
CS255: Cryptography and Computer Security Winter 2022

Take-home Final Exam

Instructions:

− Please answer all five questions. You have three hours.

− You may take the exam at any time during the exam window. You have three hours from
the moment you begin until the moment you submit your answers on Gradescope.

− The exam is open book, open notes, open laptops, and open Internet (e.g., to consult a static
online resource). However, you are expected to do the exam on your own. You may not
interact, collaborate, or discuss the exam with another person during the exam window.

− To submit your answers please either (i) use the provided LaTeX template, or (ii) print out
the exam and write your answers in the provided spaces, or (iii) write your answers on blank
sheets of paper, but please make sure to start each question on a new page. When done,
please upload your solutions to Gradescope (course code 4PEBZ3).

− The LaTeX template for the final is available here. Please do not share the link with others.

− Students are bound by the Stanford honor code. In particular, you are expected to do the
exam on your own.
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https://crypto.stanford.edu/~dabo/cs255/hw_and_proj/final-78ehg36.tex


Problem 1. (24 points) Questions from all over.

a. You are given a secure MAC scheme (S, V ) that can be used to sign a sequence of bytes
whose length is a multiple of eight. That is, its length can be 8 bytes, 16 bytes, 24 bytes, etc.
Explain how to use this MAC scheme to sign a sequence of bytes of arbitrary length (i.e.,
including messages whose length may not be a multiple of eight).

Your answer:

b. A recent paper shows that the implementation of AES-GCM on a widely used phone can
end up using the same (key,nonce) pair many times. Recall that AES-GCM is built from
randomized counter mode encryption (rCTR). Suppose an attacker has a message m ∈ {0, 1}`
and has its rCTR encryption ct := (IV, c). The attacker also has another rCTR ciphertext
ct′ := (IV, c′) of some unknown message m′, where ct′ is constructed with the same IV and
key as ct. Moreover, c and c′ are the same length. Explain how the attacker can decrypt ct′

using the data at its disposal.

Your answer: m′ =

c. Suppose Alice has a password pwd and this password is also known to server Bob. When
Alice connects to the server, the server uses a MAC-based challenge-response identification
protocol to authenticate Alice. Show that an attacker who eavesdrops on network traffic
between Alice and the server can mount a dictionary attack to recover Alice’s password. You
may assume Alice’s password is chosen from a dictionary PWD so that pwd ∈ PWD.

Your answer:
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https://eprint.iacr.org/2022/208


d. For a prime p, consider the following PRG defined over (Zp,Z2
p): given an input x ∈ Zp, the

PRG outputs G(x) := (x2, x3) ∈ Z2
p. Is this PRG secure? If so, explain why. If not, describe

an attack.

Your answer:

e. Give an example of a function f that is believed to be a one-way function, but is trivially not
collision resistant. You can assume that SHA256 is a one-way function. Make sure to explain
why your function is one way and why it is easy to find a collision for it.

Your answer:

f. Let p be a prime with p ≡ 2 mod 3. Show an efficient algorithm that takes α ∈ Z∗p as input
and outputs the cube root of α in Zp. That is, show how to efficiently solve the equation
x3 − α = 0 in Zp. Hint: Show that σ := α(2p−1)/3 in Zp is the cube root of α.

Your answer:
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Problem 2. (20 points) A two-query PRF.

a. For a prime p ≥ 5 consider the following PRF defined over (Z2
p,Zp,Zp):

F
(
(k1, k2), x) := k1x+ k2.

Show that this PRF is not secure: construct an adversary A that distinguishes this PRF from
a random function from Zp to Zp.

Your answer:

b. One can show that the PRF from part (a) is secure against a PRF adversary that can issue
at most two evaluation queries. We say that F is a 2-time secure PRF.

More generally, let F be a PRF defined over (K,M, T ). Recall that in class we defined a
MAC scheme (S, V ) derived from the PRF F as follows: S(k,m) := F (k,m) and V (k,m, t)
accepts if t = F (k,m). We showed that if the range T of the PRF is sufficiently large and F
is a secure PRF, then (S, V ) is a secure MAC scheme.

Suppose that F is not a secure PRF, but is 2-time secure, as is the F from part (a). Show
that the derived MAC scheme (S, V ) is a secure one-time MAC, meaning that it is secure if
the adversary can issue at most a single chosen message query.
Hint: As usual, prove the contra-positive: LetA be a MAC adversary that succeeds in forging
a message-tag pair after issuing only one chosen message query to the MAC challenger. Show
how to use A to build a PRF adversary B that breaks the PRF using at most two queries.
Your argument shows that the PRF from part (a) gives a very efficient one-time MAC.

Your answer:
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Problem 3. (20 points) Attacks on Schnorr signatures.
Let G be a finite cyclic group of order q with generator g ∈ G. Let H : M× G → Zq be a
hash function. Recall that a Schnorr secret key is a random sk := α ←R Zq, and the public key
pk := h ← gα ∈ G. A (non-optimized) signature is generated by choosing a random ρ ←R Zq,
computing

R← gρ ∈ G, c← H(m,R) ∈ Zq, z ← ρ+ c · α ∈ Zq,

and outputting σ := (R, z). The verification algorithm V
(
pk,m, (R, z)

)
computes c← H(m,R)

and accepts if gz = R · hc, where h = pk = gα.

a. Faulty hashing. Suppose that during signing and verification the challenge c is computed
as c← H(m) instead of c← H(m,R). Show that the resulting signature scheme is insecure:
an adversary who has pk can forge a signature on any message m ∈M.

Your answer:

b. Faulty randomness. Let (sk, pk) be a key pair for the Schnorr signature scheme. Suppose
the signing algorithm is faulty and chooses dependent values for R in consecutively issued sig-
natures. In particular, when signing a message m0 the signing algorithm chooses a uniformly
random ρ0 in Zq, as required. However, when signing the next message m1 it chooses ρ1 as
ρ1 ← a · ρ0 + b ∈ Zq for some publicly known a, b ∈ Zq. Show that if the adversary obtains
the corresponding Schnorr message-signature pairs (m0, σ0) and (m1, σ1) and knows a, b and
pk, it can learn the secret signing key sk, with high probability. Recall that σ0 = (R0, z0) and
σ1 = (R1, z1).
Hint: build a system of two linear equations in two variables, α and ρ0.

Your answer:
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c. Related keys. Let h := gα ∈ G be a random Schnorr public key. Define n related Schnorr
public keys pk1, . . . ,pkn by setting pki := h · gi ∈ G for i = 1, . . . , n. Show that this scheme
is insecure with respect to the public keys pk1, . . . ,pkn. In particular, show that a signature
(R, z) on a message m with respect to pkj , lets the adversary construct a signature on the
same message m with respect to pki for some i 6= j. This is an existential forgery on pki.

Your answer:

Discussion: Some Bitcoin wallets (called HD wallets) use a technique related to the one in
part (c) to generate signature key pairs. They defend against your attack by including the
public key pki as part of the input to the hash function H. That is, they compute c ∈ Zq as
c← H(pki,m,R).
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Problem 4. (18 points) Birthday paradox

a. Let x1, . . . , xn be randomly sampled integers in the range [1, B]. The birthday paradox says
that when n ≥ 1.2

√
B, the probability that there is a collision (i.e. exists i 6= j such that

xi = xj) is at least 1/2. How large must n be, as a function of k and B, so that the expected
number of collisions is at least k, for some given k > 1?
Hint: For 1 ≤ i, j ≤ n define the indicator random variable Ii,j to be 1 if xi = xj and zero
otherwise. Then the expected number of collisions is

∑
i 6=j E[Ii,j ]. Moreover, E[Ii,j ] = 1/B

for i 6= j. You may use the approximation n(n− 1) ≈ n2.

Your answer:

b. A three way collision is a triple of distinct i, j, ` such that xi = xj = x`. How large must n
be, as a function of B, so that there is at least one 3-way collision in expectation?
Hint: Use a similar approach as in part (a). For 1 ≤ i, j, ` ≤ n define the indicator random
variable Ii,j,` to be 1 if xi = xj = x` and zero otherwise. Then the expected number of 3-way
collisions is

∑
i 6=j 6= 6̀=iE[Ii,j,`]. You may use the approximation n(n− 1)(n− 2) ≈ n3.

Your answer:
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Problem 5. (18 points) Meet in the middle attacks

a. Let E := (E,D) be a cipher defined over (K,M, C) where C ⊆ M. One can define a cipher
with double the key length, called 2E , defined over (K2,M, C) as follows:

2E
(
(k1, k2),m

)
:= E

(
k1, E(k2,m)

)
.

That is, we apply the encryption algorithm E twice with independent keys k1 and k2. Write
out the decryption algorithm:

Your answer: 2D
(
(k1, k2), c

)
:=

b. Now, recall that the AES block cipher can take either 128, 192, or 256 bit keys, denoted
AES128, AES192, and AES256, respectively. You are probably wondering why is there a
need for AES256. We can simply define AES256 to be 2AES128, namely define

BadAES256
(
(k1, k2),m

)
:= 2AES128

(
(k1, k2),m

)
= AES128

(
k1,AES128(k2,m)

)
.

The key for this BadAES256 is (k1, k2) which is 256 bits, as required. So why is AES256 a
separate algorithm? Why can’t we simply use 2AES128?

Let us first compare the running time of 2AES128 with the running time of the real AES256.
How many rounds of the AES round function are used in AES256? How many are used in
2AES128?

Your answer:
Num. rounds in AES256 = ; Num. rounds in 2AES128 =

c. Ok, so AES256 is faster than 2AES128. What about the security of 2AES128? Let us show
that the 2E cipher is no more secure than the underlying E cipher. This means that 2AES128
is no more secure than AES128, which is not what we want for AES256.

For a multi-block messageM = (m1,m2, . . . ,mn) write E(k,M) :=
(
E(k,m1), . . . , E(k,mn)

)
.

You are given a pair (M,C) where C = 2E
(
(k1, k2),M

)
. You may assume that there is a

unique (k1, k2) that satisfies C = 2E
(
(k1, k2),M

)
. Your goal is to find this (k1, k2).

An exhaustive search algorithm over all possible (k1, k2) will take time |K|2. Your goal is to
design an algorithm that finds (k1, k2) in time O(|K|). This is the time to break E which
means that 2E is no more secure than E .

8



Hint: observe that if C = 2E
(
(k1, k2),M

)
then

E(k2,M) = D(k1, C) (1)

Try building a table T of pairs
(
k, E(k,M)

)
for all k ∈ K. This takes |K| evaluations of

E(k,M), and the table will contain all possible values of the left-hand side of (1). Now that
T is built, show that you can find (k1, k2) in time O(|K|). To do so, use the right-hand side
of (1). You can assume that testing if T contains a pair (∗, c) can be done in constant time.

Your answer: Given M and C = 2E
(
(k1, k2),M

)
the algorithm does:

d. The algorithm from part (c) is called a meet in the middle attack because you are attacking
the mid-point of algorithm 2E . Meet in the middle attacks come up often. Let us show a
meet in the middle attack on the discrete logarithm problem. Let G be a cyclic group of
prime order q with generator g ∈ G. Let h = gα for some α ∈ Zq. Your goal is to design an
algorithm that finds α in time O(

√
q) using a meet in the middle attack.

Hint: Let Q := d√q e. We can write α in base Q so that α = α1Q+α2 where 0 ≤ α1, α2 < Q.
Then gα = h can be re-written as

(gQ)α1 = h/gα2 .

Use the same strategy as in part (c) to find (α1, α2) using a table T and a total of about 2Q
multiplications in G. The table T will contain pairs

(
γ, (gQ)γ)

)
for all 0 ≤ γ < Q.

Your answer: Given g and h = gα1Q+α2 the algorithm does:
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