Message integrity

Message Auth. Codes
Message Integrity

Goal: integrity, no confidentiality.

Examples:

– Protecting public binaries on disk.
– Protecting banner ads on web pages.
Message integrity: MACs

Def: **MAC** $I = (S,V)$ defined over (K,M,T) is a pair of algs:

- $S(k,m)$ outputs t in T
- $V(k,m,t)$ outputs `yes' or `no'

Generate tag:

$\text{tag} \leftarrow S(k,m)$

Verify tag:

$V(k,m,\text{tag}) = \text{`yes'}$
Integrity requires a secret key

- Attacker can easily modify message m and re-compute CRC.
- CRC designed to detect **random**, not malicious errors.
Secure MACs

Attacker’s power: \textbf{chosen message attack}

- for \(m_1, m_2, \ldots, m_q\) attacker is given \(t_i \leftarrow S(k, m_i)\)

Attacker’s goal: \textbf{existential forgery}

- produce some \textbf{new} valid message/tag pair \((m, t)\).

\[(m, t) \notin \{(m_1, t_1), \ldots, (m_q, t_q)\}\]

\(\Rightarrow\) attacker cannot produce a valid tag for a new message

\(\Rightarrow\) given \((m, t)\) attacker cannot even produce \((m, t')\) for \(t' \neq t\)
Secure MACs

- For a MAC $I=(S,V)$ and adv. A define a MAC game as:

 - $Chal.$
 - $k \leftarrow K$
 - $Adv.$
 - $m_1 \in M$
 - m_2, \ldots, m_q
 - $t_1 \leftarrow S(k,m_1)$
 - t_2, \ldots, t_q
 - (m,t)

 - $b=1$ if $V(k,m,t) = \text{`yes’}$ and $(m,t) \not\in \{(m_1,t_1), \ldots, (m_q,t_q)\}$
 - $b=0$ otherwise

Def: $I=(S,V)$ is a **secure MAC** if for all “efficient” A:

$$\text{Adv}_{MAC}[A,I] = \Pr[\text{Chal. outputs 1}]$$

is “negligible.”
Let $I = (S,V)$ be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$S(k, m_0) = S(k, m_1) \text{ for } \frac{1}{2} \text{ of the keys } k \text{ in } K$$

Can this MAC be secure?

- Yes, the attacker cannot generate a valid tag for m_0 or m_1
- \Rightarrow No, this MAC can be broken using a chosen msg attack
- It depends on the details of the MAC

$$\text{Adv}[A, I] = \frac{1}{2}$$
Let $I = (S,V)$ be a MAC.

Suppose $S(k,m)$ is always 5 bits long.

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
- It depends on the details of the MAC
- Yes, the attacker cannot generate a valid tag for any message

$$\text{Adv}_{\text{MAC}}[A,I] = \frac{1}{2^32}$$
Example: protecting system files

Suppose at install time the system computes:

\[
\begin{align*}
F_1 & = S(k, F_1) \\
F_2 & = S(k, F_2) \\
& \vdots \\
F_n & = S(k, F_n)
\end{align*}
\]

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

– Then: secure MAC \implies all modified files will be detected
End of Segment
Message Integrity

MACs based on PRFs
Review: Secure MACs

MAC: signing alg. \(S(k,m) \rightarrow t \) and verification alg. \(V(k,m,t) \rightarrow 0,1 \)

Attacker’s power: chosen message attack
• for \(m_1, m_2, \ldots, m_q \) attacker is given \(t_i \leftarrow S(k,m_i) \)

Attacker’s goal: existential forgery
• produce some new valid message/tag pair \((m,t) \).

\[(m,t) \notin \{ (m_1,t_1), \ldots, (m_q,t_q) \} \]

\(\Rightarrow \) attacker cannot produce a valid tag for a new message
Secure PRF \Rightarrow Secure MAC

For a PRF $F: K \times X \rightarrow Y$ define a MAC $I_F = (S,V)$ as:

- $S(k,m) := F(k,m)$
- $V(k,m,t):$ output `yes’ if $t = F(k,m)$ and `no’ otherwise.

Alice

message m

tag

Bob

tag $\leftarrow F(k,m)$

accept msg if $tag = F(k,m)$
A bad example

Suppose \(F: K \times X \rightarrow Y \) is a secure PRF with \(Y = \{0,1\}^{10} \)

Is the derived MAC \(I_F \) a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
- It depends on the function \(F \)

\[A_{hv}(A,I_F) = \frac{1}{1024} \]
Security

Thm: If $F: K \times X \rightarrow Y$ is a secure PRF and $1/|Y|$ is negligible (i.e. $|Y|$ is large) then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F there exists an eff. PRF adversary B attacking F s.t.:

$$\text{Adv}_{\text{MAC}}[A, I_F] \leq \text{Adv}_{\text{PRF}}[B, F] + 1/|Y|$$

$\Rightarrow I_F$ is secure as long as $|Y|$ is large, say $|Y| = 2^{80}$.
Proof Sketch

Suppose $f : X \rightarrow Y$ is a truly random function.

Then MAC adversary A must win the following game:

A wins if $t = f(m)$ and $m \notin \{m_1, \ldots, m_q\}$

$\Rightarrow \quad \Pr[A\ wins] = 1/|Y|$

same must hold for $F(k,x)$
Examples

• AES: a MAC for 16-byte messages.

• Main question: how to convert Small-MAC into a Big-MAC?

• Two main constructions used in practice:
 – CBC-MAC (banking – ANSI X9.9, X9.19, FIPS 186-3)
 – HMAC (Internet protocols: SSL, IPsec, SSH, ...)

• Both convert a small-PRF into a big-PRF.
Truncating MACs based on PRFs

Easy lemma: Suppose $F: K \times X \rightarrow \{0,1\}^n$ is a secure PRF.

Then so is $F_t(k,m) = F(k,m)[1\ldots t]$ for all $1 \leq t \leq n$

\Rightarrow if (S,V) is a MAC is based on a secure PRF outputting n-bit tags

the truncated MAC outputting w bits is secure

... as long as $1/2^w$ is still negligible (say $w \geq 64$)
End of Segment
Message Integrity

CBC-MAC and NMAC
MACs and PRFs

Recall: secure PRF $F \Rightarrow$ secure MAC, as long as $|Y|$ is large

$S(k, m) = F(k, m)$

Our goal:

given a PRF for short messages (AES)

construct a PRF for long messages

From here on let $X = \{0,1\}^n$ (e.g. $n=128$)
Construction 1: encrypted CBC-MAC

Let $F: K \times X \rightarrow X$ be a PRP

Define new PRF $F_{ECBC}: K^2 \times X^{\leq L} \rightarrow X$
Let $F: K \times X \rightarrow K$ be a PRF

Define new PRF $F_{\text{NMAC}}: K^2 \times X^{\leq L} \rightarrow K$
Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC \(I = (S,V) \) where

\[
S(k,m) = \text{cascade}(k, m)
\]

- This MAC is secure
- This MAC can be forged without any chosen msg queries
- This MAC can be forged with one chosen msg query
- This MAC can be forged, but only with two msg queries

\[
\text{cascade}(k,m) \rightarrow \text{cascade}(k,m||w) \quad \text{for any} \ w
\]
Why the last encryption step in ECBC-MAC?

Suppose we define a MAC \(I_{\text{RAW}} = (S,V) \) where

\[S(k,m) = \text{rawCBC}(k,m) \]

Then \(I_{\text{RAW}} \) is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message \(m \in X \)
- Request tag for \(m \). Get \(t = F(k,m) \)
- Output \(t \) as MAC forgery for the 2-block message \((m, t \oplus m)\)

Indeed: \[\text{rawCBC}(k, (m, t \oplus m)) = F(k, F(k,m) \oplus (t \oplus m)) = F(k, t \oplus (t \oplus m)) = t \]
ECBC-MAC and NMAC analysis

Theorem: For any $L > 0$, for every efficient q-query PRF adversary A attacking F_{ECBC} or F_{NMAC}, there exists an efficient adversary B s.t.:

$$\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2q^2 / |X|$$

$$\text{Adv}_{\text{PRF}}[A, F_{\text{NMAC}}] \leq q \cdot L \cdot \text{Adv}_{\text{PRF}}[B, F] + q^2 / 2|K|$$

CBC-MAC is secure as long as $q \ll |X|^{1/2}$

NMAC is secure as long as $q \ll |K|^{1/2}$ \hspace{1cm} (2^{64} for AES-128)
An example

\[\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] + 2q^2 / |X| \]

\(q = \# \text{ messages MAC-ed with } k \)

Suppose we want \(\text{Adv}_{\text{PRF}}[A, F_{\text{ECBC}}] \leq 1/2^{32} \) \(\iff \) \(q^2 / |X| < 1/2^{32} \)

- AES: \(|X| = 2^{128} \) \(\Rightarrow \) \(q < 2^{48} \)

 So, after \(2^{48} \) messages must, must change key

- 3DES: \(|X| = 2^{64} \) \(\Rightarrow \) \(q < 2^{16} \)
The security bounds are tight: an attack

After signing $|X|^{1/2}$ messages with ECBC-MAC or $|K|^{1/2}$ messages with NMAC, the MACs become insecure.

Suppose the underlying PRF F is a PRP (e.g. AES),

- Then both PRFs (ECBC and NMAC) have the following extension property:

$$\forall x,y,w:\ \ F_{\text{BIG}}(k,x) = F_{\text{BIG}}(k,y) \ \Rightarrow \ \ F_{\text{BIG}}(k, xlyw) = F_{\text{BIG}}(k, ylyw)$$
The security bounds are tight: an attack

Let \(F_{\text{BIG}} : K \times X \to Y \) be a PRF that has the extension property

\[
F_{\text{BIG}}(k, x) = F_{\text{BIG}}(k, y) \implies F_{\text{BIG}}(k, xllw) = F_{\text{BIG}}(k, yllw)
\]

Generic attack on the derived MAC:

1. issue \(|Y|^{1/2}\) message queries for rand. messages in \(X\).

 obtain \((m_i, t_i)\) for \(i = 1, \ldots, |Y|^{1/2}\)

2. find a collision \(t_u = t_v\) for \(u \neq v\) (one exists w.h.p by b-day paradox)

3. choose some \(w\) and query for \(t := F_{\text{BIG}}(k, m_ullw)\)

4. output forgery \((m_ullw, t)\). Indeed \(t := F_{\text{BIG}}(k, m_ullw)\)
Better security: a rand. construction

Let $F: K \times X \rightarrow X$ be a PRF. Result: MAC with tags in X^2.

Security: $\text{Adv}_{\text{MAC}}[A, I_{\text{RCBC}}] \leq \text{Adv}_{\text{PRP}}[B, F] \cdot (1 + 2 \frac{q^2}{|X|})$

\Rightarrow For 3DES: can sign $q=2^{32}$ msgs with one key
Comparison

ECBC-MAC is commonly used as an AES-based MAC
- CCM encryption mode (used in 802.11i)
- NIST standard called CMAC

NMAC not usually used with AES or 3DES
- Main reason: need to change AES key on every block requires re-computing AES key expansion
- But NMAC is the basis for a popular MAC called HMAC (next)
End of Segment
Message Integrity

MAC padding
Recall: ECBC-MAC

Let $F: K \times X \rightarrow X$ be a PRP

Define new PRF $F_{ECBC}: K^2 \times X^{\leq L} \rightarrow X$
What if msg. len. is not multiple of block-size?

\[
F(k, \cdot) \oplus F(k, \cdot) \oplus F(k, \cdot) \oplus F(k, \cdot) \oplus F(k_1, \cdot) = \text{tag}
\]
CBC MAC padding

Bad idea: pad m with 0’s

| $m[0]$ | $m[1]$ | $m[0]$ | $m[1]$ | 0000 |

Is the resulting MAC secure?

- Yes, the MAC is secure
- It depends on the underlying MAC
- No, given tag on msg m attacker obtains tag on $m||0$

Problem: $\text{pad}(m) = \text{pad}(m||0)$
CBC MAC padding

For security, padding must be invertible!

\[m_0 \neq m_1 \implies \text{pad}(m_0) \neq \text{pad}(m_1) \]

ISO: pad with “1000…00”. Add new dummy block if needed.

– The “1” indicates beginning of pad.
CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k₁, k₂)

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k₁ or k₂)
End of Segment
Message Integrity

PMAC and Carter-Wegman MAC
• ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small PRF ??
Construction 3: PMAC – parallel MAC

P(k, i): an easy to compute function

key = (k, k₁)

Padding similar to CMAC

Let \(F: K \times X \rightarrow X \) be a PRF

Define new PRF \(F_{\text{PMAC}}: K^2 \times X^{\leq L} \rightarrow X \)
PMAC: Analysis

PMAC Theorem: For any $L > 0$,
If F is a secure PRF over (K, X, X) then
F_{PMAC} is a secure PRF over $(K, X \leq L, X)$.

For every eff. q-query PRF adv. A attacking F_{PMAC}
there exists an eff. PRF adversary B s.t.:

$$\text{Adv}_{\text{PRF}}[A, F_{\text{PMAC}}] \leq \text{Adv}_{\text{PRF}}[B, F] + 2q^2 L^2 / |X|$$

PMAC is secure as long as $qL \ll |X|^{1/2}$
PMAC is incremental

Suppose F is a PRP.

When $m[1] \rightarrow m'[1]$ can we quickly update tag?

- no, it can’t be done
- do $F^{-1}(k_1, \text{tag}) \oplus F(k_1, m'[1] \oplus P(k,1))$
- do $F^{-1}(k_1, \text{tag}) \oplus F(k_1, m[1] \oplus P(k,1)) \oplus F(k_1, m'[1] \oplus P(k,1))$
- do tag $\oplus F(k_1, m[1] \oplus P(k,1)) \oplus F(k_1, m'[1] \oplus P(k,1))$

Then apply $F(k_1, \cdot)$
One time MAC (analog of one time pad)

• For a MAC I=(S,V) and adv. A define a MAC game as:

\[
\begin{align*}
\text{Chal.} & \quad k \leftarrow K \\
& \quad m_1 \in M \\
& \quad t_1 \leftarrow S(k, m_1) \\
& \quad (m, t) \\
\text{Adv.} & \quad b
\end{align*}
\]

\[
\begin{cases}
 b=1 & \text{if } V(k, m, t) = \text{`yes’} \text{ and } (m, t) \neq (m_1, t_1) \\
 b=0 & \text{otherwise}
\end{cases}
\]

Def: I=(S,V) is a **secure MAC** if for all “efficient” A:

\[
\text{Adv}_{1MAC}[A, I] = \Pr[\text{Chal. outputs 1}] \text{ is “negligible.”}
\]
One-time MAC: an example

Can be secure against all adversaries and faster than PRF-based MACs

Let q be a large prime (e.g. $q = 2^{128} + 51$)

(key = $(a, b) \in \{1, \ldots, q\}^2$) (two random ints. in $[1, q]$)

$\text{msg} = (m[1], \ldots, m[L])$ where each block is 128 bit int.

$$S(\text{key}, \text{msg}) = P_{\text{msg}}(a) + b \pmod q$$

where $P_{\text{msg}}(x) = x^{L+1} + m[L] \cdot x^L + \ldots + m[1] \cdot x$ is a poly. of deg $L+1$

We show: given $S(\text{key}, \text{msg}_1)$ adv. has no info about $S(\text{key}, \text{msg}_2)$
One-time security (unconditional)

Thm: the one-time MAC on the previous slide satisfies
\((L=\text{msg-len}) \)

\[\forall m_1 \neq m_2, t_1, t_2: \quad \Pr_{a,b}\left[S((a,b), m_1) = t_1 \mid S((a,b), m_2) = t_2 \right] \leq \frac{L}{q} \]

Proof: \(\forall m_1 \neq m_2, t_1, t_2: \)

1. \[\Pr_{a,b}\left[S((a,b), m_2) = t_2 \right] = \Pr_{a,b}\left[P_{m_2}(a)+b=t_2 \right] = \frac{1}{q} \]

2. \[\Pr_{a,b}\left[S((a,b), m_1) = t_1 \text{ and } S((a,b), m_2) = t_2 \right] = \]
\[\Pr_{a,b}\left[P_{m_1}(a)-P_{m_2}(a)=t_1-t_2 \text{ and } P_{m_2}(a)+b=t_2 \right] \leq \frac{L}{q^2} \]

\[\Rightarrow \quad \text{given valid } (m_2,t_2), \text{ adv. outputs } (m_1,t_1) \text{ and is right with prob. } \leq \frac{L}{q} \]
One-time MAC ⇒ Many-time MAC

Let \((S,V)\) be a secure one-time MAC over \((K_1,M,\{0,1\}^n)\).

Let \(F: K_F \times \{0,1\}^n \rightarrow \{0,1\}^n\) be a secure PRF.

Carter-Wegman MAC: \[CW((k_1, k_2), m) = (r, F(k_1, r) \oplus S(k_2, m)) \]

for random \(r \leftarrow \{0,1\}^n\).

Thm: If \((S,V)\) is a secure **one-time** MAC and \(F\) a secure PRF then \(CW\) is a secure MAC outputting tags in \(\{0,1\}^{2n}\).
How would you verify a CW tag \((r, t)\) on message \(m\)?

Recall that \(V(k_2,m,)\) is the verification alg. for the one time MAC.

- Run \(V(k_2, m, F(k_1, t) \oplus r)\)
- Run \(V(k_2, m, r)\)
- Run \(V(k_2, m, t)\)
- Run \(V(k_2, m, F(k_1, r) \oplus t)\)
Construction 4: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.
Further reading

• K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179

• J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. EUROCRYPT 2002: 384-397

• Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219
End of Segment