Read Chapter 10. We skip Chapter 10.1 (min/max), read at home. Next time we will go to Chapter 7 (Heaps).

Problem: Find the i-th smallest element (Rank-i).
- i=1 Minimum
- i=n Maximum
- i=n/2 Median

Possible solution:
- Sort
- Index into A(i).

We can do better!

\[O(n \log n) \]

Lecture 5, Tuesday 4/17/01

Randomized selection

Divide and conquer approach:
- RS(A,p,r,i)
 - if p==r then return A(p)
 - q=RandomPartition(A,p,r)
 - k=q-p+1
 - if i<k then return RS(A,p,q-1,i)
 - i>k then return RS(A,q+1,r,i-k)
 - i==k then return A(q)

Correctness:
- Assume correct for size at most n=r-p+1
- after the partition, the arrays are smaller than n; can apply induction.
- Claim: need to search only one part
- Explain the 3 cases.

Lecture 5, Tuesday 4/17/01

Performance of Random Selection

Lucky case:
- What if 99/100 instead of 9/10 ??

Bad case:
- \[T(n) \]
- Condition on partition outcome:
 - Substitute \(n \), choose \(c \) large enough for \(T(1) \):
 - \(T(i) \)
 - \(\sum_{i=1}^{n} \left(\frac{n}{k} \right) \)
 - \(\frac{n}{k} \)
 - \(\Theta \)
 - \(\leq \)
 - \(\frac{n}{k} \)
 - \(\leq \)
 - \(\frac{n}{k} \)
 - \(\Theta \)

Analysis continued

Let \(T(n) \) be the expected running time.
Condition on partition outcome:
- \(T(i) \)
- \(\sum_{i=1}^{n} \left(\frac{n}{k} \right) \)
- \(\frac{n}{k} \)
- \(\Theta \)
- \(\leq \)
- \(\frac{n}{k} \)
- \(\leq \)
- \(\frac{n}{k} \)
- \(\Theta \)

Deterministic Order Statistics

The randomized order statistics is very fast in practice (just like quick-sort, some additional tricks will help).

Theoretically interesting question: Is there a deterministic linear time order-statistics algorithm?

Deterministic selection algorithm (select i-th smallest):
- Divide \(n \) elements into groups of 5.
- Find median in each group (brute force)
- Use select recursively to find median among \(n/5 \) medians.
- Partition around this median.
- Recurse on the "appropriate" part, update \(i \) if necessary.

Deterministic order statistics - cont

Correctness - as before. All we changed was the pivot choice.

Time:
- At least \(1/2 \) of the medians are \(\leq c \):
- each median brings 3 elements
- total
- \(n \geq \frac{3n}{2} \) for \(n \geq 6 \), we have
- \(n \geq \frac{3n}{2} \)
- at least \(n/4 \) elements are \(\leq c \).
- Similarly, at least \(n/4 \) elements are \(\geq c \).

Recursion:
- \(T(1) \)
- \(T(\frac{n}{2}) \)
- \(T(\frac{n}{2}) \)

In fact, we have \(T(1) = O(n) \)
Deterministic selection

- Homework:
 analyze with groups of 4 elements and groups of 6 elements.

- Observe that we can get deterministic variant of quicksort!
 - Can use as a black-box $O(n)$ partitioning into 2 equal parts.
 - We get recurrence $T(n) = 2T(n/2) + o(n)$, giving us $o(n \log n)$ total running time.
 - (do you think it will work well in practice?)