Public key encryption from Diffie-Hellman

The ElGamal Public-key System
Recap: public key encryption: \((\text{Gen}, E, D)\)
Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

• Secure Email: Bob has Alice’s pub-key and sends her an email
• Encrypted File Systems

Bob write

E(k_F, File)

E(pk_A, K_F)

E(pk_B, K_F)

read

Alice sk_A

File
Recap: public-key encryption applications

Key exchange (e.g., in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice’s pub-key and sends her an email
- Encrypted File Systems
- Key escrow: data recovery without Bob’s key

\[E(k_F, \text{File}) \]

\[E(pk_{escrow}, K_F) \]

\[E(pk_B, K_F) \]
Constructions

This week: two families of public-key encryption schemes

• Previous lecture: based on trapdoor functions (such as RSA)
 – Schemes: ISO standard, OAEP+, ...

• This lecture: based on the Diffie-Hellman protocol
 – Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals: chosen ciphertext security

Fix a finite cyclic group G (e.g. $G = (\mathbb{Z}_p)^*$) of order n

Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, \ldots, g^{n-1}\}$)

Alice

- Choose random a in $\{1,\ldots,n\}$

 $A = g^a$

Bob

- Choose random b in $\{1,\ldots,n\}$

 $B = g^b$

$k_{AB} = g^{ab} = (g^a)^b = A^b$

$B^a = (g^b)^a = \ldots$
ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g. $G = (\mathbb{Z}_p)^*$) of order n

Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, \ldots, g^{n-1}\}$)

Alice

Choose random a in $\{1, \ldots, n\}$

$A = g^a$

Bob

Choose random b in $\{1, \ldots, n\}$

compute $g^{ab} = A^b$

derive symmetric key k

encrypt message m with k

$$ct = \begin{bmatrix} B = g^b \end{bmatrix}$$
ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g. $G = (\mathbb{Z}_p)^*$) of order n

Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, \ldots, g^{n-1}\}$)

Alice

choose random a in $\{1, \ldots, n\}$

$$A = g^a$$

Bob

choose random b in $\{1, \ldots, n\}$

compute $g^{ab} = A^b$, derive symmetric key k, encrypt message m with k

To decrypt:

compute $g^{ab} = B^a$, derive k, and decrypt

$$ct = [B = g^b]$$
The ElGamal system (a modern view)

- \(G \): finite cyclic group of order \(n \)
- \((E_s, D_s)\): symmetric auth. encryption defined over \((K,M,C)\)
- \(H: G^2 \rightarrow K \): a hash function

We construct a pub-key enc. system \((\text{Gen}, E, D)\):
- Key generation \(\text{Gen} \):
 - choose random generator \(g \) in \(G \) and random \(a \) in \(\mathbb{Z}_n \)
 - output \(\text{sk} = a \), \(\text{pk} = (g, h=g^a) \)
The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K, M, C)
- $H: G^2 \rightarrow K$ a hash function

\[
E(pk=(g,h), m) : \\
\begin{align*}
b & \leftarrow Z_n, \ u \leftarrow g^b, \ v \leftarrow h^b \\
k & \leftarrow H(u,v), \ c \leftarrow E_s(k, m) \\
\text{output} & \ (u, c)
\end{align*}
\]

\[
D(sk=a, (u,c)) : \\
\begin{align*}
v & \leftarrow u^a \\
k & \leftarrow H(u,v), \ m \leftarrow D_s(k, c) \\
\text{output} & \ m
\end{align*}
\]
ElGamal performance

Encryption: 2 exp. (fixed basis)
- Can pre-compute \[g^{(2^i)} , h^{(2^i)} \] for \(i=1,...,\log_2 n \)
- 3x speed-up (or more)

Decryption: 1 exp. (variable basis)
Next step: why is this system chosen ciphertext secure? under what assumptions?

End of Segment
Public key encryption from Diffie-Hellman

ElGamal Security
Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in G if: \(g, g^a, g^b \not\Rightarrow g^{ab} \)

for all efficient algs. A:

\[
\Pr[A(g, g^a, g^b) = g^{ab}] < \text{negligible}
\]

where \(g \leftarrow \{\text{generators of } G\} \), \(a, b \leftarrow \mathbb{Z}_n \)
Hash Diffie-Hellman Assumption

G: finite cyclic group of order n, \(H: G^2 \rightarrow K \) a hash function

Def: Hash-DH (HDH) assumption holds for \((G, H)\) if:

\[
\left(g, g^a, g^b, H(g^b, g^{ab}) \right) \approx_p \left(g, g^a, g^b, R \right)
\]

where \(g \leftarrow \{ \text{generators of } G \} , \quad a, b \leftarrow \mathbb{Z}_n , \quad R \leftarrow K \)

H acts as an extractor: strange distribution on \(G^2 \Rightarrow \) uniform on K
Suppose $K = \{0,1\}^{128}$ and

$$H : G^2 \rightarrow K \text{ only outputs strings in } K \text{ that begin with 0} \quad \left(\text{i.e. for all } x,y : \text{msb}(H(x,y))=0 \right)$$

Can Hash-DH hold for (G, H)?

- Yes, for some groups G
- No, Hash-DH is easy to break in this case
- Yes, Hash-DH is always true for such H
ElGamal is sem. secure under Hash-DH

KeyGen: \[g \leftarrow \{\text{generators of } G\}, \quad a \leftarrow \mathbb{Z}_n \]

output \[pk = (g, h=g^a), \quad sk = a \]

\[E_{(pk=(g,h), m)}: \quad b \leftarrow \mathbb{Z}_n \]
\[k \leftarrow H(g^b, h^b), \quad c \leftarrow E_s(k, m) \]
output \((g^b, c) \)

\[D_{(sk=a, (u,c))}: \]
\[k \leftarrow H(u, u^a), \quad m \leftarrow D_s(k, c) \]
output \(m \)
ElGamal is sem. secure under Hash-DH

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H()), m_0)

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p

chal. pk, sk
pk = (g, g^a)

adv. A
m_0, m_1
(g^b, E_s(H(), m_0))

≈ p
ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: \(\forall \text{ efficient } A: \ Pr[A \text{ outputs } g^{ab}] < \text{ negligible} \)
ElGamal chosen ciphertext security?

Security Theorem:

If \(\text{IDH} \) holds in the group \(G \), \((E_s, D_s)\) provides auth. enc. and \(H: G^2 \rightarrow K \) is a “random oracle” then \textbf{ElGamal} is CCA\(^{ro}\) secure.

Questions: (1) can we prove CCA security based on CDH?
(2) can we prove CCA security without random oracles?
End of Segment
Public key encryption from Diffie-Hellman

ElGamal Variants
With Better Security
Review: ElGamal encryption

KeyGen: \(g \leftarrow \{\text{generators of } G\} \), \(a \leftarrow Z_n \)

\[
\text{output } \quad \text{pk} = (g, h=g^a) \quad , \quad \text{sk} = a
\]

\[
\begin{align*}
E(\text{pk}=(g,h), \text{m}) : & \quad b \leftarrow Z_n \\
& \quad k \leftarrow H(g^b, h^b), \quad c \leftarrow E_s(k, m) \\
& \quad \text{output } (g^b, c)
\end{align*}
\]

\[
D(\text{sk}=a, (u,c)) : \\
& \quad k \leftarrow H(u, u^a), \quad m \leftarrow D_s(k, c) \\
& \quad \text{output } m
\]
ElGamal chosen ciphertext security

Security Theorem:

If \textbf{IDH} holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \rightarrow K$ is a “random oracle” then \textbf{ElGamal} is CCA$^\text{ro}$ secure.

Can we prove CCA security based on CDH $(g, g^a, g^b \not\rightarrow g^{ab})$?

- Option 1: use group G where CDH = IDH (a.k.a bilinear group)
- Option 2: change the ElGamal system
Variants: twin ElGamal

[CKS’08]

KeyGen: \[g \leftarrow \{\text{generators of } G\} \text{ , } a_1, a_2 \leftarrow \mathbb{Z}_n \]

\[
\text{output } \quad \text{pk} = (g, h_1=g^{a_1}, h_2=g^{a_2}) \text{ , } \text{sk} = (a_1, a_2)
\]

E(pk=(g,h_1,h_2), m): \[b \leftarrow \mathbb{Z}_n \]

\[
k \leftarrow H(g^{b}, h_{1}^{b}, h_{2}^{b})
\]

\[
c \leftarrow E_s(k, m)
\]

\[
\text{output } (g^b, c)
\]

D(sk=(a1,a2), (u,c)):

\[
k \leftarrow H(u, u^{a_1}, u^{a_2})
\]

\[
m \leftarrow D_s(k, c)
\]

\[
\text{output } m
\]
Security Theorem:

If CDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^3 \rightarrow K$ is a “random oracle” then twin ElGamal is CCA$^\text{ro}$ secure.

Cost: one more exponentiation during enc/dec

– Is it worth it? No one knows ...
ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

• Option 1: use Hash-DH assumption in “bilinear groups”
 – Special elliptic curve with more structure [CHK’04 + BB’04]

• Option 2: use Decision-DH assumption in any group [CS’98]
Further Reading

• Universal hash proofs and a paradigm for chosen ciphertext secure public key encryption. R. Cramer and V. Shoup, Eurocrypt 2002

• Chosen-ciphertext security from Identity-Based Encryption. D. Boneh, R. Canetti, S. Halevi, and J. Katz, SICOMP 2007

• Efficient chosen-ciphertext security via extractable hash proofs. H. Wee, Crypto 2010
Public key encryption from Diffie-Hellman

A Unifying Theme
One-way functions (informal)

A function $f: X \rightarrow Y$ is one-way if

- There is an efficient algorithm to evaluate $f(\cdot)$, but
- Inverting f is hard:

 for all efficient A and $x \leftarrow X$:

 $$\Pr\left[f\left(A(f(x))\right) = f(x)\right] < \text{negligible}$$

Functions that are not one-way: $f(x) = x$, $f(x) = 0$
Ex. 1: generic one-way functions

Let \(f: X \rightarrow Y \) be a secure PRG (where \(|Y| \gg |X|\))

(e.g. \(f \) built using det. counter mode)

Lemma: \(f \) a secure PRG \(\Rightarrow \) \(f \) is one-way

Proof sketch:

\[A \text{ inverts } f \Rightarrow B(y) = \begin{cases} 0 & \text{if } f(A(y))=y \\ 1 & \text{otherwise} \end{cases} \]

is a distinguisher

Generic: no special properties. Difficult to use for key exchange.
Ex 2: The DLOG one-way function

Fix a finite cyclic group G (e.g. $G = (\mathbb{Z}_p)^*$) of order n

g: a random generator in G (i.e. $G = \{1, g, g^2, g^3, \ldots, g^{n-1}\}$)

Define: $f: \mathbb{Z}_n \rightarrow G$ as $f(x) = g^x \in G$

Lemma: Dlog hard in G \Rightarrow f is one-way

Properties: $f(x), f(y) \Rightarrow f(x+y) = f(x) \cdot f(y)$

\Rightarrow key-exchange and public-key encryption
Ex. 3: The RSA one-way function

• choose random primes $p, q \approx 1024$ bits. Set $N = pq$.

• choose integers e, d s.t. $e \cdot d = 1 \pmod{\varphi(N)}$

Define: $f : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ as $f(x) = x^e$ in \mathbb{Z}_N

Lemma: f is one-way under the RSA assumption

Properties: $f(x \cdot y) = f(x) \cdot f(y)$ and f has a trapdoor
Summary

Public key encryption:

- made possible by one-way functions with special properties
- homomorphic properties and trapdoors
End of Segment
Farewell (for now)
Quick Review: primitives

- **PRG**
 - CTR
 - GGM

- **PRF, PRP**
 - CMAC, HMAC
 - PMAC

- **MAC**
 - Collision resistance

- **key exchange**
 - Trapdoor Functions
 - public key encryption

- **Diffie-Hellman groups**
Quick Review: primitives

To protect non-secret data: (data integrity)
- using small read-only storage: use collision resistant hash
- no read-only space: use MAC ... requires secret key

To protect sensitive data: only use authenticated encryption
(eavesdropping security by itself is insufficient)

Session setup:
- Interactive settings: use authenticated key-exchange protocol
- When no-interaction allowed: use public-key encryption
Remaining Core Topics (part II)

• Digital signatures and certificates
• Authenticated key exchange
• User authentication:
 - passwords, one-time passwords, challenge-response
• Privacy mechanisms
• Zero-knowledge protocols
Many more topics to cover ...

- Elliptic Curve Crypto
- Quantum computing
- New key management paradigms: identity based encryption and functional encryption
- Anonymous digital cash
- Private voting and auction systems
- Computing on ciphertexts: fully homomorphic encryption
- Lattice-based crypto
- Two party and multi-party computation
Final Words

Be careful when using crypto:
• A tremendous tool, but if incorrectly implemented:
 system will work, but may be easily attacked

Make sure to have others review your designs and code

Don’t invent your own ciphers or modes
End of part I