Choosing Hash Functions

- Mostly black magic; division method: \(h(k) = k \mod m \)
 - do not use \(m = 2 \) (will not use all the bits)
- Multiplication method:
 - choose \(m \) not = 2, \(p \), not too close to power of 2 or 10.
 - If \(m = 2^p \), then we do is scramble by multiplication, and choose \(p \) bits to the left of binary point.

More multiplicative method

Example: \(m = 8 \):
- each time \(k \) increased:
 - go around the circle,
 - read off sector number.
- Note what happens if \(A = 0.5 \) or \(A = 1/2 \).

Universal Hashing

- biggest problem with hash function:
 - There is always an adversarial sequence that "kills" it!
- Can not choose truly random function - \(m \) to the power of keys different functions. Too much storage!!
- We need a small family \(H \) of hash functions, such that, for any input, any small percentage of these functions are "killed".
- Existence of such family? Size?
 - First, let's look at properties: what if \(h() \) is truly random?
 - \(\Pr[h(x) = h(y)] \sim \frac{1}{m} \)
 - Then:
 - \(\Pr[h(x) = h(y)] = \frac{\sum_{i=1}^{m} \Pr[h(x) = h(y)]}{m} = \frac{1}{m} \)

Construction

Universal Hash Functions

- Need: for any \(x \) and \(y \), proportion of functions in \(H \) that map both \(x \) and \(y \) to the same slot is 1/m.
- Take \(m \) prime.
 - input \(n \times k \), output \(n \times k \times m \) \(\forall A \in \mathbb{R} \)
 - \(x_i \in [0, m-1] \) chosen uniformly at random.
- Define a function for each possible choice of \(a \).
 - \(h(k) = \sum_{i=1}^{m} a_i \mod m \)
- Claim: the family \(H \) is universal.

Proving Universality

- Total number of functions in \(H \): \(m^n \)
- Given particular \(x \) and \(y \), what proportion of these functions map \(h(x) \neq h(y) \)? \(\frac{m^n - 1}{m^n} \)
- Choose \(a \), \(a \neq a , \) etc first. There are \(m \) choices. Now we need to choose \(a \), to make \(h(x) = h(y) \):
 - \(a = \sum_{i=1}^{m} (x_i - y_i) \mod m \)
 - If \(a \neq 0 \) there is only 1 solution.
- Thus, total number of functions such that \(h(x) = h(y) \) is \(m^n \), exactly the right property.
Binary Search Trees
(Chapter 13)

- In addition to insert/delete:
 - Heaps supported insertion.
 - Hashing supported search.
 - What if we want both min/max/search, and also pred/succ?
- Binary Search trees:

```
     x
   /   \
  y   z
```

```
left tree  key
right tree key
```

Examples

- Legal B-Trees:
- In-Order walk: `InOrder(left(x)) print(x) InOrder(right(x))`
- Note that given B-tree, can output sorted in O(n) time! Gives lower bound on constructing B-Tree. (Compare with Heap!)