
1

Improving Traffic Locality in BitTorrent via Biased
Neighbor Selection
Ruchir Bindal, Pei Cao and William Chan

Department of Computer Science, Stanford University
rbindal@stanford.edu

Jan Medval, George Suwala, Tony Bates, Amy Zhang
Cisco Systems, Inc.

Abstract— Peer-to-peer (P2P) applications such as BitTorrent
ignore traffic costs at ISPs and generate a large amount of cross-
ISP traffic. As a result, ISPs often throttle BitTorrent traffic
as a way to control the cost. In this paper, we examine a new
approach to enhance BitTorrent traffic locality, biased neighbor
selection, in which a peer chooses the majority, but not all, of its
neighbors from peers within the same ISP. Using simulations, we
show that biased neighbor selection maintains the nearly optimal
performance of BitTorrent in a variety of environments, and
fundamentally reduces the cross-ISP traffic by stopping it from
growing linearly with the number of peers. A key reason for
its performance is the rarest first piece replication algorithm
used by BitTorrent clients. Compared with existing locality-
enhancing approaches such as bandwidth limiting, gateway peers,
and caching, biased neighbor selection requires no dedicated
servers and scales to a large number of BitTorrent networks.
Furthermore, it can be combined with bandwidth limiting and
caching to improve their performance further.

Keywords: Peer-to-Peer, BitTorrent, performance, traffic
locality, neighbor selection.

Technical area: Peer to Peer

I. INTRODUCTION

P2P content distribution applications such as BitTor-
rent [Coh03] have fundamental advantages over the traditional
client-server model (i.e. web sites) and the fixed-infrastructure
content distribution networks (i.e. Akamai). They are self-
scaling; the supply of bandwidth grows linearly with the
demand. They utilize the bi-sectional bandwidth among the
peers, instead of channeling the traffic from a fixed set of
points of presences on the Internet. Finally, they require little
additional infrastructure, but merely better utilize the existing
network bandwidth.

Thus, it should be no surprise that BitTorrent is wildly
popular and a significant source of traffic on the Internet. Ac-
cording to a recent CNN report, BitTorrent traffic constitute at
least 20% of the entire traffic volume on the Internet [ECo05].
Other vendors have observed that P2P applications, including
BitTorrent, account for over 60% of the traffic seen by an
ISP [Cac]. While the estimates wary, it’s clear that BitTorrent
is a force to be reckoned on the Internet.

Unfortunately, BitTorrent-like applications present sig-
nificant traffic-engineering challenges for Internet service
providers (ISPs). An ISP typically pays a tier-1 “core” ISPs
for connectivity to the broad Internet, and traffic between
the ISP and the outside world is costly for the ISP [Nor03].

Unfortunately, current implementations of BitTorrent ignore
the underlying Internet topology or ISP link costs, and set up
data transfers among randomly chosen sets of peers distributed
around the Internet. As a result, they generate a significant
amount of cross-ISP traffic and increase the operating cost of
an ISP significantly.

The method most often deployed by ISPs to control Bit-
Torrent traffic is “throttling”, or bandwidth limiting. Since
BitTorrent traffic typically runs over a fixed range of ports
(6881 to 6889) [Coh05] and uses formats easy to decode,
traffic shaping devices such as [Pac], [Inc], [PC], [San] are
deployed to limit the amount of bandwidth consumed by the
BitTorrent protocol. However, the main effect of throttling is
to slow down the content transfer. It does not address the
fundamental concern of the ISP, which is to improve the
locality (i.e. reduce the cross-ISP traffic) of those transfers.
As a result, throttling reduces the rate of cross-ISP traffic
at the expense of increased download time and poorer user
experience, a trade-off that the ISP would rather avoid.

At the root of the ISPs’ dilemma is the following question:
if there are N users within the ISP all wanting to download the
same content, does the content travel into the ISP N times? In
today’s BitTorrent implementations, the answer is yes. To be
precise, if the number of peers in the network is G, then on
average the content traverses into the ISP N ∗(1−N/G) times
before all N users finish the download. Since N is typically
much smaller than G, N ∗ (1 − N/G) is close to N .

However, is the above answer an artifact of existing im-
plementations, or is it a fundamental property of BitTorrent?
The success of BitTorrent is in no small part due to its high
performance in terms of user experienced download time, and
Many analytical and simulation studies [MV05], [BHP05],
[YdV04], [QS04] have shown that the existing BitTorrent
algorithm is nearly optimal in that regard. Yet, all studies
assume that when peers select neighbors, they select randomly
among all neighbors, which is the root cause of high cross-ISP
traffic. Yet, it is not known if BitTorrent still performs well
if the random neighbor selection algorithm is changed. Put it
another way, the studies show that random neighbor selection,
which leads to high cross-ISP traffic, is a sufficient condition
of performance optimality; but is it also a necessary condition?

This paper answers the above question with extensive
simulations. We rely on simulations since it is difficult to
capture all the relevant mechanisms in BitTorrent clients in

2

an analytical model. Our simulator accommodates internal
network bottlenecks, rather than assuming that bottlenecks are
peers’ upload links. The simulator faithfully captures the bit-
vector exchanges among the peers, choking/unchoking, con-
current uploads and piece selection algorithms of the dominate
BitTorrent client, since they are critical for determining cross-
ISP traffic.

Our main conclusion is that biased neighbor selections, in
which a peer chooses the majority, but not all, of its neighbors
from peers within the same ISP, can reduce cross-ISP traffic
significantly while keeping the download performance nearly
optimal, in virtually all cases. Specifically,

• As long as the original seed has moderately high upload
bandwidth (e.g. four times the prevailing upload band-
width of the peers), biased neighbor selection result in
no degradation in download times;

• The “rarest first replication” algorithm is key to the
success of biased neighbor selection. Though other stud-
ies have shown that random piece selection algorithm
can still lead to optimal performance in regular BitTor-
rent [BHP05], [MV05], we find that it does not work well
with biased neighbor selection.

• For an individual ISP, if there are higher bandwidth
peers external to the ISP, then the effectiveness of biased
neighbor selections at reducing the traffic into the ISP
is reduced. In this case, an additional mechanism, band-
width throttling, can be combined with biased neighbor
selection to reduce cross-ISP traffic with little impact on
download performance.

We also compare biased neighbor selection with three
existing traffic-shaping approaches: pure bandwidth throttling,
a single externally-connected peer, and a caching solution. We
show that:

• While bandwidth throttling does push peers toward intra-
ISP nodes, its effect is limited by the initial neighbor
selection of the peer, and combining bandwidth throttling
with biased neighbor selection is much more effective.

• Using a single peer connect to the external nodes results
in significant increase of download time. This is the case
even if the designated peer has high upload and download
bandwidth.

• For a cache to avoid increasing download time, a cache
would have to have a download bandwidth that grows
linearly with the number of peers inside an ISP, a
requirement unlikely to be satisfied. However, if used in
combination with a biased neighbor selection technique, a
cache only needs to have a bandwidth that is a constant
multiple factor over the peer’s upload bandwidth for it
to be achieve minimum cross-ISP traffic and minimum
download time.

Alternatively, biased neighbor selection can also be viewed
as a way for BitTorrent peers to bypass network bottlenecks.
Our results essentially state that a peer can feel free to favor
certain set of peers than others, whatever the reasons maybe,
as long as the peer keeps a few randomly-chosen undesirable
peers as neighbors. Thus, this technique has the potential to
function as an Internet-wide traffic shaping mechanism for

BitTorrent.

II. BITTORRENT AND RELATED WORK

A. BitTorrent Protocols and Algorithms

BitTorrent [Coh03] is a P2P file-sharing application de-
signed to distribute large files to a large user population
efficiently. This is achieved by making use of the upload
bandwidth of all nodes (called peers) downloading the file.
In the following description, we use the term node and peer
interchangeably.

To distribute a file via BitTorrent, the provider of the file
divides the file into small blocks (usually 245KB in size),
and generates another file containing meta-information about
the data file (called the torrent file). The provider also runs
a tracker for this file, either by running a tracker on its own
or registering the file with a public tracker. A tracker is a
central server that keeps track of all nodes downloading this
file. The supplier then starts its BitTorrent client. The client
automatically detects that it has the complete file and is thereby
a seed node in the network. The torrent file is then published
on the Internet using HTTP and interested downloaders can
download it to run their BitTorrent clients with the torrent file
as the input. The address of the tracker is embedded in the
torrent, allowing peers to contact the tracker.

a) Forming the Random Graph: A peer who is inter-
ested in downloading the file must first contact the tracker
hosting the file to join the BitTorrent network of this file.
The network consists of the tracker, the original seed, and all
nodes interested in downloading the file. Peers do not have full
connectivity in this network. Rather, the network is a random
graph.

The graph is formed as the follows. Each peer, p, upon
first joining the network, contacts the tracker. The tracker then
randomly selects C nodes (default C is 35), out of all the
nodes in the network, and hands the list back to p. Peer p
then initiates connections with those nodes. Later on, other
peers joining the network may get p as one of nodes returned
by the tracker and initiate connections with p. As a result, p’
neighbors in the network include both nodes that p initiates
connections to and those that initiates connections to p. Since
peers may leave the network at any time, if p’s neighbor count
drops below a certain threshold (default is 20), p contacts the
tracker again to obtain a new list of nodes.

Note that the above description is of the prevailing client
implementation. There are a number of BitTorrent client
implementations circulating. Some implementation is very
aggressive at contacting the tracker; they obtain multiple lists
of nodes, and then choose the best ones among them according
to certain criteria. Since these clients place a higher burden
on the tracker, their use is not recommended, and our paper
studies the behavior of the default client implementation only.

b) Choking/Unchoking: The download proceeds mainly
by peers exchanging blocks with their neighbors. Peers ex-
change bit vectors of the blocks in their possession with
neighbors, at the beginning and whenever a peer obtains new
content. Through the bit vector exchange, the peer p learns
the up-to-date content at each neighbor. If a neighbor have

3

blocks that p doesn’t have, p sends an “interested” message
to the neighbor. The neighbor, however, is not obligated to
send blocks to p. Instead, when and if the neighbor sends
blocks to p depends on the “choking/unchoking” algorithm in
BitTorrent, also called the “tit-for-tat” mechanism.

The “choking/unchoking” algorithm determines, for each
peer, among its neighbors who have expressed interests in
its content, which of them it should give contents to. All
connections are choked by default. If a peer decides to provide
contents to another peer, it “unchokes” the connection with the
other peer. A peer can upload to multiple peers at the same
time; the current default limit on the number of concurrent
uploads is 5. Hence, a peer has 5 un-choked connections at a
time.

Four of these connections are chosen using a “tit-for-tat”
criteria. A node keeps track of its download rate from all
neighbors. Then, among the neighbors expressing interest, four
with the highest download rate to this peer are un-choked.
In other words, a peer rewards other peers who give data
to it previously. For the original seed, which has nobody to
download from, this decision is made based on the upload
rate to the neighbors. So those peers which are downloading
quickly from the seed will get a higher preference. This
decision to choke/unchoke depends on the download rate as
described above and is made periodically (every 10 seconds),
after which some of the currently unchoked nodes may be
choked and vice-versa.

The “tit-for-tat” mechanism naturally bias the traffic be-
tween peers toward the higher bandwidth routes. However,
this bias is limited by the neighbor selection set up in the
“network forming” step.

The last of the 5 connections is chosen according to a
different mechanism, optimistic unchoke. In order to jump-
start brand new peers and to find peers that may have a better
upload rate to it, a node chooses a neighbor at random to
unchoke, irrespective of the download rate from that peer. This
random optimistically unchoked node is chosen once every 30
seconds and the chance of a new node being selected for an
optimistic unchoke is three times that of a node that already
holds some blocks.

c) Piece Selection: Once a peer p expresses interests in a
neighbor’s blocks, and the neighbor unchokes the connection
with p, p can request a block from the neighbor. Exactly which
block is read from the neighbor is determined by p using a
“rarest first replication” algorithm. That is, among the blocks
provided by a neighbor, the block that is least replicated among
all neighbors of p is chosen.

Studies have shown that this rarest first selection algorithm
is in fact not necessary for the optimal performance of
BitTorrent. However, as we will show later in the paper, it
is in fact quite important if the graph is not random.

B. Existing Studies on BitTorrent

At its heart, BitTorrent attempts to solve the “broadcasting
problem”, i.e. disseminating M messages in a population of N
nodes in the shortest time. In the setting of the Internet where
nodes can communicate in both directions simultaneously and

have the same bandwidth, the lower bound on download time
is M + log2(N) unit, where a unit is the time it takes for
two nodes to exchange a message. Assuming that all nodes
are completely connected, an optimal algorithm that relies on
a centralized scheduler is described in [MW]. The algorithm
goes in rounds, and establishes matching pairs among nodes in
a deterministic fashion. Similar algorithms are also discussed
in [YdV04], [GS05].

BitTorrent lacks a central scheduler, does not have a
completely-connected graph and is not deterministic. How-
ever, BitTorrent appears to work exceedingly well. Simulation
studies found that in typical settings of cable modem and DSL
nodes the links are almost fully utilized all the time [BHP05],
[GS05]. The results indicate that the random algorithms used
by BitTorrent lead to nearly optimal performance.

A number of analytical studies support the above observa-
tion. In [MV05], BitTorrent is modeled as a coupon replication
system, i.e. nodes aim to complete a collection of distinct
coupons and exchange coupons with each other. The analysis
in [MV05] proves that, as long as the neighbors are chosen
either randomly among all peers, or randomly among peers
with the same number of coupons, the performance of BitTor-
rent is asymptotically optimal. In particular, the probability
that a peer can find new coupons among its neighbors is
> 1/2. The optimal performance does not depend on nodes
staying around after completing their collections or using the
least-replicated-first replication strategy. Other studies using
branching processes to model BitTorrent [YdV04] and using
fluid dynamics to model BitTorrent [QS04] also came to
similar conclusions.

All existing simulation and analytical studies, however,
model the case of peers choosing neighbors randomly among
all nodes in the network. Unfortunately, such neighbor selec-
tion policy is also the root cause of BitTorrent’s high cross-
ISP traffic. Thus, the goal of our study is to find neighbor
selection policies that improve intra-ISP traffic locality while
preserving the near-optimal performance of BitTorrent. Our
solution, biased neighbor selection, achieves this goal.

In addition to bandwidth throttling, two other obvious
methods for reducing cross-ISP traffic are caches [Cac], and
“gateway peers” (a gateway peer is the only node inside an ISP
that can connect to external peers) [KRP05]. A recent study
uses trace-driven study to examine the cross-ISP traffic of the
two approaches and found that they are comparable [KRP05].
However, the study did not look into peer download latency.
We found that in order for these solutions not to increase
download latency, the devices involved (caches or gateway
peers) need to have much higher bandwidth than individual
peers, and the bandwidth requirement grows as the number of
peers inside the ISP grows. In contrast, changing the neighbor
selection policy requires no extra infrastructure, and can be
combined with these methods to improve them further.

There are numerous measurement studies of BitTorrent
traffic on the Internet [Epe], [IUKB+04], [GCX+05]. The
studies show that a BitTorrent network typically goes through
three stages in its life: flash crowd, steady state and winding
down [IUKB+04], and the peer join rate decrease expo-
nentially with time [GCX+05]. Flash crowd occurs when

4

Uniform Random Neighbor Selection Biased Neighbor Selection

Fig. 1. Uniform random neighbor selection vs. biased neighbor selection.
The graph on the left is a result of uniform random neighbor selection, while
the graph on the right is a result of biased neighbor selection.

the content is first made available, and can last several
days [IUKB+04]. Among the three stages, flash crowd gen-
erates the highest rate of traffic and is the most challenging
for ISPs to handle. Thus, in this paper, we focus on the flash
crowd scenario, though we also validate our results with a
Poisson arrival pattern.

Using end systems for content distribution has been stud-
ied extensively in recent years. Most schemes build explicit
overlay trees [Fra02], [CRZ00], [CDK+03], [PWCS02] or
meshes [CDK+03], and are quite different from BitTorrent.
Slurpie [SBB04] adopts the same randomized approaches
as BitTorrent, and improves upon BitTorrent by combining
a randomized back-off strategy and an effective group size
estimator to avoid server overloads. It is shown that Slurpie
performs better than BitTorrent in heterogeneous bandwidth
environments. In our study, we focus on BitTorrent due to its
popularity.

Finally, studies have investigated using network coding to
improve BitTorrent [GR05]. The use of network coding solves
the “last missing block” problem and significantly improves
content availability in the network. The use of network coding
is complementary to our technique, since we focus on neighbor
selection algorithm only.

III. BIASED NEIGHBOR SELECTION: CONCEPT AND

IMPLEMENTATION

The main technique we use is biased neighbor selection. In
biased neighbor selection, a peer chooses its neighbors mostly
from those within the same ISP, and only have a few that are
outside the ISP. Specifically, we experiment with a parameter
k, where for each peer, all but k neighbors are from the same
ISP, and only k neighbors are chosen from outside the ISP.
If there are fewer than 35 − k internal peers, more external
neighbors are retained. However, in this case, the peer will
contact the tracker again to find more internal neighbors.

In biased neighbor selection, peers within the same ISP
form a cluster. They are highly connected. Each peer, however,
does keep a few connection to the outside world, giving it a
visibility into the available blocks from the outside world. The
difference between the normal randomized neighbor selection
and the biased neighbor selection is illustrated in Figure 1.

There are two ways to implement biased neighbor selection:

• By modified tracker and client: Biased neighbor selection
can be implemented easily by changing the tracker and
the client. The tracker selects 35 − k internal peers and
k external peers to hand back to the client. If there are

less than 35 − k internal peers, the tracker also notified
the client to contact it again after certain duration.
The challenge here lies in informing the tracker of the
ISP locality. There are three possibilities to solve the
problem. The tracker can use Internet topology maps or
AS mappings to identify the ISP. ISPs wishing to preserve
traffic locality can also publish their IP address ranges
to trackers. Finally, since BitTorrent protocols run over
HTTP, the ISP’s HTTP proxy can append a new header
“X-Topology-Locality” which contains a locality tag. All
peers with the same locality tag are assumed to be from
the same ISP.

• by P2P traffic shaping devices: In recent years, the
need of ISPs to control P2P traffic has given rise to
a new category of devices that we call P2P shaping
devices. Situated along side the edge routers of the
ISPs, these devices use deep packet inspection to identify
P2P traffic and manipulate them. Representative vendors
include CacheLogic [Cac], Sandvine [San] and Cisco’s P-
Cube appliances [PC]. For BitTorrent traffic which runs
on HTTP [wik05], many HTTP proxy appliances can
perform the role as well.
These devices can easily keep tracks of peers inside
the ISP for each BitTorrent network. When a peer joins
the network, the devices can intercept and modify the
responses from the tracker to the peer, and substitute
outside peers with internal peers. Furthermore, when it
is necessary to change a peer’s neighbors (for example,
when more internal peers join the network), the device
can initiate TCP RESET on the connection between an
internal peer and external neighbors, forcing the internal
peer to contact the tracker to obtain new neighbors,
at which point the device can manipulate the tracker’s
response.

Since biased neighbor selection can be implemented by P2P
shaping devices without changing the clients or the tracker,
we believe it is a practical method by ISPs to improve traffic
locality.

IV. EVALUATION METHODOLOGY AND CRITERIA

To understand the interaction of neighbor selection with
other BitTorrent algorithms, we built a discrete-event simulator
and run the algorithms over a simplified network topology.

A. Representative Network Topology

The basic network consists of 14 ISPs each having 50 peers
joining a BitTorrent network. All peers inside the ISP are mod-
eled after cable modem and DSL nodes, and have asymmetric
upload/download bandwidth. The upload bandwidth of these
peers are 100kbps, and download bandwidth of 1Mbps. We
call these peers “cable modem nodes”.

All ISPs are assumed to be completely connected. We evalu-
ate both the scenario when no cross-ISP bandwidth bottleneck
exists, and the scenario when cross-ISP bandwidth bottleneck
exists. In the case of cross-ISP bandwidth bottleneck, we
assume that an ISP has a single limited bandwidth link to
all of the other ISPs. This models the scenario where an ISP

5

Fig. 2. Simulated Network Topology

employed a bandwidth throttle on all BitTorrent traffic on its
gateways.

In addition to cable modem ISPs, we consider the presence
of high-bandwidth nodes that have symmetric links and have
bandwidth typically higher than the cable modem nodes. We
call these nodes “university nodes”. We assume that each
university node has point-to-point links with each AS and also
with each other. In our experiments we vary both the number
and the bandwidth of these nodes to examine their impact on
the BitTorrent network. In real life, a BitTorrent network is
likely to have both the high bandwidth university nodes and
the cable modem nodes present in the network.

Most of our simulations are conducted with all peers joining
the network at once, i.e. the flash crowd scenario. We focus on
flash crowd since it is the most challenging for ISPs to handle.
Furthermore, we assume that all peers leave the network as
soon as they finish download, but the original seed always
stays online. Studies have shown that the majority of peers
leave soon after they finish download [GCX+05]. However,
since the content provider is interested in distributing the
content using BitTorrent, it is reasonable to expect that the
original seed stays around to see the last of the flash crowd
peers finish downloading.

B. Event-Driven Simulation

We built a discrete event simulator to calculate the download
time of BitTorrent peers under various algorithms. The discrete
event simulator models the following events in the BitTorrent
network:

• Join: peers joining the network;
• Leave: peers joining the network;
• Block-Transfer: a block is sent from one peer to another;
• Peer-Report: peer’s periodic contact with the tracker;
Unlike simulators used in other studies, our simulator does

not assume that the bottleneck is solely the upload links of the
nodes, but rather accommodates bottlenecks in other network
links. As a result, it needs to calculate the network delay
of each block transfer based on the number of connections
sharing bottleneck links and handle multiple bottlenecks.

The simulator calculates the network transfer delay in the
following fashion. Every 100ms, the simulator recalibrate the
transfer rate of each connection between peers, based on an
idealized assumption of equal share and maximum capacity
utilization. Each link has an associated upload and download
bandwidth. For each link, we record the number of flows
passing through the link. Every 100ms, an event is trigger
to recalculate the transfer rate of all flow. Specifically, the
simulator starts with the link that is most congested, i.e. with
the lowest per-connection bandwidth. For each connection
going over that link, it then goes through all links used by
the connection, and subtracts the connection’s bandwidth from
those links. It then finds the next most congested link, and
repeat the above calculation.

The above approach assumes idealized performance of TCP.
We do not simulate the overheads and dynamics of TCP. Each

flow for a particular link is allocated an equal share of the
remaining bandwidth. We do not model the propagation delay
in the network and latency of control messages.

Each peer’s code is almost “fork-lifted” out of the original
BitTorrent implementation. Data transfer events are translated
into bytes received. Logic for calculating past download rates
from the neighbors are implemented. The choking/unchoking
algorithm is implemented faithfully. Each peer holds the bit-
vector content of all its neighbors, and implements the “rarest
first” replication algorithm.

C. Evaluation Criteria

The main evaluation criteria are two: download time and
ISP traffic redundancy.

Measurement of download time include the cumulative
distribution function (CDF), the 50th percentile value and the
95th percentile value.

The term “ISP traffic redundancy” means the average num-
ber of times the blocks of the content file travels into the ISP
until all peers inside the ISP finish their download. The lower
the redundancy, the lower the cross-ISP traffic. The lowest
redundancy is 1. The highest redundancy is N , where N is
the number of peers inside the ISP.

For each experiment, we run the simulation multiple times
when different random seeds. The variance in the results from
multiple runs is very low, < 5%.

V. BIASED NEIGHBOR SELECTION: BENEFITS AND

PERFORMANCE

Our experiments examine two network settings: a homoge-
neous network consisting of 700 cable modem nodes spread
among 14 ISPs, and a heterogeneous network consisting of a
number of university nodes and 700 cable modem nodes. In
both cases, the original seed (the one provided by the content
provider) is a separate node whose bandwidth varies. In the
following discussion, we refer to the BitTorrent network using
uniform random neighbor selection as “regular BT”, and the
BitTorrent network using biased neighbor selection as “biased
BT”.

To motivate biased neighbor selection, we first show that
the bandwidth throttling is less than desirable.

A. Effects of Bandwidth Throttling

If ISPs apply bandwidth throttle to BitTorrent traffic, the
effects are:

• Significantly increased download time, particularly when
the seed has high bandwidth or that there are external
high bandwidth nodes (e.g. university nodes);

• Moderate reduction in traffic redundancy, but a failure to
reduce it to a very low level.

Without bandwidth throttling, the traffic redundancy is close
to N , the number of nodes in the ISP. In uniform random
neighbor selection, the number of external neighbors that a
peer has on average is 35 ∗ (1 − N/G) on average, where
N is the number of peers in the ISP, and G is the total
number of peers in the BitTorrent network. In homogeneous

6

ISP bottleneck 50th 95th traffic
percentile percentile redundancy

no bottleneck 1.0 1.35 46.9
2.5Mbps 1.43 1.59 31.76
1.5Mbps 2.01 2.05 24.88
500kbps 3.33 3.53 21.65

TABLE I

NORMALIZED DOWNLOAD TIME AND TRAFFIC REDUNDANCY UNDER

BANDWIDTH THROTTLE, IN A HOMOGENEOUS NETWORK. DOWNLOAD

TIME OF 1.0 IS 5,312 SECONDS.

networks where there is no internal network bottleneck, all
the neighbors have the same upload rate to the peer and
hence they are indistinguishable from each other. As a result,
the peer chooses uniformly randomly among its neighbors
for uploads. The expected ISP traffic redundancy is thus
N ∗ (35 ∗ (1 − N/G))/35 = N ∗ (1 − N/G). Since N is
usually much smaller than G, the redundancy is nearly N .

Bandwidth throttling can reduce traffic redundancy moder-
ately, at the expense of increased download time. Table I shows
the performance of bandwidth throttling in homogeneous
networks. The seed is a separate node with 400Kbps uplink
bandwidth. For clarity, the download time results are presented
as ratio between the download time and a base download
time, which is the 50th percentile download time for the no
bottleneck case at 5,321 seconds. Figure 3 shows the CDF of
the download times.

The simulation results for the no throttling case match the
above analysis; in this case, for each ISP, 50 nodes of the 700
are internal and 650 are external, the expected redundancy
according to the analysis is 50 ∗ 650/700 = 46.4. Note that
though a 1.5Mbps leads to halving the redundancy, setting
the bottleneck to 500kbps only reduces redundancy slightly
further. It appears that beyond a certain level, bandwidth
throttling cannot reduce traffic redundancy anymore, and its
only effect is increased download time.

Our observations are the following. First, bandwidth throt-
tling is not completely without merit. In the above results, the
increase in download time is always less than linear to the
reduction in the bottleneck bandwidth. The reason is the tit-
for-tat mechanism. In tit-for-tat, when the bandwidth throttle
is imposed, a peer naturally biases toward exchanging data
with peers inside the same ISP, since internal peers have no
bottleneck among them and have high upload rate to each
other.

However, the effect of bandwidth throttle at moving traffic
toward internal ones is constrained by the initial neighbor
selection. If internal peers are simply not neighbors of each
other, then they cannot exchange blocks. Thus, under uniform
random neighbor selection, bandwidth throttle can only reduce
traffic redundancy to a certain level, beyond which it is of no
use.

B. Biased Neighbor Selection in Homogeneous Networks

The above observation motivates our technique: biased
neighbor selection. Namely, for BitTorrent traffic to have ISP
locality, the neighbors need to be chosen well.

Neighbor 50th 95th traffic
Selection percentile percentile redundancy
Regular BT 5,312 7,152 46.72
Biased k = 1 5,168 6,206 3.44
Biased k = 5 5,172 6,281 9.74
Biased k = 17 5,220 5,872 21.38

TABLE II

DOWNLOAD TIME AND TRAFFIC REDUNDANCY OF REGULAR VS. BIASED

NEIGHBOR SELECTION IN A HOMOGENEOUS NETWORK.

Table II show the performance for biased neighbor selection,
with the number of external neighbors k varying from 1 to
17 (half of all neighbors). Figure 4 shows the CDF of the
download times.

The results show clearly that biased neighbor selections
reduces the variation in download times among the peers,
has median download times similar to regular BitTorrent, and
reduces ISP traffic redundancy significantly. The reduction in
download time variances has to do with the fact that pieces
are replicated more evenly in biased BT, since the estimate of
replication ratios of pieces is improved due to the clustering
properties of the graph. The variation in k has little impact on
download time, and lower k results in lower redundancy. Thus,
k = 1 should be used. In particular, at k = 1, the redundancy
is 3.44, meaning that on average, less than 4 copies of each
data block enter the ISP in order to satisfy all 50 peers.

How does the redundancy of biased BT vary with number
of peers inside an ISP? We increased the number of peers
inside each ISP to 75 and 100. Surprisingly, the redundancy
decreases as the number of peers inside an ISP increases. The
redundancy is 2.64 for 75 peers per ISP, and to 1.83 for 100
peers per ISP.

We believe the counter-intuitive results have to do with the
“local rarest first” replication policy employed by BitTorrent.
When the number of peers inside an ISP is small, each peer
has a good view of what blocks are present in the ISP. As a
result, they tend to bring in blocks with low replication inside
the ISP, and often this block is at the external peer. When the
number of peers is large, each peer tends to choose blocks
more randomly, and give rare blocks more time to replicate
inside the ISP. Hence, the number of blocks replicated tend to
be reduced.

We also change the seed bandwidth from 400KBps to
1Mbps. The traffic redundancy of biased BT is virtually
unchanged. Thus, in homogeneous networks, the traffic re-
dundancy is mainly determined by the number of peers inside
an ISP, and appears to stay under 4 in all cases.

What if only one ISP uses biased neighbor selection while
all others use the default algorithm? Figure 5 shows the CDF
of download times when only one ISP uses biased neighbor
selection with k = 1. The figure shows that there is little
change in median download time when one ISP uses biased
neighbor selection, and the spread between download times is
reduced for all peers. The ISP traffic redundancy is increased
to 25.2 in this case, since the ISP using biased neighbor
selection allows other ISPs to connect to nodes inside the
ISP, and the average number of external neighbors for the

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

no bottleneck
2.5 Mbps
1.5 Mbps
500 Kbps

Fig. 3. CDF of download times under bandwidth throttling, in homogeneous networks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT
Biased, k = 1
Biased, k = 5

Biased, k = 17

Fig. 4. CDF of download times under biased BT in homogeneous networks.

ISP using biased neighbor selection is high. If the ISP allows
only k connections per node from other ISPs, then the traffic
redundancy can be reduced.

Overall, biased BT is a practical and effective solution at
reducing cross-ISP traffic caused by BitTorrent. Any ISP using
it realizes an immediate benefit.

d) Interaction with Piece Selection Algorithm: The per-
formance of biased neighbor selection, however, depends on
the rarest first replication algorithm. Table III shows the 50th
percentile, 95th percentile and traffic redundancy of least-
replicated first versus random replication for biased neighbor
selection of k = 1. Clearly, the reason that biased neighbor
selection can perform nearly optimal is due to the “de-
clustering” effect of least replicated first algorithm, which

Piece 50th 95th traffic
Selection percentile percentile redundancy
Rarest first 1.84 2.51 14.4
Random 1.0 1.20 3.04

TABLE III

EFFECT OF PIECE SELECTION ALGORITHMS ON BIASED BT. THE

DOWNLOAD TIME OF 1.0 MEANS 5,168 SECONDS.

makes the peers more interested in blocks that are rare inside
the ISP.

e) Effect of the Original Seed: The single most important
factoring affecting the download time of the BitTorrent net-
work is the bandwidth of the original seed. We found that if the

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT (all clients)
Biased BT clients (Mixed setup)

Reg. BT clients (Mixed setup)

Fig. 5. CDF of download times when only one ISP uses biased neighbor selection with k = 1.

upload bandwidth of the original seed is 100Kbps or 200Kbps
(i.e. 1x or 2x of cable modem peers’ upload bandwidth), the
average upload link utilization is around 50%. If the seed band-
width is 400Kbps (4x cable modem peer’s upload bandwidth)
or higher, the average upload link utilization approach 100%.
We speculate that the factor of 4 may have to do with the fact
that BitTorrent use 5 parallel uploads each time. Other studies
have reached similar conclusions [BHP05].

When the seed bandwidth is low, the effect of biased neigh-
bor selection becomes unpredictable. Our experiments show
that when the seed bandwidth is 100Kbps, biased neighbor
selection at k = 1 reduces download times slightly (by
about 5%), but when the seed bandwidth is 200Kbps, biased
neighbor selection at k = 1 increases download time by as
much as 40$. However, when the seed bandwidth is 400Kbps
or higher, biased neighbor selection no longer changes the
average download time.

For content providers who are eager to use BitTorrent to
distribute their contents, establishing seeds with bandwidth
higher than 4 times the average node upload bandwidth
should not be a difficulty. Thus, we believe that the low seed
bandwidth cases are rare in practice.

Finally, in all our experiments, the original seed does not
use biased neighbor selection. Since the goal of the original
seed is to distribute contents to as many nodes as possible, it
should not use biased neighbor selection.

C. Performance in Heterogeneous Networks

What are the impacts of high-bandwidth peers? We added 7,
15 and 31 “university nodes” with upload/download bandwidth
of 400Kbps to the above homogeneous network, and compare
the performance of regular BitTorrent and biased BitTorrent.
All university nodes leave the network as soon as they finish
downloading the whole file. Furthermore, they do not use
biased neighbor selection since they don’t belong to any ISP.

ISP bottleneck 50th 95th traffic
percentile percentile redundancy

no bottleneck 1.0 1.27 8.21
2.5Mbps 1.10 1.33 6.74
1.5Mbps 1.09 1.32 7.37
500kbps 1.12 1.34 4.40

TABLE V

COMBINATION OF BANDWIDTH THROTTLING AND BIASED BITTORRENT

IN HETEROGENEOUS NETWORK. DOWNLOAD TIME OF 1.0 IS 4,446

SECONDS.

Table IV shows the results. Under regular BitTorrent,
the addition of university nodes initially has no impact on
overall download time, until the number of university nodes
is high enough (over 4% of the total nodes in this case).
Biased BitTorrent appears to take advantage of the presence
of university nodes sooner, by reducing the 95th percentile
download times. Furthermore, with 31 university nodes, biased
BitTorrent outperforms regular BitTorrent slightly, mainly due
to more uniform piece replications. Figure 6 shows the CDF
of the download times under 31 university nodes.

However, the traffic redundancy of biased BitTorrent in-
creases as the number of university nodes increases. This
is understandable. The university nodes have high upload
bandwidth and are favored by cable modem peers for block
exchange. As a result, they also supply more blocks to cable
modem peers, resulting in higher traffic redundancy.

Combining bandwidth throttle with biased BitTorrent in this
case restores low redundancy and only increase download time
slightly. Table V show the 50th and 95th percentile download
times and traffic redundancy when each ISP throttles BitTor-
rent traffic and deploys biased neighbor selection. At 500Kbps
bandwidth bottleneck, the traffic redundancy of biased BT is
lowered to close to the value when external high bandwidth
nodes is not present, and the download time is only increase

9

extra university nodes Regular BitTorrent Biased BT (k=1)
50th 95th traffic 50th 95th traffic

percentile percentile redundancy percentile percentile redundancy
0 1.0 1.34 46.9 0.97 1.16 3.04
7 1.0 1.33 47.06 0.94 1.12 4.19
15 1.0 1.37 46.98 1.01 1.01 7.81
31 0.93 1.28 47.06 0.83 1.06 8.21

TABLE IV

NORMALIZED DOWNLOAD TIME AND TRAFFIC REDUNDANCY OF REGULAR VS. BIASED NEIGHBOR SELECTION AS THE NUMBER OF HIGH BANDWIDTH

PEERS INCREASES. A DOWNLOAD TIME OF 1.0 IS 5,312 SECONDS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT
Biased BT clients

Fig. 6. CDF of download times of regular BT vs. biased BT, with 31 high bandwidth nodes in the network.

slightly (< 12%). The bottleneck reduces the attraction of
external high bandwidth nodes to internal peers, and thus
reduces the cross-ISP traffic. Yet, since most neighbors of
a peer are within the same ISP and are not crossing the
bottleneck link, the bandwidth throttle increases the download
time only slightly.

Overall, an ISP using both biased neighbor selection and
bandwidth throttle can reduce its traffic from the external
world significantly, regardless of whether the external peers
are of high bandwidth. A proper value for the bandwidth
throttle appears to be 5 or 6 times the average peer upload link
bandwidth. The throttling should only be applied when biased
neighbor selection is used; otherwise the peers’ download
times increase significantly.

Finally, another way to view our results is the following. If
an ISP is deploying bandwidth throttling to BitTorrent traffic,
then the peers inside the ISP can use biased neighbor selection
to successfully avoid the bottleneck!

VI. COMPARISON WITH OTHER LOCALITY-ENHANCING

APPROACHES

The above discussions show that biased neighbor selection
performs much better than bandwidth throttling, and the two
techniques can be combined for best results. This section
examines two other techniques to reduce cross-ISP traffic:

Technique 50th 95th
percentile percentile

Regular BT 1.0 1.34
100Kbps gateway peers 2.59 2.81
400Kbps gateway peers 1.0 1.14

TABLE VI

NORMALIZED DOWNLOAD OF THE GATEWAY PEER APPROACH, COMPARED

TO REGULAR BITTORRENT, IN HOMOGENEOUS NETWORK.

using a single peer, called “gateway peer”, to connect to the
external world [KRP05], and using a cache to store blocks
sent to the ISP [Cac].

A. Biased Neighbor Selection vs. Gateway Peer

Gateway peer is a natural approach to eliminate redundant
BitTorrent traffic into an ISP. The ISP designates a node as
the gateway peer. All peers inside the ISP can only connect
to each other and to the gateway peer, but only the gateway
peer can connect to the external world.

The problem with this approach is that gateway peers cannot
be regular peers. Table VI shows that if gateway peers have the
same upload bandwidth as other peers, then the download time
is increased significantly. The gateway peers need to have four

10

Technique Peak Average
bandwidth bandwidth

Cache under Regular BT 3.61Mbps 1.73 Mbps
Cache with Biased BT 1.32Mbps 153Kbps

TABLE VII

PEAK AND AVERAGE UPLOAD BANDWIDTH NEEDS OF CACHES,.

times higher upload bandwidth to avoid increasing download
times.

Furthermore, if only one ISP uses the gateway peer ap-
proach with a high bandwidth node, while all other ISPs use
regular BitTorrent, then the nodes in other ISPs finish faster
than the nodes in the ISP using gateway peer, by as much as
20% in one experiment. The reason for this behavior is that the
gateway peer has nothing to gain from the internal peers, and
via the tit-for-tat mechanism, would rather exchange blocks
with external peers. This means that the extra equipments
put up by the ISP benefits peers in other ISPs, certainly an
undesirable result for the ISP.

Finally, using special high bandwidth nodes as gateway
peers does not scale when peers participate in multiple BitTor-
rent networks, a common case as pointed out in [GCX+05].
The gateway peer would need to allocate 400Kbps for each
BitTorrent network to avoid increasing download times. In
contrast, biased neighbor selection requires no extra equip-
ments, and does not have such scalability problems.

B. Biased Neighbor Selection and Caches

Another approach to eliminate traffic redundancy is to use
caches. Positioned at the ISP’s gateway to the Internet, a cache
stores blocks sent by external peers to internal peers, and when
an internal peer wants to fetch a block from an external node,
the cache intervenes transparently [Cac] and sends a locally-
stored copy to the internal peer.

Caches also need high upload bandwidth. In order not to
increase download times, the cache needs to deliver the data
at the same bandwidth as the external peer would. To estimate
the peak and average upload bandwidth needs of caches, we
sum up the bandwidth of flows crossing the ISP boundary
that are “intervened” by the cache (i.e. the block is delivered
from the cache). Table VII shows the result. Under regular
BitTorrent, both the peak and average upload bandwidth of
the cache is high.

However, caches can be combined with biased neighbor
selection. Table VII shows that with biased neighbor selection,
the peak and the average bandwidth needs of the cache are
significantly reduced. Furthermore, if caches are combined
with both biased neighbor selection and bandwidth throttling,
then the peak bandwidth requirement is limited by the band-
width throttle. Thus, even for ISPs that deploy caches, biased
neighbor selection should be used to improve the performance.

VII. SUMMARY AND FUTURE WORK

Biased neighbor selection works well. It is nearly optimal.
Bandwidth throttling should be combined with biased neighbor

selection. A caching approach should also be combined with
biased neighbor selection.

Another way to look at biased neighbor selection is that it
is a way for BitTorrent to bypass bottlenecks on the Internet.
Our results essentially state that as long as k neighbors are
chosen randomly from the “undesirable” pool of peers, the
network would continue to function well.

Future work: implementation; clients auto-discovery of in-
ternal peers; using bandwidth as a way to “congestion” control
P2P traffic.

REFERENCES

[BHP05] Ashwin Bharambe, Cormac Herley, and Venkata N. Padmanab-
han. Understanding and deconstructing bittorrent performance.
In Proceedings of 2005 SIGMETRICS, 2005.

[Cac] CacheLogic. Cachelogic - advanced solutions for peer-to-peer
networks.

[CDK+03] M. CASTRO, P. DRUSCHEL, A. KERMARREC, A. NANDI,
A. ROWSTRON, and A. SINGH. Splitstream: High-bandwidth
content distribution in a cooperative environment. In Proceed-
ings of IPTPS’03, 2003.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent, 2003.
[Coh05] Bram Cohen. Bittorrent documentation: Protocol, 2005.
[CRZ00] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end

system multicast. In Proceedings of ACM SIGMETRICS, pages
1–12, 2000.

[ECo05] EContentMag.com. Chasing the user: The revenue streams of
2006, 2005.

[Epe] Pouwelse Garbacki Epema. The bittorrent p2p file-sharing
system: Measurements and analysis.

[Fra02] Paul Francis. Your own internet distribution (yoid), 2002.
[GCX+05] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning

Ding, and Xiaodong Zhang. Measuremsnts, analysis and mod-
eling of bittorrent-like systems. In Proceedings of the Internet
Measurement Conference 2005, 2005.

[GR05] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Network
coding for large scale content distribution. In Proceedings of
IEEE Infocom 2005, 2005.

[GS05] Prasanna Ganesan and Mukund Seshadri. On cooperative
content distribution and the price of barter. In Proceedings of
2005 ICDCS, 2005.

[Inc] Cisco Systems Incorporated. Network based application recog-
nition (nbar).

[IUKB+04] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra, and
L. Garces-Erice. Dissecting bittorrent: Five months in a torrent’s
lifetime, 2004.

[KRP05] Thomas Karagiannis, Pablo Rodriguez, and Konstantina Papa-
giannaki. Should internet service providers fear peer-assisted
content distribution. In Proceedings of the Internet Measurement
Conference 2005, 2005.

[MV05] Laurent Massoulié and Milan VojnoviĆ. Coupon
replication systems. SIGMETRICS Perform. Eval. Rev., 33(1):2–
13, 2005.

[MW] Jochen Mundinger and Richard Weber. Efficient file dissemina-
tion using peer-to-peer technology.

[Nor03] William B. Norton. The evolution of the u.s. internet peering
system, 2003.

[Pac] Packeteer. Packeteer packetshaper.
[PC] P-Cube. P-cube: Ip service control.
[PWCS02] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.

Distributing streaming media content using cooperative network-
ing, 2002.

[QS04] D. Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks, 2004.

[San] Sandvine. Sandvine: Intelligent broadband network manage-
ment.

[SBB04] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A
cooperative bulk data transfer protocol, 2004.

[wik05] wiki.theory.org. Bittorrent protocol specification v1.0, 2005.
[YdV04] X. Yang and G. de Veciana. Service capacity of peer to peer

networks, 2004.

