLS cost-sharing method, this property can cause a terminal to
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accumulate a cost share beyond the point at which it is connected to its mate, and it is

not obvious how to bound this additional accumulation. The example below exhibits

a Steiner tree problem instance for which the summability of the KLS method is an

Ω(log n) factor times larger than that of the Jain-Vazirani method. Nonetheless, we

prove in this section that the KLS method is always O(log2 k)-summable, matching

the (tight) worst-case bound for the Jain-Vazirani method Steiner tree cost functions.

Example 5.4.2 Our instance consists of n + 1 points on the unit line. The root lies

at point 0. The ith point in the ordering lies at distance i/n from 0. Let σ be the

identity permutation. Recall that in the JV primal-dual algorithm, a player becomes

inactive once it belongs to the root’s component. For every successive instance, this

happens at time O(1/n) for every player in the instance. Then, the ith successive JV

cost share in this instance is O(1/n); The JV cost-sharing method has summability

O(1) in this example.

On the other hand, consider the KLS cost share of the ith terminal with death time

i/2n. Until time 1/2n, the cost share increases at a rate of 1. At time 1/2n, all the

i nodes preceding and including the ith one, form a single component. Thereafter,

for every j < i, from time j/2n to (j + 1)/2n, there are i − j active nodes in i’s

component (all these nodes have death times of at least (j + 1)/2n, and therefore,

its cost share goes up at a rate of 1/(i − j). The net cost share of the ith terminal

is Θ((log i)/n). The KLS cost-sharing method therefore has summability Θ(log n) in

this example.

Building the Forest

We now describe the first step of our analysis of Theorem 5.4.1. We define a pro-

cedure that takes as input a Steiner forest instance G = (V, E) with edge costs, an

(adversarial) ordering σ of the source-sink pairs (s1, t1), . . . , (sk, tk) and constructs a

forest F , defined on the terminals, that has cost O(log k) times that of a minimum-

cost Steiner forest, as well as other structure useful in the second step of the analysis.

While the following description will be algorithmic, we emphasize that this construc-

tion is purely for the purposes of analyzing the summability of the KLS cost-sharing
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method.

Consider an optimal solution to the given Steiner forest instance. Our forest F

will have one tree for each connected component of this optimal solution. We will

construct these trees independently of each other, so we can restrict our description

to a single component T ∗ of the optimal Steiner forest. Let A∗ denote the terminals

spanned by T ∗. The vertex set of the tree T that we construct will contain all the

terminals in A∗ as well as some auxiliary vertices.

We now describe the construction of T . Figure 5.4 depicts the construction for

a simple graph with three terminal pairs. The ordering σ = (s1, t1), . . . , (sk, tk) on

source-sink pairs induces an ordering s1, t1, s2, t2, . . . , sk, tk on the terminals and also

an ordering of A∗. We construct T by adding terminals in A∗ to it in this order.

When a terminal is considered, we attach it to the existing tree and endow it with

a radius. The ball of a terminal x with radius r is defined as the terminals of A∗

at distance at most r from x in the given graph G. To start the construction, we

introduce an auxiliary root x0 and create an edge e0 between x0 and x1, the first

terminal, of length Dmax, where Dmax is half the largest distance (according to the

graph G) between any two terminals of A∗. We call this edge e0 the backbone edge.

We endow the terminal x1 with a ball of infinite radius.

Now consider some subsequent terminal x. Among all of the previously added

terminals whose ball contains x, we define the terminal y with the minimum radius

to be the parent of x and write p(x) = y. If y has finite radius—i.e., is not the first

terminal of A∗ with respect to σ—then we define x’s radius rx to be half of its parent’s

radius. Otherwise, we define the radius rx to be half of the shortest-path distance

between x and y in G. To attach x to the tree T , consider the path from y to x0 in T .

We connect x to the point along this path at a distance rx from y, possibly creating

a new internal node. The backbone edge and the definition of Dmax ensure that this

is always possible. Call this point v(x). The length of the edge between v(x) and x is

defined to be rx. Note that the leaves of T are in bijective correspondence with the

terminals A∗ allowing us to refer to a leaf of the tree by its corresponding terminal.

See Figure 5.4 for an instance of the tree construction.
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Figure 5.4: An instance of the tree construction with three terminal-pairs
(s1, t1), (s2, t2), (s3, t3). The construction ordering σ is (s1, t1, s2, t2, s3, t3). Figure
(a) shows the graph G which is also the tree T ∗. Figure (b) shows the ultrametric
tree T ; the edge (x0, t1) is the backbone edge.

Some useful properties of the tree T :

We establish properties of the tree T useful in the charging argument of the second

step of the proof. We first show that the tree T is an ultrametric.

Lemma 5.4.3 The tree T is an ultrametric, with all root-leaf paths having length

Dmax.

Proof: The lemma statement is an invariant of the construction process. It is trivially

true after the first step of the tree construction as the tree consists of a single edge,

the backbone edge with length Dmax. When a new terminal x is added to the tree T ,

the distance from the interior node v(x) to x equals the distance from v(x) to the

parent p(x) of x, maintaining the invariant. �

Next, we relate distances between pairs of leaves of the tree T to distances between

the corresponsing terminals in the graph. For every two terminals x, y in A∗, let

dT (x, y) and dG(x, y) denote the distances between x and y in the tree T and in the

graph G, respectively. The next lemma follows immediately from the construction.
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Lemma 5.4.4 For every terminal x ∈ A∗ with parent p(x), dT (x, p(x)) ≥ dG(x, p(x)).

Proof: By construction, dT (x, p(x)) = 2rx = rp(x), which is at least dG(x, p(x)) as x

is in p(x)’s ball. �

We now approximately extend Lemma 5.4.4 to every pair of terminals x, y ∈ A∗.

Lemma 5.4.5 For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ dG(x, y)/5.

The idea of the proof is to consider a walk Wxy between x and y in T and relate the

length of this walk, ℓxy to both dT (x, y) and dG(x, y). Precisely, fix x, y ∈ A∗ and

consider the (unique) path Pxy between x and y in the tree T . Label each internal

node v(x) by the parent of x. The length of this path is dT (x, y). To construct the

walk Wxy, consider the sequence Sxy of vertices that the path Pxy visits; apart from

x and y, all of these are internal nodes of T . Obtain a sequence S ′
xy of terminals from

Sxy by replacing the internal nodes of Sxy by their label values (terminals) and then

removing duplicates. Obtain the walk Wxy in T by visiting the terminal nodes in S ′
xy

in order, along the unique paths in T that connect consecutive nodes. The walk Wxy

contains Pxy as a subgraph, and can be decomposed into Pxy and a set of circuits,

each of which starts and ends at an internal node of Pxy, visiting the terminal node

corresponding to the label of the internal node along the way. Figure 5.5 shows the

walk Wxy and the path Pxy for x = s2 and y = t2 for the tree T from Figure 5.4. The

proof of Lemma 5.4.5 is an easy consequence of following two lemmas.

Lemma 5.4.6 For every pair x, y ∈ A∗ of terminals in T , ℓx,y ≥ dG(x, y).

Proof: Every pair of consecutive nodes in the sequence S ′
xy share a parent-child re-

lationship. Applying Lemma 5.4.4 and the triangle inequality completes the proof.

�

Lemma 5.4.7 For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ ℓx,y/5.

Proof: The proof is by a charging argument. Recall that the walk Wxy contains Pxy

as a subgraph, and can be decomposed into Pxy and a set of circuits, each of which

starts and ends at an internal node of Pxy, visiting the terminal node which labels

the internal node along the way. (See Figure 5.5.)
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Figure 5.5: The walk Wxy and the path Pxy for x = s2 and y = t2 for the tree T from
Figure 5.4. The terminals s3, t3 from Figure 5.4 are not shown.

We will charge the length of the circuits to the segments of Pxy that precede them

in the walk. More precisely we will show that the circuit has a length at most four

times that of the segment of Pxy we charge it to, and hence the length of the walk

Wxy is at most five times the length of path Pxy, proving the lemma.

Consider a circuit of Wxy rooted at the internal point v(z) and visiting the terminal

p(z). The length of the circuit is at most 2rz, while the length of the segment of Pxy

immediately preceding v(z) is at least rz/2 (rz minus the radius of any of z′s children).

Thus, the circuit is at most four times the length of the segment of Pxy we charge it

to. �

Bounding the size of the tree T :

In this section we establish the following bound the size of the tree T in terms of the

optimal tree T ∗.

Lemma 5.4.8 The sum of the costs of the edges in T is O(log k) · c(T ∗).
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We mention two lemmas that culminate in the proof. Both lemmas have direct

analogous to ones used to bound the summability of the JV cost-sharing method.

The first lemma states that terminals that have edges of a comparable length in the

tree T must be well separated in the graph G. The proof follows that of Lemma 5.3.4.

Lemma 5.4.9 Consider two terminals x1 and x2 with edges x1, y1 and x2, y2 of length

c1 and c2 in the tree T such that c1 ≤ c2 and c2/c1 < 2. Then dG(x1, x2) ≥ c1.

The second lemma uses the above lemma to prove an upper bound on the number of

edges of the tree T that can have a comparable length. The proof is identical to that

of Lemma 5.3.5.

Lemma 5.4.10 For any γ ≥ 1, the number of edges of T that have cost in the range

(c(T ∗)/γ, 2c(T ∗)/γ] is at most 2γ.

We now complete the proof of Lemma 5.4.8.

Proof of Lemma 5.4.8: The proof follows by sorting the edges of T into bins and

bounding the sum of the edge lengths in every bin. Suppose that A∗ has m players

of S. First, we claim that every edge cost in T is at most c(T ∗). Our construction

ensures that every edge cost is at most Dmax. On the other hand, as T ∗ spans all of

the terminals of A∗, its cost is at least Dmax.

Now consider edges with cost in the interval (2ic(T ∗)/m, 2i+1c(T ∗)/m] for some

i ∈ {0, 1, . . . , ⌊log2 m⌋}. By Lemma 5.4.10, there are at most m/2i−1 edges in this

group. The sum of the edge costs in each of the O(log m) possible groups is therefore

at most 4c(T ∗). Finally, since T has at most 2m edges, the total contribution of edges

with cost at most c(T ∗)/m is at most 2c(T ∗). Summing over all groups of edges and

noting that m ≤ k proves the lemma. �

The Charging Argument

We are now ready to bound the summability of the KLS cost-sharing method. Our

charging argument will proceed independently for each ultrametric constructed in

Section 5.4.2; we will fix one such ultrametric T , spanning a set A∗ of terminals.
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For technical reasons, we henceforth use a version of the tree T scaled up by

a factor 10. Lemmas 5.4.3 and 5.4.8 continue to hold while Lemma 5.4.5 can be

restated as follows:

Lemma 5.4.11 For every pair x, y ∈ A∗ in T , dG(x, y) ≤ 1
2
dT (x, y).

We now commence the charging argument. Let xℓ and Aℓ denote the ℓth terminal

and the first ℓ terminals of A∗, respectively, with respect to the ordering induced

by σ. We aim to charge the KLS cost share χKLS(xℓ, Aℓ) of a terminal xℓ ∈ A∗ to

points of the tree T . (A technical detail: since matched pairs of terminals appear

consecutively in the ordering induced by σ, the set Aℓ contains only matched pairs of

terminals, plus possibly an orphaned source si. In either case, χKLS(xℓ, Aℓ) denotes

the KLS cost share assigned to the terminal xℓ in the Steiner forest instance induced

by all of the players with at least one terminal in the set Aℓ.)

The charging proceeds as follows. Let Pℓ be the unique path in T from xℓ to x0, and

consider the primal-dual algorithm that determines the KLS cost share χKLS(xℓ, Aℓ).

At each moment in time τ up to the death time of xℓ, the terminal’s cost share

increases at a positive rate, equal to the inverse of the number of active terminals in

xℓ’s component at time τ . For each such time τ , we charge this (marginal) increment

in xℓ’s cost-share to the point gℓ(τ) which is at distance τ from xℓ along the path Pℓ.

Since every leaf-root path of T has length at least Dmax (Lemma 5.4.11)—half of

the largest distance between two terminals of A∗—and since Dmax is at least the death

time of every terminal of A∗, this procedure fully charges the sum
∑

ℓ χKLS(xℓ, Aℓ)

of the KLS cost shares to T .

Fix a point g of T . Only terminals in the subtree of T rooted at g charge part

of their cost share to g. By the ultrametric property (Lemma 5.4.3), all of these

terminals are equidistant from the point g in T ; let this common distance be τg. Such

a terminal charges part of its cost share to g if and only if its death time is at least τg;

let B denote these terminals. We first show that at time τg the terminals of B∩Aℓ are

in the same component and hence must share the increase in the active dual variable

corresponding to this compoenent; we then use this to show that for every point g

of the tree T , the sum of the (marginal) charges to g by the terminals of A∗ is only
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O(log k).

Lemma 5.4.12 Suppose xℓ ∈ B. Then at time τg in the run of the primal-dual

algorithm that defines the KLS cost share χKLS(xℓ, Aℓ), all the terminals of Aℓ ∩ B

are in the same component as xℓ.

Proof: Fix x ∈ (Al ∩ B) \ {xℓ}. As x and xℓ lie at distance τg from the point g in T ,

dT (x, xℓ) ≤ 2τg. Lemma 5.4.5 then implies that dG(x, xℓ) ≤ τg. Now, as x, xℓ ∈ B, the

death times of xℓ and x are both at least τg, and in particular the terminal x is active

at time τg. As dG(x, xℓ) ≤ τg, even ignoring the contributions of other terminals, the

components containing xℓ and x must merge by time τg in the run of the primal-dual

algorithm that defines the KLS cost share χKLS(xℓ, Aℓ). �

Lemma 5.4.13 For every point g of T , the total marginal charge to g is at most

2 · H|B|, where Hj =
∑

i≤j 1/i denotes the jth Harmonic number.

Proof: Since the KLS cost-sharing method splits the increase in value of an active

dual variable equally among the active terminals contained in the corresponding com-

ponent, Lemma 5.4.12 implies that the marginal charge to the point g by the terminal

xℓ ∈ B is at most 2/|B ∩ Aℓ|, which is at most 2/|Aℓ| . Summing over the contri-

butions of the terminals in B, the total amount charged to this point is at most

2 ·∑1≤l≤|A∗| 1/l, which is 2 · HA∗, proving the lemma. �

Theorem 5.4.1 now follows easily from Lemmas 5.4.8 and 5.4.13 and summing

over all of the components of the optimal solution.

5.5 SSRoB Cost-Sharing Problems

In this section we identify an optimal Moulin mechanism for the SSRoB cost-sharing

problem defined in Example 2.2.10. We seek an O(1)-budget-balanced Moulin mech-

anism for this problem with the best-possible approximate efficiency. Section 5.5.1

describes a mechanism, independently proposed by Gupta Srinivasan and Tardos [39]

and Leonardi and Schäfer [56]. Section 5.5.2 bounds the efficiency of this mechanism

and argues that the mechanism is optimal.
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5.5.1 The GST cost-sharing method

Gupta, Srinivasan, and Tardos [39] and Leonardi and Schäfer [56] independently

designed the following O(1)-budget-balanced cross-monotonic cost-sharing method for

SSRoB, which we call the GST method. Given an SSRoB cost function and a set S ⊆
U of players, we use the randomized algorithm of [40] to produce a feasible solution.

This algorithm first chooses a random subset D ⊆ S by adding each player i ∈ S to

D independently with probability 1/M . Second, it computes an approximate Steiner

tree spanning D ∪ {t} using, for example, the 2-approximate MST heuristic [73], and

buys infinite capacity on all of the edges of this tree. Third, for each player i /∈ D,

it rents one unit of capacity for exclusive use by i on a shortest path from its vertex

to the closest vertex in D ∪ {t}. This defines a feasible solution with probability 1,

and the expected cost of this solution is at most 4 times that of an optimal solution

to the SSRoB instance induced by S [40].

We now discuss the cost shares. The GST cost-sharing method uses JV cost

shares (Section 5.3) for the Steiner tree problem as a building block. These cost

shares are cross-monotonic and 2-budget-balanced for any instance of the Steiner

tree cost-sharing problem.

The GST cost share χGST (i, S) is defined as the sum of two terms χbuy(i, S) and

χrent(i, S) which represent the cost shares of a player i ∈ S with respect to the bought

and rented edges respectively. χbuy(i, S) and χrent(i, S) are the expected values of two

random variables B(i, S) and R(i, S) defined over the the random choice of the set

D in the above algorithm. R(i, S) equals the length of the shortest path used to

connect i to a vertex in D ∪ {t} if i /∈ D and is 0 otherwise. B(i, S) equals M times

the Jain-Vazirani cost share χJV (i, D) of i with respect to the Steiner tree instance

defined by G, c, t, and the players D if i ∈ D, and is 0 otherwise. For fixed coin

tosses of the above randomized algorithm, for any player i, note that at most one of

B(i, S) or R(i, S) is non-zero.

For fixed coin tosses, the cost-sharing method induced by the set of random vari-

ables B(i, S) for all S ⊆ U and i ∈ S is the JV cost-sharing method on an instance

of the Steiner tree problem and is therefore cross-monotonic, while the cost-sharing

method induced by the set of random variables R(i, S) for all S ⊆ U and i ∈ S are
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cross-monotonic because renting costs fall as the set S and hence the set D expands.

GST cost-shares are thus cross-monotone as they are the weighted (by probabilities

induced by the random choice of set D) sum of cross-monotone cost-sharing meth-

ods. Results from [39, 56] imply that the GST cost-shares are 4-budget-balanced.

We call the Moulin mechanism induced by the GST cost-sharing method the GST

mechanism.

5.5.2 The GST Mechanism is O(log2 k)-approximate

The main result of ths section bounds the efficiency loss of the GST mechanism.

Theorem 5.5.1 The GST mechanism is O(log2 k)-approximate for every SSRoB

cost-sharing problem, where k is the number of players in an efficient solution.

The SSRoB cost-sharing problem reduces to the Steiner tree cost-sharing problem

when M = 1, and Section 5.3.3 shows that every O(1)-budget-balanced Moulin mech-

anism for Steiner tree cost-sharing problem is Ω(log2 k)-approximate. This matches

the upper bound from Theorem 5.5.1 and argues this GST mechanism is an opti-

mal O(1)-budget-balanced Moulin mechanism. We now discuss the proof of Theo-

rem 5.5.1.

By Theorem 4.2.4, it suffices to show that GST cost shares are O(log2 k)-summable.

Mirroring several recent analyses of sampling algorithms for rent-or-buy problems [40,

38], our analysis proceeds in two steps. First we show that the summability of χrent

is at most a constant factor times that of χbuy. Second, we directly upper bound

the summability of χbuy. The first step will follow from a property of JV cost shares

called strictness.

Lemma 5.5.2 (strictness) For every Steiner tree instance, for every set S ⊆ U

and player i ∈ S, the JV cost share of a player is at least half the distance between i

and the nearest node in the set S \ {i} ∪ {t}.

We now use strictness to bound χrent in terms of χbuy.
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Lemma 5.5.3 Let C be a SSRoB cost function. For every S ⊆ U , i ∈ S, χrent(i, S) ≤
2 · χbuy(i, S).

Proof: Fix a set S ⊆ U and i ∈ S arbitrarily. Recall the description of GST cost

shares from Section 5.5.1. Condition on the membership of all the players of S \ {i}
in the set D. Let D ∪ (S \ {i}) = D′. Define R(i, S) and B(i, S) as in the definition

of GST cost shares.

Player i will be included in the set D with probability 1/M , in which case its

conditional cost share will be 2M · χJV (i, D′ ∪ {i}), where χJV (i, D′ ∪ {i}) is player

i’s JV cost share in the Steiner tree cost-sharing problem induced by the players of

D′∪{i}. Player i is excluded from the random sample D with probability (1−1/M),

in which case its conditional cost share equals the distance between i and the nearest

player in the set D′ ∪ {t}.
By Lemma 5.5.2, E[R(i, S)|D′] ≤ 2 · (1−1/M)E[B(i, S)|D′]. Taking expectations

to remove the conditioning on D′ proves the lemma. �

We now show that for every SSRoB cost function, the corresponding cost-sharing

method χbuy is O(log2 k)-summable. This will complete the proof of Theorem 5.5.1.

Lemma 5.5.4 Let C be a SSRoB cost function and χbuy the first term of the corre-

sponding GST cost-sharing method. Then χbuy is O(log2 k)-summable for C.

Proof: Condition on the random choice of the set D ⊆ S. Let OPTD denote the cost

of the optimal steiner tree for the terminals D ∪ {t}. A result of Gupta, Kumar, and

Roughgarden [40], based on earlier work by Karger and Minkoff [50], implies that

M times the expectation (over D) of OPTD is at most the cost C(S) of an optimal

SSRoB solution.

As JV cost shares are O(log2 k)-summable for all Steiner tree cost functions (Sec-

tion 5.3)
|S|
∑

ℓ=1

χJV (iℓ, Sℓ) ≤ O(log2 k) · OPTD ≤ O(log2 k) · C(S) (5.15)

for every ordering σ of D, where Sℓ and iℓ denote the set of the first ℓ players of D and

the ℓth player of S (with respect to σ), respectively. Taking expectations to remove
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the conditioning on D and recalling the definition of χbuy completes the proof. �

Remark 5.5.5 MRoB cost-sharing problems (Example 2.2.11) also admit O(1)-budget-

balanced, O(log2 k)-approximate Moulin mechanisms. See Roughgarden and Sun-

dararajan [71] for details.



Chapter 6

Acyclic Mechanisms

Having identified optimal Moulin mechanisms for various cost-sharing problems, we

now propose an alternative framework called acyclic mechanisms. Like Moulin mech-

anisms, acyclic mechanisms are ascending auctions based on cost-sharing methods.

However, acyclic mechanisms can employ a wider class of cost-sharing methods—the

cost-sharing methods need not be cross-monotonic. Section 6.1 discusses how acyclic

mechanisms get around the lack of cross-monotonicity. Section 6.2 defines acyclic

mechanisms formally. Section 6.3 establishes the truthfulness of acyclic mechanisms.

The next chapter identifies the two benefits of acyclic mechanisms. First, it is

easier to design acyclic mechanisms than Moulin mechanisms: many classical combi-

natorial algorithms (based on the primal-dual method) naturally induce a non-Moulin

acyclic mechanism with good performance guarantees. Second, for important classes

of cost-sharing problems, there exist acyclic mechanisms that have exponentially bet-

ter economic efficiency compared to the best Moulin mechanisms. Section 6.4 sum-

marizes these efficiency improvements.

6.1 Circumventing Non-crossmonotonicity

Recall from Chapter 4 that a Moulin mechanism can be viewed as a simulation of

an iterative ascending auction, with the prices that are simultaneously offered to the

remaining players at each iteration governed by the underlying cost-sharing method.

88
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Cross-monotonicity of the cost-sharing method ensures that the sequence of prices

offered to a player is nondecreasing, which in turn implies that the mechanism is

truthful. Conversely, non-cross-monotonic cost-sharing methods result in iterative

auctions that need not be ascending, and the corresponding mechanisms are generally

not truthful.

In an acyclic mechanism, in each iteration of the simulated iterative auction, prices

are offered to the remaining players according to a designer-specified order. If each

remaining player accepts the price offered to it, then the mechanism halts, and the

remaining players are served at the prices offered in the final iteration. If some player

refuses to pay the price it is offered, then the iteration terminates immediately, this

player is removed for the rest of the auction, and the next iteration begins with the

remaining players. Thus, a player need not be offered a price in every iteration.

Ordering the offers to the remaining players permits the construction of truthful

mechanisms from non-cross-monotonic cost-sharing methods. Intuitively, the early

termination of an iteration conceals subsequent prices from the players. If aborted

iterations correlate appropriately with failures of cross-monotonicity, then the simu-

lated iterative auction is ascending in the following sense: whenever an offer is made

to a player, it is at least as large as every offer made in previous iterations. This

property is sufficient for truthfulness. As we will see, many primal-dual algorithms

naturally induce a cost-sharing method that is not cross-monotonic but possesses

precisely this type of correlation.

6.2 Definitions

To define an acyclic mechanism for a cost function C and a universe U , we require

both a cost-sharing method χ and an offer function τ . An offer function specifies

a nonnegative offer time τ(i, S) for every subset S ⊆ U and every player i ∈ S.

These times specify the ordering in which the players of S should be offered a price,

with lower times corresponding to earlier offers, and equal times indicating simulta-

neous offers. A cost-sharing method and an offer function induce a mechanism that

simulates an iterative auction in a natural, generic way:
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Definition 6.2.1 Let U be a universe of players, χ a cost-sharing method defined

on U , and τ an offer function defined on U . The mechanism M(χ, τ) induced by χ

and τ is the following.

1. Collect a bid bi from each player i ∈ U .

2. Initialize S := U .

3. If bi ≥ χ(i, S) for every i ∈ S, then halt. Output the set S, the feasible solution

constructed by χ, and charge each player i ∈ S the price pi = χ(i, S).

4. Among all players i ∈ S with bi < χ(i, S), let i∗ be one with minimum τ(i, S).

(Break ties arbitrarily.)

5. Set S := S \ {i∗} and return to Step 3.

Remark 6.2.2 The definition of the mechanism M(χ, τ) depends only on the order-

ing of the offer times, and not on their numerical values. We work with real-valued

offer times rather than abstract orderings because such times arise naturally in primal-

dual algorithms.

Remark 6.2.3 For every universe U and cost-sharing method χ, the Moulin mech-

anism induced by χ is equivalent to the mechanism induced by χ and the identically

zero offer function.

As foreshadowed in the previous section, the mechanism induced by a cost-sharing

method and an offer function will be truthful only if all failures of cross-monotonicity

are suppressed by the offer function. We formalize the required property next; we

prove that it is sufficient for truthfulness in Section 6.3.

Let τ be an offer function defined on a universe U . For a subset S ⊆ U and a

player i ∈ S, let L(i, S), E(i, S), and G(i, S) denote the players of S with offer time

τ(·, S) strictly less than, equal to, and strictly greater than that of i, respectively.

Definition 6.2.4 Let χ and τ be a cost-sharing method and an offer function, re-

spectively, defined on a universe U . The function τ is valid for χ if the following two

properties hold for every subset S ⊆ U and player i ∈ S:
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(a) χ(i, S \ T ) = χ(i, S) for every subset T ⊆ G(i, S);

(b) χ(i, S \ T ) ≥ χ(i, S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

In Definition 6.2.4, a player’s cost share must remain fixed as players with subse-

quent offer times are removed, and it can only increase with the deletion of players

with equal offer times. The deletion of a player with an earlier offer time imposes

no constraints, as such a deletion terminates the iteration and suppresses the values

of subsequent cost shares. Also, we impose no explicit constraints on how the offer

function τ changes between consecutive iterations.

Example 6.2.5 Consider the universe U = {x, y} and the non-cross-monotonic

cost-sharing method χ defined by χ(y, {x, y}) = 1 and χ(x, {x, y}) = χ(y, {y}) =

χ(x, {x}) = 1/2. Let τx and τy denote offer functions satisfying τx(x, {x, y}) <

τx(y, {x, y}) and τy(y, {x, y}) < τy(x, {x, y}), respectively. Then τx is valid for χ

while τy is not.

Definition 6.2.6 An acyclic mechanism is a mechanism M(χ, τ) induced by a cost-

sharing method χ and an offer function τ that is valid for χ.

Remark 6.2.7 Acyclic mechanisms are strictly more general than Moulin mecha-

nisms. For example, all sequential mechanisms (see [62]), in which players are exoge-

nously ordered and successively offered service at the current marginal cost, are easily

implementable as acyclic mechanisms. These mechanisms are fully budget-balanced

and are not generally Moulin mechanisms. Sequential mechanisms are not immedi-

ately useful for our purposes, however, as they have poor efficiency and computational

complexity properties.

Definition 6.2.4 is easy to satisfy in several applications. Looking ahead, Chapter 7

shows that several well-known algorithms naturally induce a cost-sharing method and

an offer function that is valid for it. In all of our applications, the cost share χ(i, S) of

a player corresponds to part of a dual solution to the optimization problem induced

by S, and the offer time τ(i, S) is the time at which player i is “deactivated” by a
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primal-dual algorithm. For example, in UFL (Example 2.2.4), there is a one-to-one

correspondence between players and dual variables.

Remark 6.2.8 We use the term “acyclic” to reflect the fact that the offer function

of an acyclic mechanism orders the remaining players in a way that conceals the

non-cross-monotonicity of the underlying cost-sharing method. In particular, Defi-

nition 6.2.4 implies that for every subset S of players, the following directed graph

acyclic: the vertices are the players of S, and the arc (i, j) is included if and only

if χ(j, S \ {i}) < χ(j, S). This consequence of Definition 6.2.4 is reminiscent of but

different from the notion of “semi-cross-monotonicity” introduced in [45].

6.3 Properties of Acyclic Mechanisms

The following basic properties of acyclic mechanisms are immediate.

Proposition 6.3.1 Let χ and τ be a cost-sharing method and an offer function de-

fined on the universe U , and M(χ, τ) the induced mechanism.

(a) For every bid vector b, the mechanism M(χ, τ) halts within |U | iterations.

(b) If χ and τ run in polynomial time, then so does M(χ, τ).

(c) If χ is β-budget-balanced with respect to a cost function C, then so is M(χ, τ).

(d) The mechanism M(χ, τ) satisfies no positive transfers and individual rationality.

The rest of this section studies the incentive-compatibility properties of acyclic

mechanisms. Our key lemma states that the prices offered to a player can only

increase during the execution of an acyclic mechanism. To make this precise, we say

that player i is offered the price p in iteration j of an acyclic mechanism M(χ, τ) if the

following conditions hold: first, if S is the set of players remaining at the beginning

of the jth iteration, then i ∈ S; second, if a player i∗ is chosen for deletion in this

iteration, then τ(i, S) ≤ τ(i∗, S); third, the price p is the cost share χ(i, S).
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We first prove a preliminary result, stating that the price offered to a player by

an acyclic mechanism is fixed once a player with a subsequent offer time is offered a

price.

Lemma 6.3.2 Suppose an acyclic mechanism M(χ, τ) offers prices to players j and

i in an iteration with remaining players S, and τ(j, S) < τ(i, S). Then χ(j, S) is the

only price offered to j in subsequent iterations.

Proof: Let b denote the bid vector and m the iteration with remaining players S.

We show that no player of L(i, S) will ever be deleted; thus all removed players lie

in G(j, S), and the lemma follows from Definition 6.2.4(a).

We proceed by contradiction, and let ℓ denote the first player of L(i, S) removed at

or after iteration m. Let T ⊆ S denote the players of S removed prior to ℓ. Since ℓ was

removed, χ(ℓ, S \ T ) > bℓ. Since i was offered a price in iteration m and ℓ ∈ L(i, S),

χ(ℓ, S) ≤ bℓ < χ(ℓ, S \ T ). By our choice of ℓ, T contains no players of L(i, S),

and hence T ⊆ G(ℓ, S). But Definition 6.2.4(a) then gives χ(ℓ, S) = χ(ℓ, S \ T ), a

contradiction. �

Corollary 6.3.3 If an acyclic mechanism M(χ, τ) offers a price to player i when the

remaining set of players is S, then M never deletes a player of L(i, S).

Proof: Let b denote the bid vector. Since i is offered a price when the remaining set

of players is S, χ(j, S) ≤ bj for every j ∈ L(i, S). Lemma 6.3.2 implies that every

player j ∈ L(i, S) will be offered the same price χ(j, S) in subsequent iterations, and

hence no such player will ever be deleted. �

We now show that acyclic mechanisms only offer ascending sequences of prices.

Lemma 6.3.4 If an acyclic mechanism M(χ, τ) offers a player i the price p1
i in some

iteration and the price p2
i in a subsequent iteration, then p1

i ≤ p2
i .

Proof: Let S denote the remaining players in the earlier iteration, so p1
i = χ(i, S).

Since i was offered a price in this iteration, Corollary 6.3.3 implies that no player

of L(i, S) will be deleted in this or subsequent iterations. The lemma now follows

from Definition 6.2.4(b). �
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Lemma 6.3.4 implies that acyclic mechanisms are strategyproof.

Theorem 6.3.5 Every acyclic mechanism is strategyproof.

Since we generalize Theorem 6.3.5 in Theorem 6.3.8 below, we omit its short proof.

The next example shows that mechanisms induced by invalid offer functions are

not generally truthful.

Example 6.3.6 Define U , χ, and τy as in Example 6.2.5. The mechanism M(χ, τy)

induced by χ and τy is not strategyproof. To see this, suppose that vy = 3/4 and

bx = 1/4. If player y bids truthfully, it is not served and receives zero utility. If it

bids at least 1, however, it is served at the price 1/2 and receives positive utility.

Recall from Remark 4.1.3 that Moulin mechanisms are groupstrategyproof (GSP).

The next example shows that acyclic mechanisms need not be GSP.

Example 6.3.7 Define U , χ, and τx as in Example 6.2.5. Since τx is valid for χ, the

acyclic mechanism M(χ, τx) is strategyproof. It is not GSP, however. To see this,

set vx = 1/2 and vy = 1. In every possible execution of M(χ, τx), player x receives

zero utility. The coalition {x, y} can manipulate the mechanism by bidding bx = 0

and by = 1; player x obtains the same utility as with truthful bidding, and player y

obtains strictly more.

We conclude this section by proving that acyclic mechanisms are weakly group-

strategyproof (recall Section 2.4), and thus nearly match the incentive-compatibility

guarantee of Moulin mechanisms.

Theorem 6.3.8 Every acyclic mechanism is weakly groupstrategyproof (WGSP).

Proof: Let M(χ, τ) be an acyclic mechanism defined on the universe U . Recall from

Chapter 2 that a mechanism is WGSP if no coordinated false bid by a coalition of

players can strictly increase the utility of every player in the coalition. Fix a coalition

T ⊆ U , a valuation vi and a bid bi for every player i ∈ T , and bids b−T for the players

not in T . Let Ev and Eb denote the executions of M for the bid vectors (vT , b−T ) and
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(bT , b−T ), respectively. Let (S, p) and (S ′, p′) denote the outcomes of these executions.

We claim that ui(S, p) ≥ ui(S
′, p′) for some i ∈ T .

There are three cases. First, if no player of T is deleted in Ev or Eb, then these

executions terminate with identical outcomes (S, p) and (S ′, p′), and the claim holds.

Second, if some player i ∈ T is deleted in Eb, then ui(S
′, p′) = 0. Since ui(S, p) ≥ 0

by the individual rationality of M(χ, τ) (Proposition 6.3.1(d)), the claim holds. For

the final case, assume that T ⊆ S ′ and T 6⊆ S, and let i be the first player of T

deleted in Ev, say in the jth iteration; obviously, ui(S, p) = 0. The executions Ev

and Eb are identical up to their jth iterations, and i is offered the same price p∗i in

both executions. Since i is deleted in Ev, p∗i > vi. By Lemma 6.3.4, p′i ≥ p∗i > vi.

Thus ui(S
′, p′) < 0 = ui(S, p), completing the proof. �

Remark 6.3.9 The proof of Theorem 6.3.8 immediately implies an incentive-compatibility

guarantee somewhat stronger than WGSP: for every acyclic mechanism, every devi-

ation by a coalition that strictly increases the utility of one of its members either

decreases the utility of or prevents service to another member (cf., Example 6.3.7).

Remark 6.3.10 Not all WGSP mechanisms are acyclic; see Juarez [49]. For exam-

ple, the following mechanism for two players is WGSP but not acyclic: offer service

to the first player at a fixed price, and to the second at a price that is a strictly

increasing function of the first player’s bid. The key point is that acyclic mechanisms

are based on cost-sharing methods—mechanisms based on cost-sharing methods sat-

isfy the property that for every bid vector, the allocation determines the prices. This

condition is violated by the mechanism in this example.

Characterizing the class of WGSP mechanisms and its relationship to acyclic

mechanisms is an interesting direction for future research.

6.4 Acyclic mechanisms: Summary of Applications

As the following table summarizes, acyclic mechanisms yield exponentially superior

budget-balance and efficiency compared to the best Moulin mechanisms for set cover
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and vertex cover cost-sharing problems. For UFL cost-sharing problems, acyclic mech-

anisms achieve better budget-balance than that achievable by Moulin mechanisms.

All of these mechanisms have polynomial time implementations. See Chapter 7 for

details. The Moulin lower bounds are discussed in Section 4.5.2. Recall that k is

the size of the optimal solution, n is the size of the universe of players, and all of the

results are worst case bounds with respect to valuation profiles and problem instances

of the problem family.

Problem Moulin lower bounds Acyclic upper bounds

Vertex Cover α, β = Ω(k1/3) α = O(log k), β = 2

Set Cover α, β = Ω(
√

k) α, β = O(log n log k)

Metric UFL α = Ω(log k), β = 3 α = O(log k), β = 1.61

If we drop the requirement of a computationally efficient implementation, Bleis-

chwitz et al. [12] show that there is an acyclic mechanism that is perfectly budget-

balanced and O(log k)-approximate for all subadditive cost-sharing problems (recall

from Figure 2.1 that this all the cost-sharing problems we study in this thesis are sub-

additive). This mechanism is based on the egalitarian cost-sharing method of Datta

and Ray [28], and is similar in spirit to the DMV mechanism for NMUFL cost-sharing

problems from Chapter 7. Section 8.1 identifies a non-acyclic , no-deficit mechanism

that is O(log k)-approximate for an even wider class of cost-sharing problems—those

that have monotone cost-functions—however, though this mechanism is no-deficit, it

is not budget-balanced, it is SP but not WGSP.

6.5 Notes

6.5.1 Acycicity

Moulin [62] defines a class of cost-sharing mechanisms called incremental cost-sharing

mechanisms, which are acyclic. The idea is to arrange players in a sequence and check

if a player is willing to pay its marginal cost-share. (This paper also defines Gener-

alized incremental cost-sharing methods that vary the offer sequence based on which
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previous offers were accepted or rejected, just like some of our acylic mechanisms.)

These mechanisms apply to cost-sharing problems with multiple levels of service,

are strategyproof and budget-balanced. However, they have poor efficiency for the

cost-sharing problems we study.

Bleischwitz et al. [13] propose non-Moulin mechanisms for symmetric subadditive

costs that are groupstrategyproof, but improve on the best budget-balance achievable

by Moulin mechanisms. The mechanisms they propose use deletion priorities just as

acyclic mechanisms do, but use only two priorities and two prices, and are applicable

only to symmetric cost functions.



Chapter 7

Acyclic Mechanisms via

Primal-Dual

This chapter demonstrates how several well-known primal-dual algorithms naturally

induce acyclic mechanisms. All of these algorithms were designed prior to the de-

velopment of Moulin mechanisms, but since the cost-sharing methods induced by

these algorithms are not cross-monotonic, they could not be used to construct such

mechanisms.

Section 7.1 gives a self-contained account of two primal-dual algorithms, shows

how each induces a cost-sharing method and an offer function in a natural way, and

notes that these cost-sharing methods are not cross-monotonic. Section 7.2 proves

that these cost-sharing methods are valid (Definition 6.2.4). Section 7.3 proves that

the mechanisms induced by these cost-sharing methods match or, in most cases,

improve upon the best approximation guarantees possible for Moulin mechanisms.

7.1 Primal-Dual Algorithms and Cost-Sharing

Methods

Good Moulin and acyclic mechanisms depend on good cost-sharing methods—functions

that take as input a subset S of players, and output both a feasible solution for the

98
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optimization problem induced by S and cost shares for the players that approximately

cover the cost of this solution. This goal is strongly reminiscent of that achieved by

primal-dual algorithms—algorithms that output a feasible solution to an optimization

problem, as well as a “dual solution” that certifies the near-optimality of the solution.

This parallel has already been exploited in the design of Moulin mechanisms (Chap-

ter 5), and we demonstrate that this connection is equally powerful in the design of

acyclic mechanisms.

This section describes two non-cross-monotonic cost-sharing methods for NMUFL

cost-sharing problems, induced by well-known primal-dual algorithms. Sections 7.2–

7.3.2 leverage these methods to design acyclic mechanisms with good performance

guarantees, and in particular establish the upper bounds listed in Section 6.4.

7.1.1 The PD Mechanism for NMUFL Problems

Primal-dual algorithms lead to cost-sharing methods in a generic way. Our first illus-

tration is a NMUFL algorithm that forms the basis of our 2-budget-balanced acyclic

mechanism for Vertex Cover problems. Consider a NMUFL problem (Example 2.2.3)

defined by a universe U , facilities F , and facility and connection costs f and c, respec-

tively. A star is a pair (q, T ), where q ∈ F is a facility and T is a subset of demands.

The cost c(q, T ) of the star (q, T ) is defined as fq +
∑

i∈T c(q, i). Let S(S) denote the

set of all stars involving only players of S. The following integer program is an exact

formulation of the NMUFL problem induced by a subset S ⊆ U of players:

Min
∑

(q,T )∈(S)(S)

c(q, T )xqT

subject to:

(IP (S))
∑

(q,T )∈S(S) : i∈T

xqT ≥ 1 for all i ∈ S

xqT ∈ {0, 1} for all (q, T ) ∈ S(S).

There is one decision variable per star (q, T ), and setting a variable xqT = 1 should

be interpreted as opening the facility q and assigning all of the demands of T to q.
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There is one constraint per player i of S, stating that at least one star containing i

must be selected. Every feasible solution of the NMUFL instance induced by S can

be mapped easily to a feasible solution of IP (S) of no greater cost, and conversely.

Replacing the last constraint of IP (S) by xqT ≥ 0 for every star (q, T ) ∈ C(S)

yields a linear programming relaxation. The dual linear program of this relaxation is

Max
∑

i∈S

αi

subject to:

(D(S))
∑

i∈T

αi ≤ c(q, T ) for all (q, T ) ∈ C(S)

αi ≥ 0 for all i ∈ S.

There is a one-to-one correspondence between the dual decision variables αi and

the players of S. By weak linear programming duality (see e.g. [21]), the objective

function value of every feasible solution α of D(S) provides a lower bound on the

objective function value of every feasible solution x of IP (S):

∑

i∈S

αi ≤
∑

(q,T )∈C(S)

c(q, T )xqT . (7.1)

Why are these mathematical programs useful for designing cost-sharing methods?

Suppose an algorithm is guaranteed to return feasible solutions x∗ and α∗ to IP (S)

and D(S), respectively, such that

∑

(q,T )∈C(S)

c(q, T )x∗
qT ≤ β ·

∑

i∈S

α∗
i . (7.2)

Interpret x∗ as a feasible solution to the NMUFL instance induced by S, and each

dual variable α∗
i scaled by a factor β as a cost share χ(i, S). By inequalities (7.1)

and (7.2), this cost-sharing method χ is β-budget-balanced. Thus, designing a β-

budget-balanced cost-sharing method reduces to designing a β-approximation algo-

rithm with performance guarantee established via the primal-dual inequalities (7.1)

and (7.2). There are several broadly applicable algorithmic paradigms for designing
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1. Initialize αi = 0 for all i ∈ S, xqT = 0 for all (q, T ) ∈ C(S), and the time t to 0.
All players of S are active and unconnected.

2. While active players remain:

(a) Uniformly increase αi for every active player i ∈ S, until
∑

i∈T αi = c(q, T )
for some star (q, T ) containing at least one active player. Increase t by the
same amount.

(b) Choose such a star (q, T ) and let W denote the players already connected
to q. Set xqW = 0 and xqT∪W = 1. Deactivate and connect to q all of the
players of T .

Figure 7.1: The PD algorithm for NMUFL.

approximation algorithms of this type (see e.g. [73]).

Cost-sharing methods do not automatically yield truthful cost-sharing mecha-

nisms unless they satisfy additional constraints (cf., Definition 6.2.4). This motivates

concentrating on a particularly simple class of algorithms: primal-dual algorithms.

Roughly, a primal-dual algorithm constructs feasible solutions to a (primal) opti-

mization problem and the dual of its linear relaxation in tandem, maintaining in-

equalities (7.1) and (7.2) as invariants during its execution. Typically, the algorithm

begins with the all-zero primal and dual solutions, and primal feasibility is attained

only at termination.

Figure 7.1 displays a primal-dual algorithm for the NMUFL problem, which we call

the PD algorithm. (This algorithm is well known; see [43] and [73, Chapter 15].) At

the beginning of the algorithm, all dual variables are zero and all stars are unchosen.

The algorithm also maintains a notion of time, initially zero. A player is active if it

is not contained in a chosen star, and inactive otherwise. In each iteration, the dual

variables αi of all active players are increased simultaneously at unit rate until the

dual constraint for some unchosen star (q, T ) becomes tight:
∑

i∈T αi = c(q, T ). When

such a star becomes tight, it is chosen and the active players of T are deactivated; ties

are broken in an arbitrary but consistent way. Such a star can be found in polynomial

time, even though there are an exponential number of stars (see [46]). As long as
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there is a feasible solution with finite cost, the algorithm will terminate with such a

solution. By Step 2a, it maintains dual feasibility as an invariant.

Lemma 7.1.1 (PD Invariant) For every NMUFL instance, the PD algorithm ter-

minates with feasible solutions to both the primal (the linear relaxation of IP (S)) and

the dual D(S).

This primal-dual algorithm induces a cost-sharing method χPD for the given

NMUFL problem: given a subset S ⊆ U , return the feasible NMUFL solution com-

puted by this algorithm, and set each cost share χPD(i, S) to the final value of the

dual variable αi scaled by dmax, where dmax denotes the maximum number of facilities

to which a player can be assigned at finite cost. The important application of this

mechanism is to Vertex Cover problems, for which dmax = 2 (cf., Figure 7.2(b)).

The cost-sharing method χPD is not cross-monotonic, even in the special case

of Vertex Cover cost-sharing problems, and thus does not yield a truthful Moulin

mechanism.

Example 7.1.2 Consider the Vertex Cover cost-sharing problem shown in Figure 7.2(a),

with vertex weights as shown. This problem corresponds to the NMUFL instance

shown in Figure 7.2(b). Edges in the figure represent zero connection costs; non-

edges represent infinite connection costs.

We claim that χPD(C, {B, C}) < χPD(C, {A, B, C}), which is a violation of

cross-monotonicity. To compute the cost share χPD(C, {A, B, C}), we execute the

primal-dual algorithm of Figure 7.1 with all three players present. At time 2, the

star (2, {A, B}) becomes tight and players A and B are deactivated. At time 4,

the star (3, {B, C}) becomes tight, C is deactivated, and algorithm terminates with

χPD(C, {A, B, C}) equal to 8 (recall the scaling by dmax = 2). If we remove player A

and execute the algorithm, the star (3, {B, C}) is the first to become tight, at

time t = 3. The algorithm halts at this point with χPD(C, {B, C}) = 6 which is

strictly less than χPD(C, {A, B, C}).

The primal-dual algorithm in Figure 7.1 also induces an offer function: set τPD(i, S)

equal to the time at which player i is deactivated in Step 2b of the algorithm. We
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w  = 81

CBA
1 2 3 4

w  = 82 3 4
w  = 4 w  = 6

(a) Vertex Cover problem

f  = 81

A

1

B C

2 3 4

f  = 82f  = 4 3f  = 6 4

(b) Equivalent NMUFL problem

Figure 7.2: Example 7.1.2. The cost-sharing method χPD is not cross-monotonic.

call the mechanism M(χPD, τPD) induced by χPD and τPD the PD mechanism. Sec-

tions 7.2–7.3.2 establish that the PD mechanism is acyclic and, for Vertex Cover

problems, is 2-budget-balanced (Definition 2.3.1) and O(log k)-approximate (Equa-

tion (3.1)).

Example 7.1.3 In Example 7.1.2, χPD fails to be cross-monotonic because

χPD(C, {B, C}) = 6 < 8 = χPD(C, {A, B, C}).

On the other hand, τPD(A, {A, B, C}) = 2 < 4 = τPD(C, {A, B, C}); in words, the

PD mechanism offers player A its first-round price of 4 before it offers player C

its first-round price of 8. Cross-monotonicity fails only when player A refuses this

price; in this case, the PD mechanism makes no first-round offer to player C, thereby

suppressing the non-cross-monotonicity.

7.1.2 The DMV Mechanism for NMUFL Problems

Next we give a second NMUFL cost-sharing method that leads to a mechanism that

outperforms the PD mechanism for general NMUFL and metric UFL problems (but

not for Vertex Cover problems). The method is again defined via a primal-dual

algorithm for the programs IP (S) and D(S) (Figure 7.3). See also Remark 7.1.7

below for a greedy interpretation of this algorithm.

This algorithm differs from the PD algorithm primarily in its choice of the star (q, T )

in the main loop. First, only stars (q, T ) entirely composed of active players T are
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1. Initialize αi = 0 for all i ∈ S, xqT = 0 for all (q, T ) ∈ C(S), and the time t to 0.
All players of S are active and unconnected, all facilities are closed.

2. While active players remain:

(a) Uniformly increase αi for every active player i ∈ S, until for some
star (q, T ) of active players T : (i) q is closed and

∑

i∈T αi = c(q, T ); or (ii)
q is open and

∑

i∈T αi =
∑

i∈T c(q, i). Increase t by the same amount.

(b) Choose such a star (q, T ). Deactivate and connect to q all of the players
of T . In case (i), open q and set xqT = 1. In case (ii), let W denote the
players already connected to q, and set xqW = 0 and xqT∪W = 1.

Figure 7.3: The DF algorithm for NMUFL.

eligible for selection. Second, the selection criterion depends on whether or not the

facility q appears in a previously chosen star. These rules are designed to main-

tain the invariant that the current primal and dual solutions have equal objective

function value. Primal-dual algorithms of this type are sometimes called dual-fitting

algorithms [46], so we call this algorithm the DF algorithm.

Lemma 7.1.4 (DF Invariant) After each iteration of Step 2 of the DF algorithm,

∑

(q,T )∈C(S)

c(q, T )xqT =
∑

i∈I

αi,

where I denotes the current set of inactive players.

We omit the straightforward inductive proof. See also [43, 46] for alternative descrip-

tions of the DF algorithm, including polynomial-time implementations.

The DF algorithm only constrains dual variable growth in Step 2 via a strict subset

of the dual constraints—stars comprising only active players—and the algorithm need

not maintain dual feasibility. However the dual variables suitably scaled do satisfy

dual feasibility.
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Lemma 7.1.5 For every NMUFL instance, the DF algorithm terminates with a so-

lution (αis) such that the solution scaled down by a factor H|U | is dual feasible.

Lemma 7.1.5 follows from the well-known dual-fitting analysis of the greedy Set Cover

algorithm (see [20, 43] and [73, Chapter 13]).

Like the PD algorithm, the DF algorithm induces a cost-sharing method χDF and

an offer function τDF . Given a subset S ⊆ U , the method χDF returns the feasible

solution computed by the DF algorithm for the NMUFL instance induced by S, and

cost shares equal to the dual variables. The offer time τDF (i, S) is defined as the time

at which player i is deactivated in Step 2b of the DF algorithm. We call the induced

mechanism M(χDF , τDF ) the DMV mechanism, as special cases of this mechanism

were studied in [26]. Sections 7.2–7.3.2 prove acyclicity of and good performance

guarantees for the DMV mechanism.

Remark 7.1.6 In Example 7.1.2, χDF (C, {A, B, C}) = 6 while χDF (C, {B, C}) = 3.

Thus χDF is not cross-monotonic. Minor modifications to this example show that χDF

also fails to be cross-monotonic in the special case of metric UFL problems.

Remark 7.1.7 The DF algorithm can also be interpreted as a greedy algorithm [46].

Given a partial solution to a NMUFL instance, define the cost effectiveness of a

star (q, T ) as c(q, T )/|T | if q is closed and as
∑

i∈T c(q, i)/|T | if q is already open.

The main loop of the DF algorithm (Step 2) is equivalent to repeatedly choosing

the star of active players with smallest cost effectiveness. The dual variable of each

participating player is set to the cost effectiveness of the star.

Remark 7.1.8 The DMV mechanism has an alternative description in which all of

the successive invocations of the underlying DF algorithm are combined into a single

one. In particular, the mechanisms in [26] are described in this way.

7.2 Acyclicity

We now prove that both mechanisms defined in Section 7.1 are acyclic.
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The proofs of acyclicity for the PD and DMV NMUFL mechanisms are essentially

the same. We begin by noting that cost shares and offer times are equal in the DF

method, and differ only by a fixed scaling factor in the PD method.

Lemma 7.2.1 For every NMUFL problem with universe U , subset S ⊆ U , and

player i ∈ S:

(a) χPD(i, S) = dmax · τPD(i, S);

(b) χDF (i, S) = τDF (i, S).

Proof: In the PD algorithm, every dual variable αi is increased at unit rate from

time 0 to the the time at which the corresponding player is deactivated, which by

definition is τPD(i, S). Since χPD(i, S) is the final value of αi scaled by a factor

dmax, (a) follows.

By the same argument, after Step 2 of the DF algorithm, αi = τDF (i, S) for every

player i ∈ S. Since χDF (i, S) is is the final value of τDF (i, S), (b) follows. �

We can now prove that the PD mechanism is acyclic and hence, by Theorem 6.3.8,

weakly groupstrategyproof (WGSP).

Theorem 7.2.2 The PD mechanism is acyclic.

Proof: Fix a NMUFL cost-sharing problem and let E(S) denote the execution of

the PD algorithm on the NMUFL instance induced by a subset S ⊆ U of players.

Fix S ⊆ U and a player i ∈ S. Let (q, A) denote the star chosen at time τPD(i, S) in

E(S) that contains player i.

To establish Definition 6.2.4(a), choose T ⊆ G(i, S). Since the offer time of a

player equals the earliest time at which a star containing it is chosen by the PD

algorithm, no star chosen in E(S) at or before time τPD(i, S) includes a player of T .

By induction on the main loop, the executions E(S) and E(S \ T ) are identical up to

and at the time τPD(i, S). As a result, τPD(i, S \T ) = τPD(i, S). By Lemma 7.2.1(a),

χPD(i, S \ T ) = χPD(i, S).

The proof of Definition 6.2.4(b) is similar. Fix a subset T ⊆ G(i, S)∪(E(i, S)\{i})
of players. The executions E(S) and E(S \T ) are identical prior to the time τPD(i, S).
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Thus τPD(i, S \ T ) ≥ τPD(i, S) and, by Lemma 7.2.1(a), χPD(i, S \ T ) ≥ χPD(i, S).

�

An identical argument proves the acyclicity of the DMV mechanism.

Theorem 7.2.3 The DMV mechanism is acyclic.

7.3 Improved Approximation Guarantees

This section proves tight upper and lower bounds on the approximate budget-balance

(Section 7.3.1) and efficiency (Section 7.3.2) of the acyclic mechanisms defined in the

previous section.

7.3.1 Budget-Balance Guarantees

This section shows how budget-balance guarantees for both of the mechanisms de-

fined in Section 7.1 follow easily from existing work in the approximation algorithms

literature.

The PD Mechanism for NMUFL and Vertex Cover Problems

We next show that the PD mechanism for NMUFL problems is dmax-budget-balanced,

where dmax denotes the maximum number of facilities to which a player can be as-

signed at finite cost. Extending the well-known analysis of primal-dual Set Cover

algorithms implies the following guarantee for the PD algorithm.

Lemma 7.3.1 For every NMUFL instance, the PD algorithm computes a primal

solution {x∗
qT}(q,T )∈C(S) and a dual solution {α∗

i }i∈S satisfying

∑

(q,T )∈C(S)

c(q, T )x∗
qT ≤ dmax ·

∑

i∈S

α∗
i .

The intuition behind Lemma 7.3.1 is that every increase of a dual variable in the PD

algorithm only contributes to dual constraints of dmax different facilities, and thus
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the primal cost will only exceed the sum of the dual variables by a dmax factor. The

details are essentially the same as those for Set Cover algorithms, which appear in

Hochbaum [43] and Vazirani [73, Chapter 15].

In addition, the dual solution computed by the PD algorithm is feasible (Lemma 7.1.1),

and hence the computed primal and dual solutions satisfy weak duality (7.1). As dis-

cussed in Section 7.1.1, since the cost shares of the PD method are the dual variables

computed by the PD algorithm, scaled by a factor dmax, budget-balance of the PD

method and mechanism follow.

Theorem 7.3.2 For every NMUFL cost-sharing problem, the PD mechanism is (dmax)-

budget-balanced.

For vertex cover, dmax is 2. Recall that every Moulin mechanism for Vertex Cover

problems is Ω(|U |1/3)-budget-balanced [45]. Assuming the Unique Games Conjec-

ture [52], the budget-balance guarantee in Theorem 7.3.2 is the best possible for a

polynomial-time mechanism for small values of dmax [53].

The PD mechanism has poor budget-balance in NMUFL problems in which dmax is

large. In these cases, the DMV mechanism achieves a superior performance guarantee.

In particular, the following lemma is obvious from Lemma 7.1.4.

Lemma 7.3.3 For every NMUFL instance, the DF algorithm computes a feasible

primal solution {x∗
qT}(q,T )∈C(S) and an (infeasible) dual solution {α∗

i }i∈S satisfying

∑

(q,T )∈C(S)

c(q, T )x∗
qT =

∑

i∈S

α∗
i .

Also, by Lemma 7.1.5, the dual solution computed by the DF algorithm is feasible

if all the dual variables are scaled by H|U |. As with Theorem 7.3.2, budget-balance

follows.

Theorem 7.3.4 ([26]) For every NMUFL cost-sharing problem with universe U , the

DMV mechanism is H|U |)-budget-balanced.
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Every Moulin mechanism for NMUFL problems is Ω(
√

|U |)-budget-balanced [45].

Under standard complexity assumptions, the budget-balance guarantee in Theo-

rem 7.3.4 is the best possible for polynomial-time NMUFL mechanisms [31].

The DMV mechanism can achieve radically better budget-balance for the special

case of metric UFL problems. Jain et al. [46] proved the following.

Lemma 7.3.5 ([46]) For every metric UFL instance, the metric DF algorithm ter-

minates with a dual feasible solution if all the dual variables are scaled down by a

factor 1.861.

Budget-balance of the DMV mechanism follows.

Theorem 7.3.6 ([26]) For every metric UFL cost-sharing problem, the metric DMV

mechanism is (1.861)-budget-balanced.

No metric UFL Moulin mechanism is better than 3-budget-balanced [45].

Remark 7.3.7 The budget-balance guarantee in Theorem 7.3.6 can be improved

using a slightly different mechanism. Jain et al. [46] suggested a modification of the

DF algorithm for metric UFL and proved that scaling its dual variables by a factor

of 1.61 is enough to recover dual feasibility. The proofs of Theorems 7.2.2 and 7.2.3

carry over to show that the mechanism induced by this refined algorithm is acyclic.

As in Theorem 7.3.6, this mechanism is 1.61-budget-balanced.

7.3.2 Efficiency Guarantees

This section proves matching upper and lower bounds on the approximate efficiency

achieved by the mechanisms defined in Section 7.1. We obtain efficiency guarantees

for the PD and DMV mechanisms for NMUFL problems as a consequence of the

following more general result.

Theorem 7.3.8 Let M(χ, τ) be a (β)-budget-balanced acyclic mechanism for a cost-

sharing problem C with universe U such that:

(P1) for some constant γ > 0, χ(i, S) = γ · τ(i, S) for all S ⊆ U and i ∈ S;
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(P2) for every S ⊆ U and T ⊆ S,

∑

i∈T

χ(i, S) ≤ β · C(T ). (7.3)

Then, M(χ, τ) is (β · Hk + β − 1)-approximate, where k is the size of an optimally

efficient solution.

Property (P1) states that offer times are proportional to cost shares. Property (P2)

can be interpreted as a “stability” property in the spirit of the core (see e.g. [69]),

demanding that each coalition T has no incentive to secede from the mechanism and

seek service elsewhere at cost C(T ).

Theorem 7.3.8 has immediate implications for the PD and DMV mechanisms.

Corollary 7.3.9 For every NMUFL cost-sharing problem, the PD mechanism is

O(dmax · log k)-approximate, where dmax is the largest number of facilities to which

a demand can be assigned at finite cost. Here k is the size of an optimally efficient

solution.

Proof: To check condition (7.3), fix a NMUFL problem with universe U and sub-

sets T ⊆ S ⊆ U . Let χPD denote the PD cost-sharing method. The cost shares

{χPD(i, S)}i∈S scaled down by a factor dmax form a feasible solution to the dual pro-

gram D(S) of Section 7.1.1 (Lemma 7.1.1). The subset of cost shares {χPD(i, S)}i∈T

scaled down by a factor dmax form a feasible solution to the dual program D(T ).

Condition (7.3) follows from weak duality.

The corollary is now immediate from Lemma 7.2.1(a), Theorem 7.3.2, and Theo-

rem 7.3.8. �

For example, for Vertex Cover problems, the PD mechanism is O(log k)-approximate.

Every Moulin mechanism for such problems is Ω(k1/3)-approximate [45, 70].

Corollary 7.3.10 For every NMUFL cost-sharing problem, the DMV mechanism is

O(log n · log k)-approximate. Here k is the size of an optimally efficient solution, and

n is the size of the universe U .
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Proof: Immediate from Lemma 7.1.5, Lemma 7.2.1(b), Theorem 7.3.4, and Theo-

rem 7.3.8. �

Recall that every Moulin mechanism for NMUFL problems is Ω(
√

n)-approximate [45,

70].

Remark 7.3.11 Analogous to the above theorem, the 1.861-budget-balanced met-

ric UFL mechanism (Theorem 7.3.6) and its variant discussed in Remark 7.3.7 are

O(log k)-approximate.

Our proof of Theorem 7.3.8 depends on two lemmas. The first bounds the service

cost incurred by the mechanism in terms of the cost of the optimal solution and part

of the excluded valuations of an optimal solution.

Lemma 7.3.12 Let M = M(χ, τ) be a no-deficit acyclic mechanism for a cost-

sharing problem C with universe U that satisfies property (P2) of Theorem 7.3.8.

Let v be a valuation profile for U , S the outcome of M on input v, and S∗ the out-

come with optimal social cost. Then,

CM(S) ≤



β · C(S∗) +
∑

i∈S\S∗

vi



 .

Proof: Since M satisfies the no-deficit condition,

CM(S) ≤





∑

i∈S∩S∗

χ(i, S) +
∑

i∈S\S∗

χ(i, S)



 . (7.4)

By property (P2) and since C is nondecreasing,

∑

i∈S∩S∗

χ(i, S) ≤ β · C(S ∩ S∗) ≤ β · C(S∗). (7.5)

By individual rationality (Proposition 6.3.1(d)), χ(i, S) ≤ vi for every i ∈ S \ S∗;

combining this with inequalities (7.4) and (7.5) proves the lemma. �



112 CHAPTER 7. ACYCLIC MECHANISMS VIA PRIMAL-DUAL

The second lemma upper bounds the excluded valuation of the mechanism in

terms of the service cost of an optimal solution.

Lemma 7.3.13 Let M = M(χ, τ) be an acyclic mechanism for a cost-sharing prob-

lem C with universe U of k players that satisfies properties (P1) and (P2) (for some

β) of Theorem 7.3.8. Let v be a valuation profile for U , S the outcome of M on

input v, and S∗ the outcome with optimal social cost. Then,

∑

i∈S∗\S
vi ≤ β · Hk · C(S∗).

Here k = |S∗|.

Proof: Let ℓ = |S∗ \ S| and rename the players so that player i is the ith player of

S∗ \ S to be deleted by M on input v. Let Si denote the set of players from which i

is deleted by M . We prove that

χ(i, Si) ≤
β · C(S∗)

ℓ − i + 1
(7.6)

for every i ∈ {1, 2, . . . , ℓ}; here β is defined as in the statement of Theorem 7.3.8.

Player i’s deletion from Si implies that vi < χ(i, Si); summing (7.6) over all players

of S∗ \ S then yields the lemma.

Fix a player i of S∗ \ S. We first claim that, when player i is deleted, its offer

time τ(i, Si) is minimum among the remaining players {i, i + 1, . . . , ℓ} of S∗ \ S. If

not, there is a player j > i of S∗ \ S with τ(j, Si) < τ(i, Si). Since i is offered a

price in the iteration it is deleted, Corollary 6.3.3 implies that L(i, Si) ⊆ S. But

j ∈ L(i, Si) ∩ (S∗ \ S), a contradiction.

This claim and property (P1) imply that, when player i is deleted, its cost

share χ(i, Si) is minimum among the remaining players of S∗ \ S. Property (P2)

and the fact that C is nondecreasing give a bound on the sum of the cost shares of

these players:

ℓ
∑

j=i

χ(j, Si) ≤ β · C({i, i + 1, . . . , ℓ}) ≤ β · C(S∗);
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since player i’s cost share is the smallest of the (ℓ− i+1) remaining players of S∗ \S,

it is at most β ·C(S∗)/(ℓ− i + 1). This establishes (7.6) and completes the proof. �

Theorem 7.3.8 now follows easily.

Proof of Theorem 7.3.8: Fix a cost-sharing problem with universe U and a valuation

profile v for U . Applying Lemmas 7.3.12 and 7.3.13, we have:

CM(S) +
∑

i/∈S

vi ≤ β · C(S∗) +
∑

i∈S\S∗

vi + β · Hk · C(S∗) +
∑

i∈U\(S∪S∗)

vi

≤ (β · Hk + β) · C(S∗) +
∑

i/∈S∗

vi

Rearranging terms then proves the theorem.

�

Remark 7.3.14 Lemma 7.3.13 and Theorem 7.3.8 continue to hold if property (P1)

is replaced by the weaker assumption that, for every subset S ⊆ U of players and

i, j ∈ S, χ(i, S) < χ(j, S) if and only if τ(i, S) < τ(j, S).

Our final result in this section shows that the logarithmic factor in Theorem 7.3.8

cannot be removed: even for extremely simple cost-sharing problems, every O(1)-

budget-balanced acyclic mechanism is Ω(log k)-approximate. Recall the excludable

public good cost-sharing problem (Example 2.2.12).

Theorem 7.3.15 Every no-deficit acyclic mechanism for the public excludable good

problem with n players is at least Hn − 1-approximate.

Proof: Fix a universe U of k players and a no-deficit acyclic mechanism M(χ, τ).

We first claim the following: for every nonempty set S ⊆ U , there is a player with

minimum offer time τ(i, S) and cost share χ(i, S) ≥ 1/|S|. In proof, let T ⊂ S denote

the players with offer time strictly larger than the minimum. Since χ is no-deficit,
∑

i∈S\T χ(i, S \T ) ≥ C(S \T ) = 1 and hence χ(i, S \T ) ≥ 1/|S \T | ≥ 1/|S| for some

player i ∈ S \ T . Invoking Definition 6.2.4(a) shows that χ(i, S) = χ(i, S \ T ) and

completes the claim.
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Using this claim, we can inductively rename the players of U as follows. For

i = 1, 2, . . . , n, player i is a player of Si ≡ U \{1, 2, . . . , i−1} that has minimum offer

time τ(·, Si) and cost share χ(·, Si) at least 1/(n − i + 1). Now set the valuation vi

of player i to 1/(n − i + 1) − ǫ for small ǫ > 0. The optimal solution has efficiency

≈ Hn − 1 Since player i has minimum offer time in Si and vi < χ(i, Si) for every i,

the mechanism M outputs the empty allocation and has an efficiency of zero. �

7.4 Notes

7.4.1 Is Acyclicity Automatic?

Do all primal-dual algorithms yield acyclic cost-sharing methods in the sense of Sec-

tion 6.2? Goemans and Williamson [35] and Agarwal et al. [3] propose a primal-dual

algorithm for a generalized version of the Steiner tree cost-sharing problem that in-

cludes Steiner forest problems. This algorithm does yield non-cross-monotonic cost

shares that induce an acyclic mechanism for the Steiner tree problem. (The budget-

balance and efficiency approximations achieved by the induced acyclic mechanism

match, but don’t improve, those achieved by the optimal Moulin mechanism for the

Steiner tree problem.) However, there is no offer-function that together with these

cost-shares induces an acyclic mechanism for the Steiner forest problem (See Mehta

et al. [59] for details).

7.4.2 Acyclic Mechanisms and Summability

The generic methods known for deriving efficiency guarantees for Moulin mechanisms

do not seem to carry over to acyclic mechanisms. In more detail, recall that a cost-

sharing method χ is α-summable (Definition 4.2.2) for a cost function C if, for every

ordering σ of the players of U and every subset S ⊆ U ,

|S|
∑

ℓ=1

χ(iℓ, Sℓ) ≤ α · C(S) (7.7)
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where Sℓ and iℓ denote the set of the first ℓ players of S and the ℓth player of S

(with respect to σ), respectively. Intuitively, the ordering σ represents the reversal of

the order in which players are deleted, and χ(iℓ, Sℓ) is the worst-case valuation that

player iℓ could have possessed, given that it was deleted from the set Sℓ. For Moulin

mechanisms, summability characterizes approximate efficiency in the following sense:

if M is a Moulin mechanism based on an α-summable, no-deficit cost-sharing method,

then it is Θ(α)-approximate (Chapter 4, Theorem 4.4.1).

Unfortunately, the summability of a cost-sharing method χ does not imply upper

or lower bounds on the approximate efficiency of an acyclic mechanism constructed

from χ. Summability does not automatically lead to a valid lower bound on approxi-

mate efficiency because, depending on the associated offer function, not all orderings

of the players correspond to possible deletion sequences. It does not automatically

give a valid upper bound because it only treats deletion sequences that result in the

empty set. For cross-monotonic cost-sharing methods, worst-case deletion sequences

are, essentially without loss of generality, of this form. For a non-cross-monotonic

method, this need not be the case; intuitively, the presence of additional undeleted

players can increase the left-hand side of (7.7).

The definition of summability can be refined to handle both of these issues, re-

sulting in a characterization of the approximate efficiency of an acyclic mechanism.

However, the resulting expression is too unwieldy to be evaluated easily for non-trivial

mechanisms.



Chapter 8

Lower Bounds On Truthful

Mechanisms

In previous chapters, we identify no-deficit, truthful mechanisms that have polylog

approximate efficiency for a wide variety of cost-sharing problems—For submodular

cost-sharing problems, metric UFL and vertex cover, we achieve a worst-case efficiency

approximation of Θ(log k). For Steiner tree cost-sharing problems, their variants and

NMUFL cost-sharing problems such as set cover, we achieve a worst-case efficiency

approximation of Θ(log2 k). The mechanisms that we identify are computationally

efficient, i.e., they have polynomial time implementations. In this chapter we drop this

requirement to see if we can identify no-deficit, truthful mechanisms with improved

efficiency.

Section 8.1 starts by identifying a no-deficit, truthful mechanism that is O(log k)-

approximate for all cost-sharing problems with monotone cost functions. This is a

very general result—Recall that all the cost-sharing problems studied in this thesis

are not only monotone, but also subadditive. In particular, this mechanism improves

on the best truthful, no-deficit mechanism we could identify for the Steiner tree and

NMUFL cost-sharing problems, which are Ω(log2 k) approximate.

Given this result, the million dollar question is: Are there truthful, no deficit mech-

anisms that achieve constant factor approximations of efficiency for any non-trivial

cost-sharing problem family? (Recall from Section 4.3 that maginal cost problems

116
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admit optimally efficient mechanisms, but are trivial.)

This chapter shows that the answer to this question is an emphatic no, even

for the combinatorially simple excludable public good cost-sharing problem (Exam-

ple 2.2.12). As Figure 2.1 shows, this problem is a special case of nearly all of the

cost-sharing problems that have been studied in the theoretical computer science

literature, so our lower bound extends to these problem families as well.

We first investigate deterministic mechanisms that are budget-balanced and sym-

metric. Specifically, we show that the Shapley value mechanism (Example 4.1.4) is

optimal among all deterministic, symmetric, and budget-balanced cost-sharing mech-

anisms for excludable public good problems. (Moulin and Shenker [63] proves only

that the Shapley value mechanism is an optimal Moulin mechanism.) Here, “sym-

metric” means that players that submit equal bids are given the same allocations and

prices. This proof is based on a new characterization of the Shapley value mecha-

nism that improves upon a previous characterization of Deb and Razzolini [25]. See

Section 8.2.

Next, we forgo a characterization based approach, and prove a far more general

result. We show that every (γ, β)-budget-balanced truthful mechanism is Ω(log k/β)-

approximate, where k is the number of participants. Our lower bound applies even

to randomized mechanisms that are only truthful in expectation, and only (γ, β)-

budget-balanced in expectation. Our lower bound is optimal up to constant factors

for all β = O(
√

log k), with the nearly matching upper bound provided by a scaled

version of the Shapley value mechanism (recall Corollary 4.4.3). Our lower bounds

also apply to the social cost approximation measure (Equation 3.2). See Section 8.3.

8.1 The Composed VCG-Shapley Mechanism

We now identify a no-deficit, truthful mechanism that is Hk-approximate (recall that

Hk ∈ Θ(log k)) for every cost-sharing problem with an underlying cost function that is

monotone. This mechanism satisfies no positive transfers and voluntary participation.

This is a very general result; all the cost-sharing problems we study in this thesis are

not only monotone, but also subadditive. The idea is to compose the VCG mechanism
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with Clarke tax (Section 2.4.1) with an additional cost-sharing phase, based on the

Shapley value mechanism (Example 4.1.4). The mechanism is a simplification of one

proposed by Swamy (personal communication, August 2008).

Definition 8.1.1 (Composed VCG-Shapley mechanism) The allocation rule is

defined as follows. Bids are collected and the optimally efficient allocation S∗ is com-

puted (If there are multiple such allocations, break ties consistently using a lexico-

graphic ordering of 2U). This is precisely the allocation of the VCG mechanism. The

players in S∗ graduate to a cost-sharing phase based on a modification of the Shapley

value mechanism (recall Example 4.1.4) where all the cost-shares scaled by a fac-

tor C(S∗). The composed VCG-Shapley mechanism allocates service to the players

that the modified Shapley value mechanism services when run on the player set S∗.

The composed VCG-Shapley mechanism charges every winning player its minimum

winning bid as a function of the other players’ bids.

We now prove that this mechanism is incentive compatible. The tricky part is

that the set S∗, and hence the outcome of the cost-sharing phase, can conceivably by

influenced by a player’s bid.

Lemma 8.1.2 The composed VCG-Shapley mechanism is truthful and satisfies vol-

untary participation.

Proof: Recall Proposition 2.4.5. The mechanism is a threshold mechanism by defini-

tion, so it is sufficient to show that it is monotone.

Fix a player i and bids b−i of the other players. Fix a winning bid bi and another

bid b′i, such that b′i > bi. Let S∗ and S∗′ be the optimally efficient sets with bid

vectors (bi; b−i) and (b′i; b−i), respectively. Because player i receives service with bid

bi, it is in S∗. The optimally efficient allocation is invariant to an increase in the

bid of any winning bidder. Thus S∗ = S∗′, which implies that i ∈ S∗′ and that

C(S∗) = C(S∗′). Thus player i graduates to the cost-sharing phase and participates

in same cost-sharing problem whether it bids bi or b′i. The Shapley value mechanism

has a monotone allocation rule (this is easy to check), and so if player i wins service

with bid bi, it also wins service with bid b′i. �
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For a fixed set of bids, suppose that S is the player set serviced by the composed

VCG-Shapley mechanism and S∗ is the optimally efficient set. If S is non-empty, the

composed VCG-Shapley mechanism charges each winner at least C(S∗)/|S| due the

cost-sharing phase. So, the mechanism satisfies the no-deficit condition if the cost

function is monotone. Recall that the excludable public good cost-sharing problem

is also a submodular cost-sharing problem and so the upper bound from Section 5.1

shows that the efficiency loss due to the second phase is upper bounded by Hk ·C(S∗).

In summary, we have the following theorem:

Theorem 8.1.3 The composed VCG-Shapley mechanism is truthful, no-deficit, and

Hk-approximate for every cost-sharing problem with a monotone cost function.

Remark 8.1.4 The composed VCG-Shapley mechanism can be generalized while

preserving incentive compatibility: VCG can be replaced with any monotone mech-

anism that satisfies the following property: Fix a player i and a set of bids b−i of

the other players. Fix two bids bi and b′i for player i. Let S and S ′ be the set of

players serviced with bids (bi; b−i) and (b′i; b−i), respectively. If i ∈ S and i ∈ S ′, then

we must have that S = S ′. The Shapley value mechanism can be replaced by any

mechanism with a monotone allocation rule while preserving incentive compatibility.

In order to achieve a good efficiency guarantee and recover cost, the VCG surrogate

should allocate service to a set with near optimal social welfare and the Shapley

surrogate should be no-deficit while excluding as little valuation as possible. For

instance, if the cost-function is subadditive, the mechanism from Bleischwitz et al. [12]

is a good Shapley surrogate.

The composed VCG-Shapley mechanism is not weakly GSP unlike acyclic mech-

anisms:

Example 8.1.5 A quadratic cost-sharing problem is defined by a player set U and

a non-decreasing cost function C(S) = |S|2 for all S ⊆ U . Consider a three player

instance of the quadratic cost-sharing problem. The first two players have valuations

of 5 each, and the second has a valuation of 4. For this bid vector, the first two
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players win service and each pay 4. However, if the third player drops its valuation

to 3, the other two only pay 3 each.

Remark 8.1.6 Bleischwitz et al. [12] (recall Section 6.4) shows that there exist

acyclic mechanisms that are budget-balanced and O(log k)-approximate for all sub-

additive cost-sharing problems; As in the case of the composed VCG-Shapley mech-

anism, we do not know how to implement these mechanisms in a computationally

efficient way.

8.2 A Characterization of Symmetric Mechanisms

In this section we prove a lower bound on the efficiency approximation factor of

every deterministic, budget-balanced cost-sharing mechanism that satisfies the “equal

treatment” property. We derive this lower bound from a new characterization of the

Shapley value mechanism, discussed below.

Our characterization heavily uses Proposition 2.4.4, which states that in a truthful

cost-sharing mechanism every player is offered a bid independent price. However,

Proposition 2.4.4 does not specify the behavior of a truthful mechanism when a player

bids exactly its threshold ti(b−i). There are two valid possibilities, each of which yields

zero utility to a truthful player: the player is not served (at price 0), or is served and

charged its bid. The following technical condition breaks ties in favor of the second

outcome.

Definition 8.2.1 A mechanism satisfies upper semi-continuity if and only if the fol-

lowing condition holds for every player i and bids b−i of the other players: if player i

receives service at every bid larger than bi, then it also receives service at bid bi.

A relatively weak requirement for a cost-sharing mechanism is consumer sovereignty,

i.e every player has a winning bid for every fixed set of bids of the other players. We

stress that while our characterization result (Theorem 8.2.3) relies on upper semi-

continuity and consumer sovereignty, our lower bound (Corollary 8.2.4) does not

depend on them. Our results concern mechanisms satisfying the following symmetry

property.
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Definition 8.2.2 A mechanism satisfies equal treatment if and only if every two

players i and j that submit the same bid receive the same allocation and price.

Recall the Shapley value mechanism from Example 4.1.4. This mechanism is

truthful, budget-balanced, and Hk − 1-approximate (Hl is 1 + 1/2 + 1/3 + . . . 1/l,

the lth harmonic number, k = |U |). Moreover, it satisfies equal treatment and upper

semi-continuity.

The Shapley value mechanism uses the same threshold function (in the sense of

Proposition 2.4.4) for each player, namely:

∀ b−i : t(b−i) =
1

f(b−i) + 1
, (8.1)

where, f(b−i) is the size of the largest subset S of U \ {i} such that bj ≥ 1/(|S| + 1)

for all j ∈ S. Intuitively, this is precisely the set of other players that the Shapley

value mechanism services if player i pays its share and also receives service.

Our characterization theorem is the following.

Theorem 8.2.3 A deterministic and budget-balanced cost-sharing mechanism satis-

fies equal treatment, consumer sovereignty, and upper-semicontinuity if and only if it

is the Shapley value mechanism.

Proof: Fix such a mechanism M . We first note that all thresholds ti(b−i) induced

by M must lie in [0, 1]: every threshold is finite by consumer sovereignty, and is at

most 1 by the budget-balance condition. We proceed to show that for all players i

and bids b−i by the other players, the threshold function ti has the same value as

that for the Shapley value mechanism. We prove this by downward induction on the

number of coordinates of b−i that are equal to 1.

For the base case, fix i and suppose that b−i is the all-ones vector. Suppose

that bi = 1. Since all thresholds are in [0, 1] and M is upper semi-continuous, all

players are served. By equal treatment and budget-balance, all players pay 1/k. Thus,

ti(b−i) = 1/k when b−i is the all-ones vector, as in the Shapley value mechanism.

For the inductive step, fix a player i and a bid vector b−i that is not the all-ones

vector. Set bi = 1 and consider the bid vector b = (bi, b−i). Let S denote the set of
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players j with bj = 1. Let R ⊇ S denote the output of the Shapley value mechanism

for the bid vector b — the largest set of players such that bj ≥ 1/|R| for all j ∈ R.

As in the base case, consumer sovereignty, budget-balance, and equal treatment

imply that M serves all of the players of S at a common price p. For a player j

outside S, b−j has one more bid of 1 than b−i (corresponding to player i), and the

inductive hypothesis implies that its threshold is that of the Shapley value mechanism

for the same bid vector b. For players of R \ S, this threshold is 1/|R|. For a player

outside R, this threshold is some value strictly greater than its bid. Since bj ≥ 1/|R|
for all j ∈ R and M is upper semicontinuous, it serves precisely the set R when

given the bid vector b. This generates revenue |S|p+(|R| − |S|)/|R|. Budget-balance

dictates that the common threshold p for all players of S, and in particular the value

of ti(b−i), equals 1/|R|. This agrees with player i’s threshold for the bids b−i in the

Shapley value mechanism, and the proof is complete. �

Theorem 8.2.3 implies that the Shapley value mechanism is the optimal determin-

istic, budget-balanced mechanism that satisfies the equal treatment property.

Corollary 8.2.4 Every deterministic, budget-balanced cost-sharing mechanism that

satisfies equal treatment is at least Hk-approximate.

We briefly sketch the proof. Let M be such a mechanism. If M fails to satisfy

consumer sovereignty, then we can find a player i and bids b−i such that ti(b−i) = +∞.

Letting the valuation of player i tend to infinity shows that the mechanism fails to

achieve a finite approximation factor.

Suppose that M also satisfies consumer sovereignty. Then the proof of Theo-

rem 8.2.3 shows that the outcome of the mechanism agrees with that of the Shapley

value mechanism except on the measure-zero set of bid vectors for which there is at

least one bid equal to 1/i for some i ∈ {1, . . . , k}. As in Example 4.1.4, bid vectors

of the form 1 − ǫ, 1
2
− ǫ,. . . , 1

k
− ǫ for small ǫ > 0 show that M is no better than

Hk − 1-approximate.

An interesting problem is to characterize the class of mechanisms obtained after

dropping the (admittedly strong) equal treatment condition, and the perfect budget-

balance condition. There are several mechanisms that satisfy the remaining conditions
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and appear hard to characterize (e.g. [45, Example 4.1]). In the next section, forgo

characterizations in order to prove more general lower bounds.

8.3 A Lower Bound on Cost-Sharing Mechanisms

In this section we prove that every O(1)-budget-balanced cost-sharing mechanism for

the excludable public good problem is Ω(log k)-approximate. This lower bound ap-

plies even to randomized mechanisms, and even to mechanisms that are only truthful

in expectation.

Theorem 8.3.1 Every cost-sharing mechanism for the excludable public good prob-

lem that is truthful in expectation and γ, β-budget-balanced in expectation is

Ω((log k)/β)-approximate, where k is the number of players.

Proof: Fix values for k and β ≥ 1. The plan of the proof is to define a distribution

over valuation profiles such that the sum of the valuations is likely to be large but

every mechanism is likely to produce the empty allocation. Let a1, . . . , ak be i.i.d.

draws from the distribution with density 1/z2 on [1, k] and remaining mass (1/k)

at zero. Set vi = ai/4kβ for each i and V =
∑k

i=1 vi. We first note that V is

likely to be Ω((log k)/β). To see why, we have E [V ] = kE [vi] = (ln k)/4β, Var[V ] =

kVar[vi] ≤ kE [v2
i ] = 1/(16β2), and σ[V ] = 1/4β. By Chebyshev’s Inequality, V is at

least (ln k − 2)/4β = Ω(log k/β) with probability at least 3/4.

Let M be a mechanism that is truthful in expectation and β-budget-balanced

in expectation, meaning that for every bid vector, the expected revenue of M is at

least a β fraction of its expected cost. For the excludable public good problem, the

expected cost equals 1 minus the probability that no player is served. We can finish

the proof by showing that the expected revenue of M , over both the random choice

of valuation profile and the internal coin flips of the mechanism, is at most 1/4β: if

true, the expected cost of M is at most 1/4, so no player is served with probability at

least 3/4. By the Union Bound, the probability that no player is served and also the

sum of the valuations is Ω((log k)/β) is at least 1/2. Thus, there is a valuation profile

for which the optimal efficiency is Ω((log k)/β) but the mechanism has an efficiency
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of zero.

We next apply a transformation of Mehta and Vazirani [60], originally devel-

oped for digital goods auctions, to assist in upper bounding the revenue obtained

by M . Given a bid vector b, a randomized threshold mechanism chooses a random

threshold ti(b−i) for each player i (cf., Proposition 2.4.4) from a distribution that

is independent of bi. By Mehta and Vazirani [60], there is a randomized threshold

mechanism M ′ that has the same expected revenue as M on every bid vector.

To upper bound the expected revenue of M ′, consider a single truthful player i with

(random) valuation vi. Every fixed threshold t extracts expected revenue t · Pr[vi ≥
t] ≤ 1/4kβ from the player. By the Principle of Deferred Decisions, a randomized

threshold that is independent of vi also obtains expected revenue at most 1/4kβ from

player i. Linearity of expectation implies that the expected revenue of M ′, and hence

of M , is at most 1/4β, completing the proof. �

Scaling the prices of the Shapley value mechanism down by a β ≥ 1 factor gives a

β-budget-balanced, O(β+(log k)/β)-approximate mechanism (Theorem 4.4.1). Thus,

the lower bound in Theorem 8.3.1 is optimal up to constant factors for all β =

O(
√

log k). Recall that there is also a trivial lower bound of β along this lines of

Example 4.4.4.

8.4 Notes

8.4.1 The Power of Randomization

Dobzinski et al [27] show that randomized mechanisms are in fact strictly more pow-

erful than deterministic ones. However the improvement is not significant. Indeed,

Theorem 8.3.1 shows that the best-possible approximation guarantee of a randomized

cost-sharing mechanism cannot be more than a constant factor smaller than that of

the (deterministic) Shapley value mechanism.
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8.4.2 Other Characterizations

Other characterizations of the Shapley value mechanism are known. See Moulin and

Shenker [63] and Immorlica, Mahdian, and Mirrokni [45] for related characteriza-

tions of groupstrategyproof (Definition 2.4.2) mechanisms that satisfy various prop-

erties. Our Theorem 8.2.3 is incomparable to these results because we work with

the much richer class of truthful, not necessarily groupstrategyproof, mechanisms,

but assume equal treatment. Our characterization is more similar to that of Deb

and Razzolini [25], who also show that the Shapley value mechanism is the only one

that satisfies certain conditions. We weaken their stand-alone condition to consumer

sovereignty and do not require their voluntary non-participation condition. Also, our

proof is arguably simpler.



Chapter 9

Open Questions

Here are some open questions motivated by this thesis.

9.1 Better Approximation Guarantees

One natural goal is to improve upon the performance guarantees achieved by the

mechanisms presented in this thesis. Some concrete suggestions follow.

• Is there a polynomial-time, β-budget-balanced acyclic mechanism for Steiner

tree cost-sharing problems with β < 2 and reasonable (e.g., O(logd k) for some

constant d) approximate efficiency? Recall that such a result is achievable for

β = 2 (Section 5.3, Section 7.4.1).

• Metric UFL algorithms with approximation ratio less than 1.61 are known [18,

57]. Can these be used to obtain polynomial-time acyclic mechanisms with com-

parable budget-balance and reasonable approximate efficiency? (Remark 7.3.7

identifies a 1.61-budget-balanced acyclic mechanism that is O(log k)-approximate).

• Is there a polynomial-time, O(1)-budget-balanced, o(log2 k)-approximate acyclic

mechanism for Steiner tree cost-sharing problems? Can achieve such bounds

even more generally, i.e., for all subadditive cost-sharing problems or monotone

cost-sharing problems?

126
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Bleischwitz, Monien, and Schoppmann [12] gives acyclic mechanisms for all subad-

ditive cost-sharing problems that are fully budget-balanced and O(log k)-approximate,

but do not run in polynomial time (unless P = NP ), and do not work for all monotone

cost functions.

Since acyclicity is only the means to the end of incentive-compatibility, we can

ask the same questions for wider classes of mechanisms. Answer the above ques-

tions with “acyclic mechanism” replaced by “weakly groupstrategyproof mechanism”

and by “strategyproof mechanism”. The composed VCG-Shapley mechanism (Sec-

tion 8.1) achieves the required efficiency bounds, is no-deficit and strategyproof, but

does not have bounded budget-balance, is not acyclic, WGSP or polynomial time

implementable.

9.2 General Demand Mechanisms

General demand cost-sharing problems should be studied in much greater depth.

Bleischwitz and Schoppmann [14] generalizes Moulin mechanisms to general demand

settings and applies it to generalizations of the UFL and Steiner tree cost-sharing

problems where players demand redundancy in connectivity. However, the budget-

balance achieved by these mechanisms scales with the maximum number of allowable

service levels. Are there polynomial-time, O(1)-budget-balanced acyclic (alternatively

weakly groupstrategyproof or strategyproof) mechanism for such problems that have

reasonable economic efficiency?

The frameworks for general demand cost-sharing problems—[59] and [14]—only

apply to settings where players have diminishing returns from additional levels of

service. Is there a general mechanism design technique when marginal valuations can

be increasing?

9.3 Characterizations

Moulin [62] provides characterizations under the assumptions of GSP and full budget-

balance. Immorlica, Mahdian, and Mirrokni [45] provide a partial characterization of
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GSP mechanisms without any budget-balance assumptions.

Is there a simple characterization of WGSP mechanisms? To what extent do

acyclic mechanisms exhaust the class of WGSP mechanisms? (See Juarez [49] for

recent progress on these questions.)

Is there a simple characterization of SP, budget-balanced mechanisms? Section 8.2

provides such a characterization, but with additional technical conditions, notably

equal treatment.
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