
1

Hash-AV: Fast Virus Signature Matching by
Cache-Resident Filters

Ozgun Erdogan and Pei Cao
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract— Fast virus scanning is becoming increasingly
important in today’s Internet. While Moore’s law continues
to double CPU cycle speed, virus scanning applications
fail to ride on the performance wave due to their frequent
random memory accesses. This paper proposes Hash-AV,
a virus scanning “booster” technique that aims to take
advantage of improvements in CPU performance. Using
a set of very cheap hash functions and a bloom filter
array that fits in CPU second-level (L2) caches, Hash-
AV determines the majority of “no-match” cases without
accesses to main memory. We investigate the design choices
of Hash-AV, showing that “bad but cheap” hash functions
such as the mask operation can work well in serial
applications of hash functions.

Through experimentation, we show that Hash-AV im-
proves the performance of the open-source virus scanner
Clam-AV by a factor of 8 to 10 on the current signature
database, and by a factor of 26 on databases with 120K
signatures. Furthermore, Hash-AV combined with Clam-
AV can scan for viruses at over 100Mb/s throughput,
making it suitable for network-based virus scanning or
on-access scanning of socket send/receive calls.

I. INTRODUCTION

In the age of Internet and the Web, viruses proliferate
and spread easily. As a result, anti-virus technologies
are a must in today’s wired world. An effective defense
needs virus-scanning performed at every major network
traffic stop and at the end-host computers. Today, anti-
virus software applications scan traffic at e-mail gate-
ways and corporate gateway proxies1, and they run on
end-hosts such as file servers, desktops and laptops.
In other words, virus-scanning is becoming a neces-
sary overhead for almost all data communications over
the network. As network throughput and user demand
for communication speed increase, the speed of virus-
scanning needs to keep pace.

1The recent episode of Download.Ject web site infection [14]
clearly highlights the importance of scanning viruses at Web proxy
gateways.

Virtually all virus-scanning programs spend the bulk
of their time matching data streams with a set of known
virus signatures, and they all utilize some form of multi-
pattern matching algorithm. The number of virus signa-
tures today is over 100,000 and is growing constantly.
As a result, data structures used by these algorithms
cannot fit in the CPU cache, and instead reside in main
memory. Traditional matching algorithms require at least
one random memory access per scanned byte [15].

The performance of random memory accesses, how-
ever, does not improve nearly as much as the CPU
speed or even sequential memory access throughput. For
example, in the past decade, CPU processing speed has
been doubling every 18 months, yet memory speed only
improved at a rate of less than 10% per year. As a result,
anti-virus software using traditional algorithms only par-
tially benefit from the improvements in microprocessor
speeds. Random memory access performance becomes
the bottleneck for these scanners.

In this paper, we propose a new virus scanning
technique that aims to take advantage of improvements
in CPU performance. Our solution, called “Hash-AV”,
combines a set of very cheap hash functions and a bloom
filter array that fits in the CPU second-level (L2) cache.
Hash-AV can determine the majority of the “no-match”
cases quickly, without incurring main memory accesses.
Since the majority of network traffic does not contain
viruses, most of the data stream belongs to the “no-
match” case.

The intuition behind Hash-AV is the following. Cur-
rently, one L2 cache miss costs about 100-200 CPU
cycles, and the speed gap keeps increasing [7]. While
reading new incoming data, the CPU has to take a cache
miss. Once a piece of data has been brought from main
memory into the CPU cache, Hash-AV can scan the data
using its cache-resident bloom filter while the CPU waits
for the next cache miss.

To evaluate the performance of our technique, we ap-
plied Hash-AV to Clam-AV [11], the most popular open
source anti-virus software. Hash-AV improves Clam-

2

AV’s scanning throughput to 16.6 MB/s for executables,
and to 41 MB/s for web pages, on an Athlon XP
2000+. This represents a speed-up factor of 8 and 10,
respectively. If polymorphic viruses are handled using
emulations, Clam-AV with Hash-AV can scan executa-
bles at 27 MB/s and web pages at 104 MB/s. Given
that the memory copy speed is 260 MB/s on the Athlon
XP 2000+, the results confirmed our intuition that virus
scanning can potentially reach memory copy speeds.

In addition to speeding up anti-virus software on end-
host computers, we have implemented a technique that
enables network-based virus scanning by storing state
between consecutive scans. Using Hash-AV, Clam-AV
can now easily scan input at over 100Mb/s. Thus, it
is possible to embed virus scanning in network routers
and switches that have application-recognition and re-
construction capabilities [5]. Embedding virus scanning
in network devices enables much faster updates of virus
signature databases, and is a valuable addition to existing
security mechanisms in a network.

Finally, Hash-AV’s application is not limited to virus
scanning. It can benefit any string matching applications
that have the following characteristics: a) exact matching
is required, and the number of signatures is high (e.g.
> 10,000); b) the majority of the cases are “no-match”
cases; c) no easy “tokenization” methods exist, so the
matching has to be tested byte-by-byte. For any such
system, Hash-AV principles and designs apply, though
the specific choices of hash functions might differ.

II. VIRUS SCANNING TECHNIQUES

Before we delve into the discussion of Hash-AV, we
first give a brief introduction of the major techniques
used in identifying viruses, and describe Clam-AV in
more detail.

A. Basic Techniques

There are three main techniques used in virus-
scanning:

• signature-matching: check if a file contains a known
virus by searching for a fixed string of bytes (the
“signature” of the virus) in the data;

• emulation: check if a file contains a polymorphic
virus (those that change from occurrence to occur-
rence) by executing the instructions of an executable
in an emulated environment, and then looking for a
fixed string (the “signature”) in the memory region
of the process [22];

• behavior-checking: check if a file contains an un-
known virus by running the file in an emulated
environment and observing its behavior;

Behavior-checking is typically run on a specific file
to determine if the file contains a new virus. Since it
is not routinely run, its performance is usually not a
concern. Emulation is typically used only on executables
matching certain criteria. Signature-matching is routinely
run on all files.

In both signature-matching and emulation, most of
the CPU time is spent matching the data against a
set of strings. Commercial virus-scanning software has
databases containing over 100,000 virus signatures. The
signatures typically contain at least 15 bytes [10]. The
open-source virus-scanning software, Clam-AV [11],
currently contains over 20,000 virus signatures. Clearly,
efficient string-matching algorithms are a must in virus
scanning software.

The most commonly used multi-string matching algo-
rithm is Aho-Corasick [2]. Aho-Corasick works by first
building a finite state machine out of the signatures, and
then running the data as input through the automaton.
Once the automaton is build, scanning N bytes takes
O(N) time. An optimized version of Aho-Corasick
makes sure that only one access to the data structure
representing the automaton is needed for each byte in
the input data. The size of the associated data structure,
however, is over 90 MB for 20,000 signatures and grows
linearly with the size of the signature database. Hence,
the data structure cannot fit in today’s CPU caches.

Other multi-string matching algorithms include Boyer-
Moore [3] and Wu-Manber [24]. Unfortunately, these
algorithms do not work well for virus scanning; we
discuss some of the issues in the next section.

B. Overview of ClamAV

ClamAV is the most widely used open-source anti-
virus scanner available. Currently, it has a database of
20,712 viruses, and consists of a core scanner library
and various command-line programs. Besides regular
viruses, the database also holds signatures with wild-card
characters embedded in them. Signatures with wild-card
characters are used to detect polymorphic signatures.

Although a complete description of ClamAV’s inner-
workings is beyond the scope of this paper, it is im-
portant to point out some properties of ClamAV’s virus
detection algorithm. ClamAV uses the Aho-Corasick
algorithm for pattern matching.

ClamAV stores its automaton in a trie data structure.
To quickly perform a lookup in this trie, ClamAV uses a
256 element array for each node. It also modifies Aho-
Corasick such that the trie has a height of two, and
the leaf nodes contain a linked list of possible patterns.
ClamAV fixes its trie depth to two because its database

3

Fig. 1. Part of the trie structure used by ClamAV. Success transitions
are shown with solid lines, and failure transitions are represented with
dashed lines.

contains polymorphic viruses whose prefixes are as short
as two bytes. Figure 1 shows a fragment of this trie
structure. As the linked lists get longer, the performance
of ClamAV suffers from the cost of traversing the linked
list. As a result, ClamAV doesn’t scale well with large
databases.

Since increasing the depth of the trie improves the
scalability of ClamAV, two recent studies explored
methods of breaking this restriction. By implementing
work-arounds to grow the trie’s depth to four, Cla-
mAV developers doubled scanning performance[6]. At
the same time, its memory consumption went from
11MB to 90MB. Separately, researchers at Stony Brook
also explored techniques of increasing the trie’s depth
and achieved speeds as high as 3.13 times that of
ClamAV[25] on certain files. These approaches, however,
have not yet been incorporated into the stable release of
ClamAV.

These new approaches are complementary to our
Hash-AV technique. Hash-AV still uses the trie structure
for exact string matching when necessary, so any im-
provement in that area improves the overall performance
of virus scanning. At the same time, as these approaches
increase the trie size, the CPU cache locality becomes
poorer, and the exact-matching algorithm becomes in-
creasingly bound by random memory access time. Thus,
these new approaches actually have an increased need
for techniques such as Hash-AV.

1) Comparing ClamAV and Snort: Snort is a widely
used open-source intrusion detection system. It comes
with over 1500 signatures. It’s interesting to compare
ClamAV’s choice of algorithms and those of Snort [18].

Unlike virus signatures, a Snort IDS signature is a rule
which specifies the port number and type of protocol of
the traffic to which the signature should apply. Signatures

are grouped into rule sets, each of which applies to a
particular protocol or port number. For example, for FTP
traffic, Snort only checks signatures that are relevant to
FTP. Each rule set varies from 10 to 100 signatures, and
the average size is about 40.

Snort uses a string matching engine that performs very
well for their rule sets. It uses a modified version of the
Wu-Manber algorithm [24]. At start up, the scan engine
initializes a bad character shift table and a hash table.
Then, at scan time, when the bad character shift fails,
the first two bytes of the input are probed into the hash
table to find a list of possible matches. Other variations
of Snort use Boyer-Moore for rule sets with less than 10
signatures and Wu-Manber for others [23].

The approach taken by Snort, however, cannot be
applied to virus scanning. First, the number of virus
signatures is much larger. Second, while IDS systems can
divide its signatures into rule sets due to the nature of the
threats they guard against, virus scanning systems cannot
do the same. Even in the relatively small category of
macro viruses, there are over 7000 signatures [1]. Thus,
virus scanning applications have to use algorithms that
scale to a large number of signatures.

C. Handling Polymorphic Viruses

Polymorphic viruses change from instance to instance.
It is difficult to construct a fixed “signature” string
to identify them. Commercial virus scanning software
use both emulation and signature matching to identify
polymorphic viruses.

A majority of polymorphic viruses contain two parts:
a “decryption” block and a “cipher-text” block. The
“decryption” block, usually the header code, decrypts
the “cipher-text” block. The decrypted data contains
the infection code. The header tries to hide itself from
scanners by inserting jumps, no-ops and register name
substitutions in its code. Its sole purpose is to decrypt the
second block with the key, and execute its code. Writing
the header code is hard and tricky, and virus writers put
most of the code in the “cipher-text” block.

Commercial scanners emulate the header code to run
the decryption, then examine the decrypted data to see if
there is a match with a certain signature. When scanning
an executable, the scanners emulate the instructions in
the beginning of the file, stop at certain points, and
look at virtual memory to see if there is a match with
any known signatures. To avoid false positives, most
commercial products try to extract signatures that have
at least 15 consecutive bytes.

Clam-AV currently does not have an emulation engine.
Rather, it uses multi-part signatures with wild-cards. A

4

multi-part signature also attempts to map down multiple
versions of a virus that originated from the same source.
Though not as comprehensive as the emulation approach,
the multi-part signature approach can be effective in
some environments [11].

As a result, ClamAV’s virus database contains signa-
tures that have wild-cards after as few as two bytes. This
property of ClamAV doesn’t reflect that of commercial
products’ databases. Thus, when evaluating Hash-AV, we
consider both cases: when multi-part signatures are used,
and when they are not.

III. HASH-AV BASIC MECHANISMS

Hash-AV filters act as a first-pass scan on data to
determine if the data needs to go through an exact-match
algorithm. Specifically, the algorithm moves a sliding
window of β bytes down the input stream. For each β

bytes under the window, k hash functions are applied
to calculate their hashes. The hash results are then used
to probe into a bit array of N bits, which is a bloom
filter [4] pre-constructed from the virus signatures.

A. Hash-AV Components

The scanning algorithm uses k independent hash
functions on strings of β bytes and constructs a bloom
filter from the virus signature set. In order to improve
throughput, the sliding window moves down the input
data stream four bytes at a time. To make sure that all
occurrences of viruses are detected, β bytes starting at
the first four offsets in each signature are hashed and
inserted into the bloom filter (i.e. the hash results are
used as indices to set bits in the bloom filter bit array
to 1). For example, assume a virus signature “istanbul-
turkey”, and β=9. During the initialization of the bloom
filter, “istanbul-”, “stanbul-t”, “tanbul-tu” and “anbul-
tur” are hashed and inserted into the bloom filter.

At scan time, for each β bytes under the sliding win-
dow, the same k hash functions are applied to them, and
the results are probed in the bloom filter. If all bits are 1,
the exact-match algorithm (for example, Aho-Corasick)
is invoked to see if there is an actual match with a
virus signature. For example, for input data “xxistanbul-
turkey”, the algorithm first checks “xxistanbu” against
the filter and does not find a hit. Then, skipping four
bytes, it probes “tanbul-tu” in the filter. This time it
gets a hit, and it goes into the exact-match algorithm to
see if there is a match with the virus. The exact-match
algorithm requires access to the previous four bytes of
input, which are buffered by the Hash-AV algorithm.

The scanning algorithm applies the hash functions one
at a time. After one function, the algorithm checks the

bit in the bloom filter. If the bit is 1, it goes on to
the next hash function; if not, it immediately slides the
window down four bytes and goes onto the next β-byte
block. Note that this is different from typical hardware
implementations of bloom filters [19], which calculate all
hash functions at the same time using parallel hardware
and then probe the filter.

Based on our prior experience in using bloom fil-
ters [12], k = 4 works well. Thus, in Hash-AV, we use
four hash functions as well.

Therefore, there are three choices left in setting up
Hash-AV:

• Choosing four hash functions;
• Choosing the size of the bloom filter;
• Choosing β;

Below, we use a simple model to briefly analyze the
impact of each choice.

B. A Simple Performance Model

Assume that the four hash functions are h1, h2, h3,
and h4, applied in that order. Furthermore, assume that
the function hi can be calculated at ci MB/s. Let the
total number of signatures be N , and the size of the
bloom filter be N ∗ K bits. The function h1 then has a
false positive ratio of p1 in the bloom filter. The ratio p1

is determined by both the hash function and the bloom
filter’s expansion factor K.

Similarly, h2 has a false positive ratio of p2,1 in
h1’s false positive cases. In other words, p2,1 is the
conditional probability of false positive under h2 given
that h1 has a false positive. The ratios p3,2,1 and p4,3,2,1

are defined similarly.
The performance of the scanning algorithm can be

characterized in the following formula:
c1 + p1 ∗ c2 + p1 ∗ p2,1 ∗ c3 + p1 ∗ p2,1 ∗ p3,2,1 ∗ c4 +

p1 ∗ p2,1 ∗ p3,2,1 ∗ p4,3,2,1 ∗ C

where C is the cost of the exact string matching
algorithm. Clearly, since all the probabilities are between
0 and 1, the hash functions should be ordered from the
cheapest (computationally) to the most expensive.

The above formula leads to a number of insights. First,
it pays to use very fast, but mediocre hash functions for
h1 and h2. A hashing function which has 15% error rate
but takes five CPU cycles to calculate is a poor choice in
other circumstances, but serves very well to our purpose.
In fact, these cheap functions help us make the theoret-
ical argument that the Hash-AV scanning algorithm can
potentially perform at near memory system throughput.

Second, it’s important to choose hash functions that
are independent. Completely independent hash functions
would have the conditional false positive probabilities the

5

same as the unconditional false positive probabilities. On
the other hand, non-independent hash functions tend to
have the conditional probabilities close to 1, defeating
the purpose of multiple hash functions.

Third, the probabilities are affected by the bloom
filter’s expansion factor K. Since the cost of the exact
string matching algorithm, C, is orders of magnitude
higher than the cost of the hash functions, it’s important
that the bloom filter do not contribute significantly to
the false positive ratios. In the sections below, we use
experiments to determine the appropriate K.

Finally, there is a lower bound on the probabilities
p1 ∗ p2,1 ∗ p3,2,1 ∗ p4,3,2,1, which is determined by the
parameter β. In other words, there is a probability that
strings that match the first β characters do not match the
full signature. In general, longer βs are better. However,
a longer β also means that shorter signatures (those
of length < β + 3) must be handled by a different
mechanism. Hence, the choice of β also affects the
performance.

C. Evaluation Methodology

In our studies, we focus on windows executable files.
The majority of viruses spread through executables.
Although a considerable number of macro viruses ex-
ist, executable files are still the most common means
of infection. Commercial companies focus heavily on
executable files, so it is logical to analyze the behavior
of Hash-AV on these types of files.

In our analysis of Hash-AV, we run performance tests
over an 80 MB sample file. To create this file, we con-
catenate together widely used Windows executables that
are over 3 MB in size, including MS Office executables,
messenger programs, third-party software used for scien-
tific and entertainment purposes. In our selection, we pay
attention to including only the executable binaries, and
avoid setup programs since Hash-AV runs much faster
on them.

We evaluate the benefits of Hash-AV for both the
current ClamAV database (about 20,000 signatures) and
a database containing 120,000 signatures. The signature
database for ClamAV is growing very rapidly. Hence,
it is essential that Hash-AV scales for large signature
databases. To generate more signatures, we wrote a
synthetic virus generator that examines the properties
of the current ClamAV database, and tries to generate
realistic virus signatures.

The generator works as follows. At startup, it reads
in the regular and multi-part signatures in Clam-AV’s
database into different arrays in memory. Then it extracts
two pieces of information: the distribution of virus

signature lengths, and the percentage of polymorphic
patterns in the database. Based on these pieces of data,
for each “new” virus, the generator first chooses its
length and its type (i.e. regular or polymorphic). For
byte i in the new virus, the generator randomly picks
an existing signature, and copies its byte i. For each
byte index, this algorithm statistically favors the most
common byte for that index. In ClamAV’s signature
database, polymorphic signatures are represented with
wild-card ASCII characters in between bytes (* and ??),
so this approach automatically generates viruses that are
as polymorphic as the ones in the database. A more
through approach could consider the distribution of byte
couplings in the signature database.

AMD 1.8 Ghz2 P4 2.6 Ghz
L1 instr cache 64 KB 12K mic-ops
L1 data cache 64 KB 8 KB

L2 cache 256 KB 512 KB

We run our experiments on two widely used PC
desktops, Athlon XP 2000+ and Pentium-4 2.6GHz. The
above table gives a summary of architecture specifics
for these machines. Most of the results shown in this
paper are from experiments on the AMD Athlon desktop,
though the results on the Pentium-4 are very similar.

IV. HASH-AV SIGNATURE FILTERS

To actually construct a Hash-AV filter, we need to de-
termine the variables listed in the above section. Below,
we use experiments to determine each component of the
filter. Since the choices are intertwined, we first fix β to
9, and study the hash functions and bloom filter sizes.
We then return to the choice of β near the end.

A. Selecting Hash Functions

The criteria for the hash functions are that they should
be cheap and they should produce relatively random
distributions. We first chose a set of well-known fast
hash functions from the open source community. The
functions usually have 0.2% to 1% collision rate on our
sample files, and work well on inputs longer than 4 bytes.

Table 1’s first five rows list the hash functions, giving
their performance measurements over a sample exe-
cutable of 80 MB, and the percentage of false positives in
the filter. For these tests, β is 9 and the bloom filter size
is 256 KB. The throughput measurement contains the
cost of hashing each block and the overhead of probing
the bloom filter to see if there is a match.

6

Hash Name Hash Perf % of unfiltered
(MB/s) input

fnv-32-prime [16] 51.52 6.16%
djb2 [27] 83.73 6.23%

hashlib fast-hash [9] 81.04 6.17%
sdbm [26] 70.66 6.22%

ElfHash [20] 50.45 7.60%
simple mask 233.87 27.35%
simple mod 102.84 13.26%

We were disappointed with these hash functions. Al-
though the functions are said to be very fast, they still
perform too slow for our purposes, especially compared
to memory-copy speed, which goes at 260MB/s on the
desktops.

We then proceeded to add two really fast “hash”
functions: “mask” and “mod”. Strictly speaking they are
not hash functions at all; but they did work in the virus
scanning cases. These functions are used as first level
hash functions. They take the first four bytes, cast it
to an integer pointer, and perform their operation on it.
They are independent of the size of β, and always act
on first four bytes of a block.

The definitions of both functions depend on the size
of the bloom filter. For example, for a filter size of 64
Kbits (216), masking simply ands the last sixteen bits
of the input block with 1s. That is, with β=5, the block
“seatt” is first cast to an integer pointer, changing the
data to “seat” for this hash function. Then, a bitwise
AND is performed on this data, taking the first two bytes
on little-endian machines. As a result, “se” is checked
against the bloom filter. For modding, a prime that is
known to be good for the range 215-216 is chosen, and
the mod operation is performed on the input with that
prime.

Using these two functions as first-level hash func-
tions leads to a big performance gain in Hash-AV. The
throughput is approximately doubled in almost all cases.

Hence, Hash-AV contains the following four hash
functions: simple mask, simple mod, fast hash from
hashlib.c [9] and sdbm [26]. We chose sdbm over djb2
because the correlation between fast hash and djb2 is
high.

B. Selecting Bloom Filter Sizes

Traditional bloom filter implementations choose a fil-
ter size such that it has about half of the filter populated.
Since four variations of the signature are inserted into
the filter, for a virus signature database of N signatures,
approximately 16*N bits (four hash functions on four
variations) are set. Therefore a bloom filter that is 32*N

Fig. 2. Performance (in MB/s) of pure hashing for different bloom
filter sizes.

bits, or 4*N bytes, is considered big enough. Based on
the conventional wisdom, an 80KB filter should be used
for 20,000 signatures, and a 480KB filter would be ideal
for 120,000 signatures.

In Hash-AV, however, a number of factors impact the
choice of the bloom filter size:

• the CPU cache effect: the amount of the filter that
fits in the CPU cache, and the cache miss ratio in
cases where the filter can’t all fit in the cache.

• the mask& mod effect: the mask and mod op-
erations are much faster than other more general
hash functions. However, how much of the input
these two operations can filter away depends on the
sparseness of the bloom filter.

• the false hit ratio: A 3% false hit ratio in a bloom
filter might be acceptable if the cost of the false hit
is only an order of magnitude greater than the cost
of a filter scan. However, it would not be acceptable
if the cost of the false hit is two orders higher.

Clearly, the choices are intertwined, and depends on
the relative ratio of the cache size and the size of the
filter. Below, we use a variety of experiments to examine
the factors one by one.

1) Pure Hashing Speed: Given our choice of hash
functions, we first look at the pure “hash and lookup”
speed under different filter sizes, for databases of both
20,000 and 120,000 signatures. This “pure hashing”
speed factors out the effect of false hit ratios, and
instead reflects the impact of the CPU cache and the
“mask&mod” operations. Figure 2 shows the results on
the AMD desktop.

For 20,000 signatures, the results peak at AMD’s
second-level cache size. This is not surprising since, as
long as the filter fits in the cache, large filters lead to
more input eliminated by the mask and mod operations,

7

Fig. 3. CPU cache miss rates for the mask operation with different
bloom filter sizes.

but if the filter doesn’t fit in the cache, the cache miss
latency dominates the throughput.

For 120,000 signatures, the performance difference
between the 256KB filter and larger filters is not as
dramatic. This has two reasons. First, the mask and
mod hash functions generate too many false positives
with smaller filters which result in more h3 and h4

calculations that dominate run-time. Second, thanks to
locality of accesses in the filter, a significant number of
signatures can still be verified from the cache even with
larger filters.

We used Cachegrind [21], a cache miss profiler, to
examine the cache miss ratio of Hash-AV for 120,000
signatures. When executed, Cachegrind runs the target
program on a simulated x86 CPU, and reports the
number of misses. Cachegrind implements the “inclusive
L2 cache” semantics, the standard on Pentium machines.
Therefore, the results derived from Cachegrind traces
are accurate enough, but are not exact representations
of AMD Athlon’s cache behavior.

Figure 3 shows the CPU cache miss rates reported by
Cachegrind on a 80 MB sample executable and a 50 MB
random file. The sample executable is a merge of various
programs used in different fields. 3

This low miss rate on executables, even for very large
bloom filters means that the input stream is clustered
around certain values. This helps as the filter sizes get
bigger since a good portion of heavily accessed data still
fits in the CPU cache.

To further analyze the sample executable file, we
implemented a program that goes over the input four
bytes at a time, and constructs a histogram over 256
values. Figure 4 shows the resulting histogram where the
input blocks are also masked. Also, index 0 in the array

3The low rate of cache misses on our sample file lead us to repeat
the same set of tests on another group of executables merged from
/usr/bin, and no significant differences were found.

Fig. 4. Distribution of binary data after mask operation (excludes
index 0).

is removed from the histogram, as this value appears 10
times more than that of the second highest value. Overall,
34.9% of all mask accesses are contained within 5.47%
of the bloom filter.

This value however, still doesn’t completely explain
the low miss rates for very big bloom filters. It is our
understanding that most of the words in executable files
are closely correlated, and our mask and mod functions
preserve this correlation in the bloom filter. Since cache
architectures rely on locality of access, both temporal
and spatial, the cache miss rate for executables stay at a
reasonable level, even for big filter sizes.

In summary, for small number of signatures, the CPU
cache size should be chosen as the bloom filter size. For
larger number of signatures, the cache effects are not as
important and other factors play a bigger role.

2) Scanning Speed and Bloom Filter Sizes: While
the above experiments look into the pure hashing and
probing speed, the actual performance of Hash-AV also
depends on the overhead of the exact match algorithm in
Clam-AV. Since the current implementation of Clam-AV
does not scale well with the number of signatures, the
relative cost of the Clam-AV’s exact match algorithm
increases as the number of signatures increases. As a
result, the best filter sizes for 20,000 signatures are quite
different from those for 120,000 signatures.

Figure 5 shows the test results for an Athlon XP 2000+
over a sample executable of 80 MBs. The file is first
mapped into memory, and the tests are run on a warm
cache to eliminate the disk access overhead.

As the results show, the best filter size varies by
the number of signatures and the CPU cache size. On
an Athlon XP 2000+, for 20,000 signatures, Hash-AV
achieves its peak performance with a 256 KB bloom
filter. For 120,000 signatures, however, 4MB filter works
well.

The main reason for the difference is the relative cost

8

Fig. 5. Performance (in MB/s) of Hash-AV for different bloom filter
sizes. β is fixed at 9.

of calling ClamAV. As we discussed in Section II-B,
the current ClamAV implementation doesn’t scale to a
large number of signatures. As a result, for 20,000 and
120,000 signatures, the cost of calling ClamAV is 35 and
90 times higher, respectively, than that of pure hashing.
Therefore, at 120,000 signatures, it’s imperative to get
the false hit ratio as low as possible, even if it means
that the filter doesn’t fit in the cache.

C. Selecting β

The choice of β is mainly affected by the distribution
of signature lengths in the signature database. Generally,
larger βs are preferred since strings that match the first
β bytes in a signature are more likely to match the actual
signature. On the other hand, dramatically increasing
β has two side-effects. First, the hash functions take
more time to compute the result, which in turn slows
the algorithm down. Second, with a bigger β, Hash-AV
needs to throw out more signatures, and that means there
are more signatures that need to be handled separately.
Since the second level hash functions can’t distinguish
input accurately for less than 5 bytes, a lower limit of 5
is set on β.

Figure 6 shows the Hash-AV’s throughput for different
choices of β with 20,000 and 120,000 signatures on an
Athlon XP 2000+. Increasing β leads to a significant
performance increase at first; this is because of the high
number of false positives that are eliminated. Then the
graph converges to a maximum, this is the stage where
the trade-off between eliminating more false positives
and spending more time in hash functions brings the
performance to an equilibrium state.

Figure 7 shows the percentage of virus signatures that
cannot be handled by Hash-AV for different sizes of β.

Fig. 6. Performance (in MB/s) of Hash-AV implementation for
different βs.

Fig. 7. Percentage of signatures that are thrown out and require
special handling for various βs.

These signatures would have to be handled by a string-
matching algorithm such as Aho-Corasick, as we discuss
in Section V.

Weighting these effects of β, we decided to choose
β = 9 in our algorithms.

D. Helper Tools for Different CPUs

The proper choices of the various parameters in Hash-
AV depend heavily on the characteristics of the hardware
on the system. Hash-AV tries to push the scanning
performance up to a maximum by using both memory
and the CPU very efficiently. Computers built today use
a wide variety of hardware components, with varying
CPU speeds, CPU cache sizes, memory bus bandwidths,
and memory access speeds. To help tuning Hash-AV for
different systems, we constructed two tools.

The first tool, called the Hash Performance Tester,
attempts to determine the best hash functions on a CPU
architecture. The functions that we chose are known to
perform well on x86 architectures. However, different

9

CPU architectures have different characteristics. For ex-
ample, shift operations are slower on Pentium 4 based
architectures, and multiplication is slower on Sun based
systems. Hence, the tool contains implementations of
seven hash functions, and uses a script to compare their
speeds on the target system. The tool then recommends
the four fastest hash functions.

The second tool chooses bloom filter size and β. The
script generates, compiles and executes code for filter
sizes between 64 KB - 128 MB (variables may be set
by the user). It chooses the filter size that leads to the
fastest execution speed. β chooser acts in a similar way,
probing β sizes between 5-15 bytes. It picks the smallest
value from the equilibrium state in the graph.

These tools helped us determine appropriate parameter
settings for Pentium 4 2.6 Ghz. Though the tools have no
knowledge of the CPU architecture, they did determine
that the appropriate bloom filter size for the Pentium
architecture should be 512KB.

V. PERFORMANCE BENEFITS OF HASH-AV

Hash-AV is not a replacement for current AV scanning
algorithms, instead we claim that this technique offers
the fastest way to compare the input stream against
tens of thousands of signatures. Our implementation of
Hash-AV makes calls to ClamAV when the bloom filter
indicates that there might be a match.

In this section, we report the comparison of Hash-
AV+Clam-AV versus Clam-AV. We did not include any
commercial products in this evaluation, because their
virus databases are very different from Clam-AV’s and
it’s impossible to do an apples-to-apples comparison.

While we believe ClamAV’s handling of polymorphic
viruses is not indicative of the state of art commercial
virus scanning software, it is important to make a one-
to-one comparison with ClamAV, and scan for all the
signatures in its database. This can easily be achieved
by first running Hash-AV with ClamAV on signatures
over β + 3 bytes, and then running ClamAV again for
the left-out signatures. Clever techniques and different
optimizations could then be used to increase the perfor-
mance of this “two-scan” approach.

Figure 8 compares the performance of ClamAV, Hash-
AV+Clam-AV but ignoring the shorter signatures, and
Hash-AV+Clam-AV doing “two-scans”. The tests are run
on both the existing Clam-AV database (indicated as the
“20K sigs” runs) and the generated 120,000 signature
database (indicated as the “120K sigs” runs).

These tests were first performed on a sample exe-
cutable of size 80 MBs. The second set of tests (Figure
9) was applied on a file of 99 MB containing HTML

Fig. 8. File scan times for ClamAV, Hash-AV and Two Scans
on a sample executable. (one scan with Hash-AV and another with
ClamAV for very short signatures Hash-AV cannot handle)

Fig. 9. File scan times for ClamAV, Hash-AV and Two Scans on
an HTML and a random file.

data that has been crawled off the web, and on a 100
MB random file. We chose to do an HTML benchmark
since ClamAV is used at Web proxy gateways and e-
mail servers, which tend to see a lot of HTML text. We
included a random file in our tests as they are commonly
used in benchmarks for multi-pattern string matching
algorithms.

In all three cases, Hash-AV performs much better than
ClamAV.

Worst-Case Performance of Hash-AV

Today, anti-virus products are mostly used on end
nodes, where virus scans are performed at regular in-
tervals (once a week) or when the file is accessed by the
end user. Therefore, unlike intrusion detection systems,
worst-case performance leads to some latency instead of
a server overload. On the other hand, a large number
of mail servers provide virus scanning features for their
users today, and it may become possible to kill these
servers by sending in files that target the weaknesses of
the scanner program.

10

Hash-AV uses hashing for imprecise string matching
to achieve very high speeds. It makes calls to ClamAV
when all the four hash functions in the bloom filter give
positives. Then, in the worst-case, Hash-AV’s perfor-
mance will be ClamAV’s execution speed plus the cost
of four fast hash functions.

In addition, mail servers could adopt techniques
where, if a file seems to match in the bloom filter all
the time, the file is marked suspicious and the delivery
is delayed until the file is examined at an off-peak time.

VI. EMBEDDING AV SCANNING

Modern anti-virus scanners provide an on-access
mode where a file is automatically scanned for viruses
when it is used. To implement the capability, the scanners
typically install their own device drivers that intercept
open()/close() and exec() system calls. ClamAV also pro-
vides on-access scan capability by using the Dazuko [8]
module to intercept system calls in Linux.

An argument can be made that on-access scanning
offers more protection than periodic scanning or manual-
triggered scanning. However, on-access scanning places
an even higher demand on scanner speed. Hash-AV is
particularly well suited for on-access scanning mode,
since its overhead on “clean” data is quite low.

We implemented two approaches for on-access scan-
ning of Hash-AV on Linux. The first approach uses
Dazuko [8] to pass open/close/exec system calls to
Hash-AV+Clam-AV. The second approach implements
a wrapper around the glibc read(), write(), send() and
recv() code to pass the data to Hash-AV+Clam-AV for
scanning. Certain applications, like programs that use
network interfaces, often need scanning on the fly, that
is, when reading from or writing to a socket. The
second approach can easily provide scanning for these
applications.

Below, we first describe the implementation of the
second approach, then present performance results com-
paring the overhead of all approaches.

A. AV Scanning By Intercepting glibc Calls

Our implementation of read/write/send/recv glibc calls
feed the data to the scanner first before calling the actual
glibc implementation of these system calls. Currently,
the implementation is focused on network stream data,
and does not yet handle read/write at arbitrary offsets
in a file. Reading/writing at arbitrary offsets are best
handled by a whole-file scan at file open/close time.
The implementation is packaged as a dynamically linked
library libcav.so, and applications can simply link with

this library 4 to use the virus-scanning version of the
glibc calls.

When used in on-access scanning mode, Hash-
AV+Clam-AV keeps state across invocations. After
Hash-AV scans the buffer, if the ClamAV exact-match
code is invoked and reaches the end of buffer with a
partially scanned pattern, that pattern is saved along with
the offset. Upon the next invocation, the Hash-AV code
first checks if the saved patterns now have a complete
match or an extended partial match. If an extended partial
match occurs, the pattern is saved around. With large
enough reads, the cost of saving and processing the state
is negligible.

Concerned about the complexity and reliability of
Hash-AV+Clam-AV code, we also implemented a vari-
ation where libcav.so is separated from the scanner. A
user-level daemon runs the scanner code, and applica-
tions linked with libcav.so pass the data to the scanner
daemon through shared memory. If the scanner crashes
for some reason (for example, a bug, unexpected input,
etc.), libcav.so will give up waiting for the scan after a
while, and will continue on with normal read/write calls.
The cost of this approach is the extra memory copy of
the buffer.

B. Performance Results

We compare the performance overhead of the different
approaches to embedded scanning by issuing reads of
the sample 80MB executable file used in previous tests.
Table 3 shows the performance cost associated with each
one of these approaches.

Applied Method Performance
(MB/s)

Command Line Scanning 27.19
Intercepting open/close/exec

at the kernel 26.85
Wrapping around read/write

glibc calls 21.53
Wrapping glibc calls: talking
to scanner via shared mem. 20.98

4In Linux systems, when a program with a reference to a shared
library is compiled, only the name of the function is recorded.
At load time, the dynamic loader fixes up the references to these
functions. Since C allows multiple definitions of a function, to
intercept read/write calls, it suffices to write a new shared library
with the same declarations. The calls to glibc’s read/write can be
made by either using each function’s secondary definition in glibc
or by making calls to dlsym() when a secondary definition doesn’t
exist. Finally, by setting the LD PRELOAD environment variable to
libcav.so, we make sure that the loader first looks for the Hash-AV
wrapped versions of these read/write functions. If the user decides to
stop AV scanning, he just needs to unset LD PRELOAD [17].

11

The first row is how fast pure scanning performs on
the file. The second row is the throughput of intercepting
open() via Dazuko and scanning the file following the
call. The throughput change is due to the overhead
of intercepting the call and passing it to a user level
program. The third row shows the results of reading
the executable in chunks of 4 MBs, with each read call
issued to libcav.so. The throughput change is due to the
repeated calls of the scanner code, and state processing
code upon each call. The last row is the approach where
libcav.so communicates with the scanner code via shared
memory.

In comparison, file reads without scanning can per-
form over 200MB/s if the file data reside in the buffer
cache (i.e. memory-resident), but would be limited to
disk throughput if the file data are not memory-resident.
While on-access scanning is much slower than memory-
resident file reads or writes, it can be combined with file
system implementations, for example, avfs [25], to avoid
impacting application performance.

On the other hand, the above scanning speed is
faster than 100baseT Ethernet, therefore we expect that
attaching virus scanning to socket reads and writes would
not affect application performances on desktops using
100baseT NICs. We confirm our expectation by linking
wget application with libcav.so, and measuring the speed
of fetching files between machines.

When using wget to transfer the 80MB merged exe-
cutable file between two computers connected by a 100
Mbit switch, wget without virus scanning took 8704
milli-seconds, and wget with virus scanning took 10453
milli-seconds. Approximately 470 ms of the overhead
comes from the initialization time of ClamAV and
HashAV’s data structures. The rest of the slow down
is mainly due to state saving and restoring between
consecutive reads that happen in chunks of 8 KB in wget.

A similar performance test for transferring HTML
documents lead to much better results primarily because
of the decrease in state saving. The transfer time for
a sample 99 MB HTML document was 10021 milli-
seconds for raw data transfer, and 10660 milli-seconds
for transfer with AV scanning.

In summary, Hash-AV+Clam-AV is well suited for on-
access scanning of network transfers in today’s 100baseT
LAN environment, and can be used as a component
in a file system on-access scanning implementation.
Implementing the scanner as a daemon to communicate
with applications appears to work well.

VII. RELATED WORK

Multi-string pattern matching algorithms is a well-
studied topic with applications in many domains [13]. In

the networking area, the two prominent applications are
IDS (Intrusion Detection Systems) and virus scanners.
Recently, several innovations have been proposed for
pattern matching in IDS, for example, hardware-based
parallel bloom filters [19], and novel compression tech-
niques to reduce memory requirements of IDS and im-
prove hardware implementation performance [15]. How-
ever, these studies have not looked into virus scanning
applications, which are quite different from IDS systems,
as discussed in Section II-B.1.

Our focus on virus scanning applications and software
implementation distinguishes our study from the above
efforts. Virus scanning applications are commonly host-
based, as opposed to IDS systems which are commonly
network-based. As a result, software implementations
running on generic processors are more appropriate for
virus scanners than hardware implementations. Software
implementation is different from hardware implementa-
tion due to serial applications of hash functions, stringent
requirements on the CPU cost of a hash function, and
the performance impact of good cache locality. As a
result, design choices for software implementation are
quite different from those of hardware implementations.

Recently, there have been renewed focus on improv-
ing the scalability of Clam-AV by increasing the trie
depth [6], [25]. In addition, the Avfs paper [25] provides
an excellent study of the issues involved in integrat-
ing virus scanners in file system implementation. The
techniques described in these studies are complementary
to Hash-AV, and the techniques should be combined
together to further improve Clam-AV performance.

Because of their importance, there have been constant
improvements on multi-string matching algorithms and
their variations. Hash-AV is a “booster” technique that is
independent of the underlying string matching algorithm,
and can be combined with any improved matching algo-
rithm. The benefit of Hash-AV is in quickly determining
no-match cases in a CPU cache-friendly manner, and
Hash-AV is beneficial to any systems where the no-match
cases are the vast majority.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that, through judicious
use of the CPU cache, Hash-AV can improve the per-
formance of the open-source virus scanner Clam-AV by
an order of magnitude. By using cache-resident bloom
filters, Hash-AV determines the vast majority of the
“no-match” cases with no main memory accesses. By
using cheap hash functions whose computational costs
are easily hidden by memory access delays, Hash-AV
can potentially scan inputs at a third of memory copy

12

speeds. Since the speed gap between CPU computations
and random memory accesses continues to increase,
we expect Hash-AV to become more critical for virus
scanning performance.

Our study of Hash-AV’s design choices show the
surprising effectiveness of very cheap functions such as
“mask”. While in ordinary circumstances “mask” would
not be considered as a “hash” function, it can be used
as a first hash function in situations where the “hash and
lookup” operations are performed serially. Though our
choice of the “mask” function might be specific to virus
signatures, we believe that in any application where the
“no-match” cases are the majority, one can find a very
cheap operation that eliminates a significant portion of
the input data. This operation can then be used as a first
hash function in the Hash-AV technique.

For future work, we plan to improve polymorphic
virus detection in Clam-AV. Currently, Clam-AV relies
on multi-part signatures for polymorphic viruses, which
are not handled by Hash-AV. We plan to look into
cache-friendly techniques to speed up matching of those
multi-part signatures. We also plan to investigate efficient
emulation engines for polymorphic virus detection. For
example, one possibility for efficient emulation engine
would be through uses of virtual machine technologies.

Finally, we will look into applications of Hash-AV to
other large-signature-set pattern matching applications,
for example, certain information retrieval and anti-spam
applications. The configurations of Hash-AV are likely
to be different in those applications, and new capabili-
ties such as handling “do-not-care” characters might be
needed as well.

REFERENCES

[1] AGN. Agn anti-virus test center antivirus scanner tests april
2003. In http://agn-www.informatik.uni-hamburg.de/vtc/, Apr.
2003.

[2] A. V. Aho and M. J. Corasick. Efficient string matching:
An aid to bibliographic search. Communications of the ACM,
18(6):333–340, 1975.

[3] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10), 1977.

[4] A. Broder and M. Mitzenmacher. Network applications
of bloom filters: A survey. In Allerton 2002, page
http://www.eecs.harvard.edu/m̃ichaelm/NEWWORK/papers.html,
2002.

[5] Cisco. Network-based application recognition and
distributed network-based application recognition. In
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios122/122newft/122t/122t8/dtnbarad.htm, 2004.

[6] M. Dounin. Clamav developer forum. In
http://sourceforge.net/mailarchive/forum.php?forum=clamav-
devel, June 2004.

[7] J. S. Gardner. Pc motherboard technology. In
http://www.extremetech.com/article2/0,1558,1148755,00.asp,
June 2001.

[8] H. D. GmbH. Dazuko. In http://www.dazuko.org, 2004.
[9] GNU. hashlib.c – functions to man-

age and access hash tables for bash. In
http://www.opensource.apple.com/darwinsource/10.3/bash-
29/bash/hashlib.c, 1991.

[10] J. O. Kephart and W. C. Arnold. Automatic extraction of
computer virus signatures. In Proceedings of the 4th Virus
Bulletin International Conference, pages 178–184, 1994.

[11] T. Kojm. Clamav. In http://www.clamav.net, 2004.
[12] J. A. L. Fan, P. Cao and A. Broder. Summary cache: A scalable

wide-area web cache sharing protocol. In Proceedings of the
1998 ACM SIGCOMM Conference, Sept. 1998.

[13] S. Lonardi. Pattern matching pointers. In
http://www.cs.ucr.edu/ stelo/pattern.html, 2004.

[14] Microsoft. What you should know about download.ject. In
http://www.microsoft.com/security/incident/download ject.mspx,
June 2004.

[15] B. C. Nathan Tuck, Timothy Sherwood and G. Varghese.
Deterministic memory-efficient string matching algorithms for
intrusion detection. In Proceedings of the 2004 IEEE Infocom
Conference, Mar. 2004.

[16] L. C. Noll. Fowler/noll/vo (fnv) hash. In
http://www.isthe.com/chongo/tech/comp/fnv/, 2004.

[17] N. S. P. Broadwell and J. Traupman. Fig: A prototype tool for
online verification of recovery mechanisms. In Workshop on
Self-Healing, Adaptive and Self-MANaged Systems (SHAMAN),
June 2002.

[18] M. Roesch. Snort: Network intrusion detection system. In
http://www.snort.org, 2004.

[19] T. S. Sarang Dharmapurikar, Praveen Krishnamurthy and
J. Lockwood. Deep packet inspection using parallel bloom
filters. In Proceedings of the 11th Symposium on High Per-
formance Internconnects, Aug. 2003.

[20] Scalabium. Elf hash algorithm. In
http://www.scalabium.com/faq/dct0136.htm, 2004.

[21] J. Seward. Cachegrind: A cache miss profiler. In
http://developer.kde.org/s̃ewardj/docs-2.0.0/cg main.html, 2004.

[22] F. Skulason. The evolution of polymorphic viruses. In
http://vx.netlux.org/lib/static/vdat/polyevol.htm, 2004.

[23] SourceFire. Snort 2.0 high-performance
multi-rule inspection engine. In
http://www.sourcefire.com/whitepapers/sf snort20 HPMRIE.pdf,
Apr. 2004.

[24] S. Wu and U. Manber. A fast algorithm for multi-pattern
searching. Technical Report TR-94-17, University of Arizona,
1994.

[25] C. P. W. Y. Miretskiy, A. Das and E. Zadok. Avfs: An on-access
anti-virus file system. In Proceedings of the 13th USENIX
Security Symposium, Aug. 2004.

[26] O. Yigit. sdbm - substitute dbm. In
http://search.cpan.org/src/NWCLARK/perl-
5.8.4/ext/SDBM File/sdbm, 1990.

[27] O. Yigit. Hash functions. In
http://www.cs.yorku.ca/ oz/hash.html, 2004.

