Greedy Algorithms

- **Problem:** set of \(n \) activities \(s_i, f_i \), start and end of activity \(i \).
- i incompatible with \(j \) if intervals do not intersect.
- Goal: find max # of compatible activities.

Let \(k \) have smallest \(f \) and let \(A \) be OPT solution.

Case 1: \(k \) in OPT. Claim: \(A-k \) is OPT for \(A \).

Assume not, let \(B \) be OPT for \(S' \), \(|B| > |A|-1 \).

But then add \(k \) to \(B \) and we get better than \(A \)!
Thus we compute \(k \), commit to it, compute \(S' \), and repeat!

Summary

- Take locally best choice and commit to it.
- Main issue: proof that we can commit without losing our chance to get an optimum solution.

Another greedy algorithm

- **Task defined by (duration, deadline), eg. HW.**
- **Goal:** find a schedule if one exists.

Assume that there exists a schedule

Claim: then there exists a schedule with:

- first job = job with smallest deadline.

We can exchange \(b \) and \(a \)!!

Huffman encoding

- Idea: represent often encountered letters by shorter codes.
- Prefix code: a code for \(x \) is not a prefix for any code-word for \(y \).

- In this example: \(c=010, e=1100 \)

Huffman encoding

- Assume we know symbol frequencies:

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>40</th>
<th>5</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

- 50:1+40:2, 5:3, 3:4, 2:4 = 165, 1.65b/symbol instead of 3!

- Assume that \(a \) is a very common symbol.

Now: \(a = 0 \)
\(b = 100 \)
\(e = 1100 \)
Generating optimum encoding

- Claim: Let x and y be the lowest freq. characters. Then there exists a code where x and y differ only in 1 bit.

So does this mean that we do not need any other codes? [Hint: consider a sequence 1001001000100...]

Min-Cost Spanning Tree

- Applications:
 - Cable TV,
 - VLSI,
 - basic task for many optimization algts (eg. flow).

- Formally:
 - Undirected graph G=(V,E).
 - Weights w: E → R
 - Goal: find spanning tree of minimum weight.
 (spanning = connects all nodes in G)

Example

Example MST

Optimum Substructure

- Assume T is MST of any subtree of G

- Proof: "Cut-and-Paste" approach
 - Replace uV by wV

- Questions:
 - Why no more edges parallel to uV in T?? - Cycles!
 - Why uV exists at all ?? (walk in T until you hit [T-A]

Prim's Algorithm

- Main idea:
 - Pick a node v, set A={v}.
 - Repeat:
 - Find min-weight edge outgoing from A.
 - Add v to A.

- Need support for finding an edge that is:
 - outgoing.
 - Min-weight among all outgoing.
Implementing Prim's Alg

- First try:
 - Keep all edges (outgoing and internal) from A in a heap.
 - New node: add all its edges to the heap.
- To get "next edge":
 - extract min-weight from heap.
 - check if internal. (how ???)
 - If yes, discard and repeat.

Time: $O(E)$ insertions and $O(E)$ deletions from heap:
$$\text{Total: } O(E \log V)$$

More about implementation

- Only $V-1$ edges were used, the rest - wasted.

Idea:
- Keep nodes in the heap, instead of edges.
- Key: distance of node from A over a single edge.
- Initially: $\text{key}(v) = \infty$ for all v.

$x = \text{root}$
Repeat:
- $\forall v \in \text{set}_x$ do:
 - $\text{key}(v') = \min(\text{key}(v), \text{w}(x))$
- Pick smallest-key x, add x to A
- So why does this work ????

Alternative Implementations

- Total: $O(E)$ decrease-key, $O(V)$ extract-min.

<table>
<thead>
<tr>
<th></th>
<th>extract-min</th>
<th>decrease-key</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(E \log V)$</td>
</tr>
<tr>
<td>heap</td>
<td>$O(\log V)$</td>
<td>$O(V)$</td>
<td>$O(E \log V)$</td>
</tr>
<tr>
<td>Fib. heap</td>
<td>$O(\log V)$</td>
<td>$O(1)$</td>
<td>$O(V \log V + E)$</td>
</tr>
</tbody>
</table>

Kruskal's Algorithm

- Main loop:
 - scan edges in increasing order of weight
 - put edge in if no loop created.

Why does this result in MST ??
- Observation: min-weight edge is always in MST.

Proof: Assume there exists a tree without this edge.
- Add this edge to the tree - this creates a cycle.
- Delete max-weight edge on this cycle, we get a lighter tree !

Proof of Kruskal's algorithm

- Consider the instant when we are adding the first wrong edge, i.e. edge xy that is not in any optimum tree:
 - blobs are current connected components.
 - There exists a path from x to y in the optimum tree.
 - u and v are not in our tree, thus they are heavier than xy !
 - cut-and-paste to get a better tree, contradiction.

Implementation

- Given two nodes u and v, need to know if they are in the same connected component, i.e. in the same set.

$$\text{Find-Set}(v)$$
- After adding edge uv, need to merge the set that includes u with the set that includes v.

$$\text{Union}(\text{Find-Set}(u), \text{Find-Set}(v))$$
- Total: $O(V)$ Make-Set
 $$O(V) \text{ Find-Set}$$
 $$O(V) \text{ Union}$$
- Section 22.4 explains how to achieve these ops in $O(E, V)$ time.
 - where g is inverse Ackermann function.

$$\text{log}_2 \log_{10} g(m,n) \leq 5 \text{ for } m,n \leq 10^6$$
Simple Union-Find Implementation

- **Main idea:**
 - Maintain every set as a linked list.
 - Maintain every element points to head of the list.
- **Work:**
 - Find-Set takes $O(1)$.
 - Union: $O(1)$ per element of the smaller list.
 - Each time an element is charged during union, his set at least doubles.
 - Total: $O(V \log V)$ work for all unions.

- **Total time:** $O(E + V \log V)$

Dynamic Programming

- **Main problem with greedy approaches:**
 - Sometimes we can not commit up-front.
- **Dynamic programming:**
 - Meta-technique, not a specific algorithm.
 - **Main idea:**
 - Solve many small subproblems.
 - Combine solution to several small subproblems to solve larger subproblems.
 - Continue combining until we solve the original problem.

Single-Source Shortest Paths

- **Main observation:**
 - If shortest path $s \to u$ goes through v, then its part up to v is the shortest path from s to v.

Bellman-Ford

- **Early termination:**
 - We can terminate at phase k if, for all v.
 - $d(v) = d^2(v)$ since no more changes will happen in $d(v)$ for larger values of k.
 - (might terminate earlier than after $n-1$ phases)

- **Example:**
 - Matrix chain multiplication

Another example:

- **Consider the following chain:**
 - $A_{1,1} \times A_{2,2} \times \ldots \times A_{n,n}$
 - $A_{i,j}$ is an $i \times j$ matrix
 - $\text{time} = \sum_{i=1}^{n} m_{i-1} m_{i} n_{i}$

- **Example:**
 - $[5 \times 100] \times [100 \times 2] \times [2 \times 50]$

- **Order of multiplication affects the amount of work!**
Solving matrix chain multiplication

- Observation:
 - Consider last optimum multiplication: \(A_{j-1} \ldots A_n \).
 - Then both \(A_{j-1} \ldots A_k \) and \(A_k \ldots A_n \) were computed optimally!!
 - Why??

- Subproblems:
 - is best "time" to multiply

- Answer is \(m(1, n) \)

- Why can't we just use as subproblems the time to multiply matrices 1 to \(i \)??

\[
\begin{align*}
\text{if } i &\leq j \text{, then } C_{i,j} = 0 \\
\text{if } j < i < k &\text{, then } C_{i,j} = \min(C_{i,k} + C_{k+1,j}, C_{i,k-1} + C_{1,j}) \\
\text{if } i &\leq k \leq j \text{, then } C_{i,j} = \min(C_{i,k} + C_{k+1,j}, C_{i,k-1} + C_{1,j})
\end{align*}
\]

Matrix chain continued

- Let's try to analyze using recurrence relation:
 - \(C_{i,j} = \sum_{k=i}^{j} C_{i,k} + C_{k+1,j} \)
 - Why??

- Wrong approach! There are only \(O(n^2) \) different subproblems!

- Build the table bottom up, for increasing \(j-I \).
 - \(O(n) \) per each, total \(O(n^3) \).

Summary - Dynamic Programming

- Find optimum substructure.
- Define subproblems (not too many of them!)
- Organize subproblems into a table.
- Make sure there is a way to fill the table.

Longest common-subsequence

- Consider two sequences:
 - \(x = A B C A B \) \(|x| = m \)
 - \(y = B D C A B \) \(|y| = n \)

- Greedy: does not work! (Why??)

- Brute force: take any substring of \(x \), check against \(y \).
 - Total: \(O(2^m n) \), too slow!

Optimum Substructure

- Define subproblem: \(\text{LC}_{(x,y)} \) \(x_1 \ldots x_i, y_1 \ldots y_j \) \(i \leq j \)
- Observe that \(\text{LC}_{(x,y)} \) is the answer that we seek.

- Theorem:
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)

Proof: Case 1, \(x \neq y \)

- Theorem:
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)
 - \(\text{LC}_{(x,y)} = \text{LC}_{(x',y')} \) \(x' \subseteq x, y' \subseteq y \)

Case 2:
- \(x_1 = y_1 \)
 - \(z_1 = x_1 \) \((2a) \)
 - \(z_1 = y_1 \) \((2b) \)

Proof: continued
Recursive algorithm

- We can use the theorem to construct a recursive algorithm. Consider its tree:

 3,4
 / /
 1.3 1.2 1.3 1.2
 / / / /
1.5 1.6 2.3 2.5

Analysis

- Depth of the tree is $O(m+n)$, leads to $O(3^{m+n})$ bound, too large!
- Main idea: we see repeating sub-question, only $O(mn)$ different ones!
- Memoization: after computing sub-problem answer, remember it.
- Dynamic programming: compute the table bottom-up.

Computing the table

- Fill the table starting from top-left corner, and going row-by-row:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

- Each element depends on the one above, one left, and if $x_i = y_i$, then it is one more than the diagonal up-left element.

Knapsack Problem

- Problem statement:
 1. We have n items, j-th item costs $c(j)$ and weights $w(j)$.
 2. We have a knapsack that can hold total W weight.
 3. Goal: maximize total value of items that we choose to put into the knapsack, without exceeding total allowed weight W.
- Abstraction of many real problems: from investing to telephone call routing.
- Fractional (allowed to take part of an item): easy! do greedy, choose best value-per-weight element.

Fractional vs. Integer Knapsack

- Consider the following example:
 -Greedy: $#1+#2$ gives 100
 -Optimum: $#2+#3$, gives 110
 -Fractional: $#1+#2 + 3/5$ of $#3$, gives 120.

Optimum substructure:

Consider optimum solution: $x_1, x_2, ..., x_k$

Where $x_i = 0$ means we do not take the item, and $x_i = 1$ means we take it.

Claim: $x_1, x_2, ..., x_k$ is optimum for S, $w(S) = m(W, A)$.

Solving Knapsack

- Subproblems:
 - $C(i,w) =$ OPT solution using items 1 to i, knapsack w.
 - $C(i,w) =$ if $w \geq w(S)$, take w;
 otherwise

- Table size in nW, $O(1)$ per element, $\text{TOTAL} = O(nW)$
- But knapsack is N.P.-Hard!
 - Do we indeed have a contradiction here??

No contradiction since W is not polynomial in the size of the input...
Graph Algorithms

Examples of graph problems:
- Direct applications:
 - City streets map: reachability, shortest path, congestion management
 - Communication networks: planning, fault-tolerance, reliability, topology alignment
- Indirect applications:
 - Assigning tasks to humans
 - Scheduling jobs on a multiprocessor
 - Searching within space
- Restate as a graph problem, solve
 - Map back

Depth First Search

- Visiting(u):
 - color(u) = gray; d(u) = time; time++;
 - for each neighbor w of u:
 - if w is white then Visit(w)
 - color(u) = black; f(u) = time; time++;

- Initially, set all nodes white.
- Examine nodes one-by-one, call Visit if node is still white.
- Node visited once, edge touched twice: Running time O(n+m)

At home: Read theorems 23.6 and 23.8 (we will only sketch the proofs)

Edge Classification

Classification of uw according to (color of u) -> (color of w): (when the edge is considered)
- Tree edge: gray -> white
- Back edge: gray -> gray
- Forward: gray -> black, u ancestor of w.
- Cross: other gray -> black edges.

How to distinguish forward and cross edges??
We can use d() time!

Parenthesis Theorem

Theorem:
For any two nodes u and v, the two intervals [d(u),f(u)] and [d(v),f(v)] either:
- Do not intersect, or
- [d(u),f(u)] includes [d(v),f(v)], v descendant of u, or
- [d(v),f(v)] includes [d(u),f(u)], u descendant of v.

Proof:
- Assume (wlog) d(u)<d(v).
- If v was not discovered before finishing u, then we have case 1 above.
- If v was discovered, then we have to finish it before returning and finishing u, leading to case 2.
- Case 3 is symmetric.

White-Path Lemma

In (directed or undirected) graph G, node v is descendant of u iff at d(u) (time when u was discovered) there is a path from v to u using only currently white nodes.

Proof:
- Assume v is descendant of u.
- Let w be edge on the uv path in the tree.
- If w was not white at d(u), then we will not be true edge.
- Thus, all nodes on the uv path are white when u is discovered.
- Assume that at d(u) there is a white path from u to v.
- Let w be the first edge on this path, with w closest to u so that w is descendant of u but w is not.
- Let w' be edge of the starting and before finishing u.
- By parenthesis theorem, w' is also a descendant of u, contradiction.

Simple Lemma

Lemma: If G is undirected, then only tree and back edges.
Proof: wlog, d(u)<d(v).
- Thus v must be discovered and finished before finishing u, since uv exists.
- If uv discovered from u, before v, it is a tree edge.
- If v was discovered before uv, then uv becomes a back edge.

Why does the proof break down in the directed case?
Discovering Cycles

- Claim: G acyclic if DFS yields no back edges.
- Proof:
 - Trivial to observe that back edge implies a cycle.
 - Assume there exists a cycle:
 - Let v be the node with smallest d on the cycle, and let u be an edge of the cycle.
 - All nodes in the cycle, including v, are white.
 - This, when v is scanned, we will discover an edge mark it as "back edge".

Topological Sort

- Directed acyclic graph G.
- Algorithm:
 - Call DFS to compute finishing times f[v] for each vertex v.
 - As each v is finished, insert it onto the front of finished list
 - Return the finished list.
- Claim: the output list is a legal topological sort.
 - Sufficient to prove that, for every u and v s.t. (uv) is an edge, we have f[v] < f[u]. (Why?)
 - Consider edge (uv) explored by DFS.
 - Observe that when (uv) is explored, v cannot be gray (back edge implies cycle)
 - If v white, it becomes descendant of u, and thus f[v] > f[u].
 - If v black, it finished before u started, so again f[v] > f[u].

Back to shortest paths: Dijkstra’s Algorithm

- We can do better than Bellman-Ford if no negative-weight edges.
- Algorithm:
 - Main idea: add node with shortest perceived distance.
- Time: n extract_min, m decrease_key
 - FB. Heap: O(m log n)