Collision resistance

Introduction
Recap: message integrity

So far, four MAC constructions:

- **ECBC-MAC, CMAC**: commonly used with AES (e.g. 802.11i)
- **NMAC**: basis of HMAC (this segment)
- **PMAC**: a parallel MAC
- **Carter-Wegman MAC**: built from a fast one-time MAC

This module: MACs from collision resistance.
Collision Resistance

Let \(H : M \rightarrow T \) be a hash function \((|M| >> |T|) \)

A collision for \(H \) is a pair \(m_0, m_1 \in M \) such that:
\[
H(m_0) = H(m_1) \quad \text{and} \quad m_0 \neq m_1
\]

A function \(H \) is collision resistant if for all (explicit) “eff” algs. \(A \):
\[
\text{Adv}_{\text{CR}}[A,H] = \Pr[A \text{ outputs collision for } H]
\]
is “neg”.

Example: SHA-256 (outputs 256 bits)
MACs from Collision Resistance

Let $I = (S, V)$ be a MAC for short messages over (K, M, T) (e.g. AES)

Let $H: M^{\text{big}} \rightarrow M$

Def: $I^{\text{big}} = (S^{\text{big}}, V^{\text{big}})$ over (K, M^{big}, T) as:

$$S^{\text{big}}(k, m) = S(k, H(m)) ; \quad V^{\text{big}}(k, m, t) = V(k, H(m), t)$$

Thm: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k, m) = \text{AES}_{2\text{-block-cbc}}(k, \text{SHA-256}(m))$ is a secure MAC.
MACs from Collision Resistance

\[S_{\text{big}}(k, m) = S(k, H(m)) \quad ; \quad V_{\text{big}}(k, m, t) = V(k, H(m), t) \]

Collision resistance is necessary for security:

Suppose adversary can find \(m_0 \neq m_1 \) s.t. \(H(m_0) = H(m_1) \).

Then: \(S_{\text{big}} \) is insecure under a 1-chosen msg attack

step 1: adversary asks for \(t \leftarrow S(k, m_0) \)
step 2: output \((m_1, t) \) as forgery
Protecting file integrity using C.R. hash

Software packages:

\[
\begin{align*}
&F_1 & F_2 & \cdots & F_n \\
&H(F_1) & H(F_2) & \cdots & H(F_n)
\end{align*}
\]

When user downloads package, can verify that contents are valid

H collision resistant ⇒
attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space
End of Segment
Collision resistance

Generic birthday attack
Generic attack on C.R. functions

Let \(H : M \rightarrow \{0,1\}^n \) be a hash function \((|M| >> 2^n)\)

Generic alg. to find a collision in time \(O(2^{n/2})\) hashes

Algorithm:
1. Choose \(2^{n/2}\) random messages in \(M\): \(m_1, \ldots, m_{2^{n/2}}\) (distinct w.h.p.)
2. For \(i = 1, \ldots, 2^{n/2}\) compute \(t_i = H(m_i) \in \{0,1\}^n\)
3. Look for a collision \((t_i = t_j)\). If not found, got back to step 1.

How well will this work?
The birthday paradox

Let $r_1, \ldots, r_n \in \{1, \ldots, B\}$ be indep. identically distributed integers.

Thm: when $n = 1.2 \times B^{1/2}$ then $\Pr[\exists i \neq j: r_i = r_j] \geq \frac{1}{2}$

Proof: (for uniform indep. r_1, \ldots, r_n)

\[
\Pr[\exists i \neq j: r_i = r_j] = 1 - \Pr[\forall i \neq j: r_i \neq r_j] = 1 - \left(\frac{B-1}{B} \right) \left(\frac{B-2}{B} \right) \cdots \left(\frac{B-n+1}{B} \right) = \\
= 1 - \frac{n-1}{2} \left(1 - \frac{1}{B} \right) = 1 - \frac{n-1}{2} e^{-\frac{n}{B}} = 1 - e^{-\frac{n}{2B}} \geq 1 - e^{-0.72} = 0.53 > \frac{1}{2}
\]
$B = 10^6$
Generic attack

H: M → \{0,1\}^n . Collision finding algorithm:
1. Choose \(2^{n/2}\) random elements in M: \(m_1, \ldots, m_{2^{n/2}}\)
2. For \(i = 1, \ldots, 2^{n/2}\) compute \(t_i = H(m_i) \in \{0,1\}^n\)
3. Look for a collision \((t_i = t_j)\). If not found, got back to step 1.

Expected number of iteration \(\approx 2\)

Running time: \(O(2^{n/2})\) (space \(O(2^{n/2})\))
Sample C.R. hash functions:

<table>
<thead>
<tr>
<th>NIST standards function</th>
<th>digest size (bits)</th>
<th>Speed (MB/sec)</th>
<th>generic attack time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>160</td>
<td>153</td>
<td>2^{80}</td>
</tr>
<tr>
<td>SHA-256</td>
<td>256</td>
<td>111</td>
<td>2^{128}</td>
</tr>
<tr>
<td>SHA-512</td>
<td>512</td>
<td>99</td>
<td>2^{256}</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>512</td>
<td>57</td>
<td>2^{256}</td>
</tr>
</tbody>
</table>

* best known collision finder for SHA-1 requires 2^{51} hash evaluations
Quantum Collision Finder

| Block cipher $E: K \times X \rightarrow X$ | Classical algorithms | $O(|K|)$ | Quantum algorithms | $O(|K|^{1/2})$ |
|--|----------------------|---------|--------------------|----------------|
| exhaustive search | | | | |

| Hash function $H: M \rightarrow T$ | Classical algorithms | $O(|T|^{1/2})$ | Quantum algorithms | $O(|T|^{1/3})$ |
|-----------------------------------|----------------------|---------|--------------------|----------------|
| collision finder | | | | |
End of Segment
Collision resistance

The Merkle-Damgard Paradigm
Collision resistance: review

Let $H: M \rightarrow T$ be a hash function ($|M| >> |T|$)

A collision for H is a pair $m_0, m_1 \in M$ such that:

$$H(m_0) = H(m_1) \text{ and } m_0 \neq m_1$$

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for short messages, construct C.R. function for long messages
The Merkle-Damgard iterated construction

Given $h : T \times X \rightarrow T$ (compression function)

we obtain $H : X^{\leq L} \rightarrow T$.

H_i - chaining variables

PB: padding block

If no space for PB
add another block

$H(m)$
MD collision resistance

Thm: if \(h \) is collision resistant then so is \(H \).

Proof: collision on \(H \) \(\Rightarrow \) collision on \(h \)

Suppose \(H(M) = H(M') \). We build collision for \(h \).

\[
\begin{align*}
IV &= H_0, \ H_1, \ldots, \ H_t, \ H_{t+1} = H(M) \\
IV &= H_0', \ H_1', \ldots, \ H'_r, \ H'_{r+1} = H(M')
\end{align*}
\]

\[
h(H_t, M_t \parallel PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r \parallel PB')
\]

\[
\begin{cases}
\text{IF} & \left[H'_t \neq H'_r \text{ or } M'_t \neq M'_r \text{ or } PB \neq PB' \right] \\
\Rightarrow & \text{we have a collision on } h.
\end{cases}
\]

STOP
Suppose \(H_t = H'_t \) and \(M_t = M'_t \) and \(PB = PB' \)

Then:

\[
\begin{align*}
\text{If} & \quad \left[\begin{array}{c}
H_{t-1} \neq H'_{t-1} \\
\text{or} \\
M_{t-1} \neq M'_{t-1}
\end{array} \right] \\
\text{then we have a collision on } h. \text{ Stop.}
\end{align*}
\]

Otherwise, \(H_{t-1} = H'_{t-1} \) and \(M_t = M'_t \) and \(M_{t-1} = M'_{t-1} \).

Iterate all the way to beginning and either:

1. **Find collision on } h. \text{ or**
2. \(\forall i \), \(M_i = M'_i \) \(\Rightarrow M = M' \) \(\leftarrow \text{ cannot happen because } M_i, M'_i \text{ are collision on } H. \)**
⇒ To construct C.R. function, suffices to construct compression function

End of Segment
Collision resistance

Constructing Compression Functions
The Merkle-Damgard iterated construction

Thm: \(h \) collision resistant \(\Rightarrow \) \(H \) collision resistant

Goal: construct compression function \(h : T \times X \rightarrow T \)
Compr. func. from a block cipher

E: $K \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher.

The **Davies-Meyer** compression function: $h(H, m) = E(m, H) \oplus H$

Thm: Suppose E is an ideal cipher (collection of $|K|$ random perms.). Finding a collision $h(H,m)=h(H',m')$ takes $O(2^{n/2})$ evaluations of (E,D).

Best possible !!!
Suppose we define \(h(H, m) = E(m, H) \)

Then the resulting \(h(.,.) \) is not collision resistant:

- to build a collision \((H,m)\) and \((H',m')\)
- choose random \((H,m,m')\) and construct \(H'\) as follows:

 - \(H' = D(m', E(m,H)) \)
 - \(E(m', H') = E(m,H) \)
 - \(H' = E(m', D(m,H)) \)
 - \(H' = E(m', E(m,H)) \)
 - \(H' = D(m', D(m,H)) \)
Other block cipher constructions

Let $E: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ for simplicity

Miyaguchi-Preneel: $h(H, m) = E(m, H) \oplus H \oplus m$ \quad (Whirlpool)

$h(H, m) = E(H \oplus m, m) \oplus m$

total of 12 variants like this

Other natural variants are insecure:

$h(H, m) = E(m, H) \oplus m$ \quad (HW)
Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2
Provable compression functions

Choose a random 2000-bit prime p and random $1 \leq u, v \leq p$.

For $m, h \in \{0, \ldots, p-1\}$ define $h(H, m) = u^H \cdot v^m \pmod{p}$

Fact: finding collision for $h(.,.)$ is as hard as solving “discrete-log” modulo p.

Problem: slow.
End of Segment
Collision resistance

HMAC: a MAC from SHA-256
The Merkle-Damgard iterated construction

Thm: \(h \) collision resistant \(\Rightarrow \) \(H \) collision resistant

Can we use \(H(.) \) to directly build a MAC?
MAC from a Merkle-Damgard Hash Function

H: $\mathbb{X}^L \rightarrow \mathbb{T}$ a C.R. Merkle-Damgard Hash Function

Attempt #1: $S(k, m) = H(k \parallel m)$

This MAC is insecure because:

- Given $H(k \parallel m)$ can compute $H(w \parallel k \parallel m \parallel PB)$ for any w.
- Given $H(k \parallel m)$ can compute $H(k \parallel m \parallel w)$ for any w.
- Given $H(k \parallel m)$ can compute $H(k \parallel m \parallel PB \parallel w)$ for any w.
- Anyone can compute $H(k \parallel m)$ for any m.
Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

HMAC: \[S(k, m) = H(k \oplus \text{opad} \ || \ H(k \oplus \text{ipad} \ || \ m)) \]
HMAC in pictures

Similar to the NMAC PRF.

main difference: the two keys k_1, k_2 are dependent
HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF
- Can be proven under certain PRF assumptions about \(h(.,.) \)
- Security bounds similar to NMAC
 - Need \(q^2/|T| \) to be negligible \((q << |T|^{1/2}) \)

In TLS: must support HMAC-SHA1-96
End of Segment
Collision resistance

Timing attacks on MAC verification
Warning: verification timing attacks [L’09]

Example: Keyczar crypto library (Python) [simplified]

```python
def Verify(key, msg, sig_bytes):
    return HMAC(key, msg) == sig_bytes
```

The problem: ‘==’ implemented as a byte-by-byte comparison

- Comparator returns false when first inequality found
Warning: verification timing attacks [L’09]

Timing attack: to compute tag for target message \(m \) do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server. stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found
Defense #1

Make string comparator always take same time (Python):

```python
    return false if sig_bytes has wrong length
    result = 0
    for x, y in zip(HMAC(key,msg) , sig_bytes):
        result |= ord(x) ^ ord(y)
    return result == 0
```

Can be difficult to ensure due to optimizing compiler.
Defense #2

Make string comparator always take same time (Python):

```python
def Verify(key, msg, sig_bytes):
    mac = HMAC(key, msg)
    return HMAC(key, mac) == HMAC(key, sig_bytes)
```

Attacker doesn’t know values being compared
Don’t implement crypto yourself!
End of Segment