Quicksort

- Quicksort(A, p, r)
 while p < r
 q = partition(A, p, r)
 quicksort(A, p, q - 1)
 quicksort(A, q + 1, r)
 end

- To simplify, assume distinct elements.
 » Lucky - always an even split: \(T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n) \)
 » Unlucky:
 \(T(n) = T(0) + T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2) \)

- How to avoid bad case?
 » Partitioning around middle element does not work!
 » Idea: partition around a random element.

Randomized Algorithms

- Algorithm can “toss coins”.
- No specific input leads to worst-case behavior.
- Distinction between randomized algorithms and random data!
Quick review of probability

- Sample space S of “elementary events”.
 - Example: 36 ways of how 2 dice can fall.
- Event $A \subseteq S$, Eg. “roll 3 with 2 dice”.
- Probability distribution: $P : A \rightarrow [0,1]$, \(2^{10}\) values
- Properties:
 \[
P(A) \geq 0, P(S) = 1
 \]
 \[
P(A \cup B) = P(A) + P(B) \text{ if } A \cap B = \emptyset
 \]

Example

- 2 dice example:
 \[
 S = \{(1,1),(1,2),(2,1),\ldots,(6,6)\}, |S| = 36
 \]
 \[
 (5,6) \neq (6,5)!!
 \]
 \[
 \text{Event roll 4: } \{1,3),(2,2),(3,1)\}
 \]
 \[
 \Pr[A] = \frac{|A|}{36} = \frac{3}{36}
 \]
- Simple case of “inclusion/exclusion”:
 \[
 \Pr[A \cup B] = P(A) + P(B) - P(A \cap B)
 \leq P(A) + P(B)
 \]
Discrete Random Variable

- **Definition:**
 \[X: S \rightarrow R \]
 - \(X = i \) \(\iff \) \(\{ s \in S | X(s) = i \} \)
 - Example: Uniform distr, 2 dice: \(\Pr[X = 5] = 4/36 \)

- **Expected value:**
 \[
 E[X] = \sum i \Pr[X = i]
 \]

<table>
<thead>
<tr>
<th>SUM</th>
<th>Pr x 36</th>
<th>SUM x Pr x 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>132</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>156</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>182</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>210</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>240</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>272</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>306</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>342</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>380</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>420</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>462</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>506</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>552</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>600</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>650</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>702</td>
</tr>
<tr>
<td>28</td>
<td>27</td>
<td>756</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>812</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>870</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>930</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>992</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>1056</td>
</tr>
<tr>
<td>34</td>
<td>33</td>
<td>1122</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>1190</td>
</tr>
<tr>
<td>36</td>
<td>35</td>
<td>1260</td>
</tr>
</tbody>
</table>

\[
E[X] = \frac{252}{36} = 7
\]

Linearity of expectation

- **E[aX+bY]=aE[X]+bE[Y]**

- **Example:**
 - \(X \) - outcome of first, \(Y \) - outcome of second.
 - \(E[X] = E[Y] = \frac{1+2+3+\ldots+6}{6} = 3.5 \)
 - \(E[X+Y] = 7 \), as before!

- **Independence:**
 - \(X \) & \(Y \) independent \(\iff \) \(\forall x, y: \Pr[X = i, Y = j] = \Pr[X = i] \Pr[Y = j] \)
 - \(E[X \cdot Y] = E[X]E[Y] \)
Conditional Probability

- **Definition**: \(\Pr[X = i | Y = j] = \frac{\Pr[X = i, Y = j]}{\Pr[Y = j]} \)

- **Conditional expectation**:

 \[
 E_i[E[X | Y]] = \sum_i \Pr[Y = i] E_i[X | Y = i] = \sum_i \Pr[Y = i] \sum_j \Pr[X = j | Y = i] \times E[X | Y = i]
 \]

 \[
 = \sum_i \Pr[X = j] \sum_j \Pr[X = j | Y = i] \times E[X | Y = i]
 \]

 \[
 = \sum_i \Pr[X = j] \sum_j \Pr[X = j | Y = i]
 \]

 \[
 = \sum_i \Pr[X = j | Y = i] \sum_j \Pr[X = j]
 \]

 \[
 = E[X]
 \]

One of the most useful properties
Conditional expectation example

- Consider 1-dice toss.

- Let X be result of the toss, and Y be the event that the result is above 2. (Y=1 if above 2, Y=0 otherwise.)

- Condition on Y.
 Note that Pr[Y=0]=2/6, Pr[Y=1]=4/6.

\[
E[X|Y=0] = \sum Pr[X=x|Y=0] = \frac{1}{6} \cdot \frac{2}{6} + \frac{1}{6} \cdot \frac{3}{2} = \frac{1+\frac{3}{2}}{2} = \frac{5}{4}
\]

\[
E[X|Y=1] = \sum Pr[X=x|Y=1] = \frac{1}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{4}{2} = \frac{3+4}{6} = \frac{7}{2}
\]

\[
E[X] = E[X|Y=0]Pr[Y=0] + E[X|Y=1]Pr[Y=1] = \frac{5}{4} \cdot \frac{2}{6} + \frac{7}{2} \cdot \frac{4}{6} = 3.5
\]

Back to Quicksort

- Partition around a randomly chosen element and let T(n) be the expected time to sort.

- Consider the case where the partition is (k, n-k-1).
 In this case, the expected time to terminate is:

\[
T(k) + T(n-1-k) + \Theta(n)
\]

- Condition on k being a specific value.
 Note that any value of k, from 0 to n-1 is equally likely.

\[
T(n) = \sum Pr((i, n-i-1) \text{ split}) T(n| (i, n-i-1) \text{ split})
- \frac{1}{2} \sum [T(k) + T(n-1-k) + \Theta(n)]
- \frac{1}{2} \sum [T(k) + \Theta(n)]
\]
Solving the recurrence

We will try to prove that \(T(n) \leq an \lg n + b \)

First, choose \(b \) large enough to satisfy: \(T(1) \leq a \lg 1 + b = b \)

Inductive step:

\[
T(n) = 2 \sum_{k=1}^{\lfloor n/2 \rfloor} T(k) + \Theta(n) \leq 2 \sum_{k=1}^{\lfloor n/2 \rfloor} (ak \lg k + b) + \Theta(n)
\]

\[
= \frac{2}{n} \sum_{k=1}^{\lfloor n/2 \rfloor} k \lg k + \frac{2}{n} nb + \Theta(n)
\]

Need to prove that this is \(\leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \)

Note that using \(\sum_{k=1}^{n} k \lg k \leq n^2 \lg n \) is not enough !

Technical lemma

\(n^2 \lg n \) bound is trivial. Need a stronger bound

\[
\sum_{k=1}^{n} k \lg k = \sum_{k=1}^{\lfloor n/2 \rfloor} k \lg k + \sum_{k=\lfloor n/2 \rfloor}^{n} k \lg k
\]

\[
\leq \lg n \sum_{k=1}^{\lfloor n/2 \rfloor} k - \sum_{k=\lfloor n/2 \rfloor}^{n} k
\]

\[
\leq \lg n \sum_{k=1}^{\lfloor n/2 \rfloor} k - \sum_{k=1}^{n} k
\]

\[
\leq \lg n \frac{n(n-1)}{2} - \frac{n(n+1)}{2}
\]

\[
\leq \frac{1}{2} n^2 \lg n - \frac{n^2}{8}
\]

HW: We proved \(O \), now prove \(\Omega \).