We will be developing data structures that support queries and updates.

Example where a data structure will help:
- Event driven system
 - Event: (start of call i, time when i starts)
 - Simulator: pick next event, process it, maybe update event queue.
- How to maintain events?
 - Need support for fast:
 - insert new event
 - pick “next event”, i.e. event with smallest time key.

Several possible approaches

- Keep all events in a list.
 - Easy to insert - O(1)
 - Hard to extract - \(\Omega(n) \)
- Sorted list:
 - Easy to extract - O(1)
 - Hard to insert - \(\Omega(n) \)
 - We would like something like:
 - insert \(O(\log n) \)
 - extract \(O(\log n) \)

Tradeoff

Heaps

- Nearly complete binary tree with:
 - Max heap property: \(A[parent(i)] \geq A[i] \)
 - Claim: max is at the root (by induction on the size of the heap)

Pointers are not the most efficient solution.
Instead, \(parent(i) \) is stored in each element.
Example: parent of the 5th element is at 2.

Fixing a broken heap

- Assume problem is only at the root:
 - Now the problem “moved” down, into right tree.
 - Recurse in this tree, exchanging 5 and 8, its largest child.

Correctness of fixing the heap

- \(b \) is larger than \(c \), and \(a \), thus the only problem can be between \(a \) and one of its children.
- Formal proof - by induction on the height of \(a \).
- This procedure will be called \(\text{Heapify}(A, i, n) \).
- Makes subtree rooted at \(A(i) \) into a heap.
- Time: \(O(\log n) \). (Why?)
Inserting new element

- Similar to Heapify:
 - Insert new element
 - Place new element in last
 - While parent(i) != null
 - If A(i) < A(parent(i)) return
 - Else exchange A(i), A(parent(i))
 - i = parent(i)
 - end
- Example:
 - Propagate up, O(lg n). Correctness ??