
CS255: Cryptography and Computer Security Winter 2005

Final Exam

Instructions
− Answer four of the following five problems. Do not answer more than four.
− All questions are weighted equally. Note that question 5 has an extra credit component.
− The exam is open book and open notes. A calculator is fine, but a laptop is not.
− You have two hours.

Problem 1. Questions from all over.

a. In class we discussed three methods for combining encryption and MAC’s to obtain both
secrecy and integrity. What are the three methods?

b. Which method from part (a) is the recommended method to use? In at most three lines,
explain what is wrong with the other two methods.

c. Suppose an attacker obtains the private key for a central Certificate Authority.
• Can the attacker eavesdrop on SSL connections to a legitimate banking web site?
• Can the attacker impersonate the bank?

d. In the ElGamal public key encryption system, is it safe to fix the prime modulus p so that
all users in the world use the same p? In the RSA system, is it safe to fix N so that all
users in the world use the same N? Briefly explain why or why not.

e. Suppose an attacker records an entire SSL session between a bank and a bank customer.
Can the attacker replay the session to the bank, and potentially cause the customer to
pay the same bill twice? If yes, explain why. If not, briefly explain what prevents this
form of replay in SSL.

Problem 2. Authentication.

a. Briefly describe what are dictionary attacks.

b. How are public and secret salts used to make dictionary attacks harder? (recall that a
secret salt is sometimes called pepper) What goes wrong if we use a secret salt that is
100 bits long?

c. Suppose a web site uses password-based challenge-response authentication over SSL to
authenticate its customers. Briefly explain how the authentication protocol works. You
may assume the user and the site have previously established a shared password.

d. Using the protocol from part (c), can a phishing site mount a dictionary attack on the
user to expose the user’s password? Please justify your answer.

e. Suppose the user chooses a high entropy password so that dictionary attacks are ineffective.
Does the system of part (c) prevent phishing attacks where the phisher plays the role of
a person-in-the-middle? Please justify your answer.
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Problem 3. Repeated squaring.

a. Let G be a group and let g be an element of G of order q. Describe the repeated squaring
algorithm for computing gx ∈ G for an integer x ∈ [1, q].

b. We show that repeated squaring can be sub optimal. An addition chain for x is a sequence
of integers t0, t1, t2, . . . , tn that starts with 1 and ends with x (i.e. t0 = 1, tn = x), and for
every i = 1, . . . , n we have that ti = tj +tk for some j, k < i. For example, 1, 2, 4, 8, 12, 13
is an addition chain for 13. Show that if x has an addition chain of length n then we
easily obtain an algorithm for computing gx using exactly n multiplications in G. Briefly
describe your exponentiation algorithm (you may assume that the addition chain for x
is given).

c. Show that there are integers x with the following property: (1) the repeated squaring
algorithm will take almost 2 log2 x multiplication to compute gx, but (2) there exists
an addition chain for x whose length is close to log2 x. For such integers x, repeated
squaring will be twice as slow as your algorithm from part (b).
Hint: Try a recursive construction to get an addition chain of length close to log2 x.

Problem 4. Strengthening hashes and MAC’s.

a. Suppose we are given two hash functions H1,H2 : {0, 1}∗ → {0, 1}n (for example SHA1
and MD5) and are told that both hash functions are collision resistant. We, however, do
not quite trust these claims. Our goal is to build a hash function H12 : {0, 1}∗ → {0, 1}m

that is collision resistant assuming at least one of H1,H2 are collision resistant. Give
the best construction you can for H12 and prove that a collision finder for your H12

can be used to find collisions for both H1 and H2 (this will prove collision resistance
of H12 assuming one of H1 or H2 is collision resistant). Note that a straight forward
construction for H12 is fine, as long as you prove security in the sense above.

b. Same questions as part (a) for Message Authentication Codes (MACs). Prove that an
existential forger under a chosen message attack on your MAC12 gives an existential
forger under a chosen message attack for both MAC1 and MAC2. Again, a straight
forward construction is acceptable, as long as you prove security. The proof of security
here is a bit more involved than in part (a).

Problem 5. Offline signatures. One approach to speeding up signature generation is to perform
the bulk of the work offline, before the message to sign is known. Then, once the message M
is given, generating the signature on M should be very fast. Our goal is to design a signature
system with this property.

a. Does the RSA Full-Domain-Hash (FDH) signature system enable this form of offline sig-
natures? In other words, can we substantially speed-up RSA signature generation if we
are allowed to perform offline computation before the message M is given? It might help
to explicitly write out the signing algorithm in RSA FDH.

b. Our goal is to show that any signature system can be converted into a signature where the
bulk of the signing work can be done offline. Let (KeyGen, Sign, V erify) be a signature
system (such as RSA FDH) and let G be a group of order q where discrete log is hard.
Consider the following modified signature system (KeyGen′, Sign′, V erify′):
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• The KeyGen′ algorithm runs algorithm KeyGen to obtain a signing key SK and
verification V K. It also picks a random group element g ∈ G and sets h = gα for
some random α ∈ {1, . . . , q}. It outputs the verification key V K ′ = (V K, g, h) and
the signing key SK ′ = (V K ′, SK, α).

• The Sign′(SK ′,M) algorithm first picks a random r ∈ {1, . . . , q}, computes m =
gMhr ∈ G, and then runs Sign(SK, m) to obtain a signature σ. It outputs the
signature σ′ = (σ, r).

• The V erify′(V K ′,M, σ′) algorithm, where σ′ = (σ, r), computes m = gMhr ∈ G
and outputs the result of V erify(V K,m, σ).

show that the bulk of the work in the Sign′ algorithm can be done before the message
is given.
Hint: First, observe that since α is part of the secret key SK ′, the signer can compute
m = gMhr as m = gM+αr. Now, offline, try running Sign(SK, m) on a message m = gs

for a randomly chosen s ∈ {1, . . . , q}. Let σ be the resulting signature. Then, once the
message M is given, show that the signer can easily convert σ into a valid signature σ′

for M using only one addition and one multiplication modulo q.

c. (extra credit) Prove that the modified signature scheme is secure. In other words, show
that an existential forger under a chosen message attack on the modified scheme gives
an existential forger on the underlying scheme. You may use the fact (proved in HW#3)
that H(M, r) = gMhr is a collision resistant hash function and hence the adversary
cannot find collisions for it.
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