Sorting using heaps

- We can first build heap, then repeat: remove max.
- In place:

 BuildHeap
 for i=n down to 2
 exch A(1), A(i)
 Heapify(A,1,i-1)

- Essentially same as the first approach.
 We use the fact that:
 - heap becomes smaller after "remove max",
 - last array entry becomes free.

Example

Sort:

```
5 7
3 2 1 7 3 2 8 7 5 1
```

Variations on Heaps

- Min instead of max.
- K-ary instead of binary
 - Time for Insert: \(\log_k n \) (n = #elems. in heap).
 - Time for extract-max: \(kn \log_k n \)
 - Best value of k to use is determined by application:
 - Mostly inserts: use big k (e.g. \(k = \sqrt{n} \))
 - Mostly extract-max: use small k (i.e. \(k=2 \) or \(3 \))

Lower bound for sorting

- All sorting algs that we saw: comparison-sorts
- only operation allowed on data is comparison.
- Is \(O(n \log n) \) the best we can do in this case?
- Represent computation by decision tree:
 - Execution - walk from root to a leaf.

More lower bound

- 1 leaf per each possible answer.
- at least \(n! \) leaves.
- Binary tree with \(n! \) leaves has to be \(\Omega(n \log n) \) deep !
 - worst-case execution time is \(\Omega(n \log n) \)
- In the comparison model, quicksort, mergesort, etc are optimum.
- HW: Why doesn't this work for selection ??
 - What if instead of sorting, we need to divide into groups of, say 10, and sort the groups
 - all element of 1st group + all elements of 2nd group, etc

Counting Sort

- Is \(\Omega(n \log n) \) indeed the limit ?? NO !
- Example: Counting Sort
 - Assume inputs are in \([1,...,k]\), integers.
 - let \(k = \sum_{i=1}^{m} c_i \) for all \(\sum_{i=1}^{m} c_i = n \)
 - compute prefix sum \(c_1(1), c_2(2), \ldots, c_i(i) \) for all \(c_i \in k \)

  ```
  Input: 1, 1, 5, 5, 7
  Output: 1, 1, 5, 5, 7
  ```

 Counting sort: note the stability of intermediate sort requirement !