CS255: Introduction to Cryptography Winter 2025

Final Exam

Instructions:
— Please answer all five questions. You have 2.5 hours.

— The exam is open book, open notes, open laptops, and open Internet (to consult a static
online resource such as the course textbook or Wikipedia). You are expected to do the exam
on your own. A web search engine, such as Google, is not allowed. You may not interact,
collaborate, or discuss the exam with another person or an AI chat bot during
the exam day. That would be a gross violation of the honor code.

— To submit your answers please either (i) use the provided LaTeX template, or (ii) use the
provided PDF with a tablet and write your answers in the provided spaces, or (iii) write
your answers on a sheet of paper, starting every question on a new page. When done, please
upload your solutions to Gradescope (course code KZVDDK). We added fifteen minutes to
the exam to give you time to upload your answers to Gradescope.

— The LaTeX template for the final is available at here. Please do not share this link with
others.

— Please post any clarification questions privately on Ed.

— Students are bound by the Stanford honor code. In particular, you are expected to do the
exam on your own.


https://crypto.stanford.edu/~dabo/cs255/hw_and_proj/final-48st63.tex

Problem 1. (Questions from all over) (20 points)

a. Let (F, D) be a cipher that provides authenticated encryption, where algorithms E and D take
an additional nonce as input. Briefly explain how a developer should choose the nonce n when
invoking E(k,m,n) for some key k and message m.

Your answer:

b. Let p be a large prime and g € Zj, of order p— 1. Is the function f (x) := ¢g* in Z,, whose domain
is {1,...,p — 1} a trapdoor one-way function? Justify your answer.

Your answer:

c. Let (N,e) be an RSA public key and let (N, d) be the corresponding RSA private key. Recall
that to sign a message m using RSA-FDH we use a hash function H : {0,1}" — Zx and compute
the signature on m as o < H(m)? in Zy. Suppose the adversary can find two messages m;, ms
such that H(my) = H(mg) - 2¢ in Zy. Does this let the adversary break RSA-FDH? That is,
can the adversary create an existential forgery using a chosen message attack?

Your answer:



d. When storing hashed and salted passwords in a password file, what is the purpose of using a
slow hash function?

Your answer:

e. What is a harvest now decrypt later (HNDL) attack and why does it necessitate a transition to
new public key encryption schemes? What are those new public key encryption schemes?

Your answer:

f. Let (S, V) be a secure MAC scheme defined over (K, M, T), where the key space K is contained
in M NT. Define a new MAC scheme (S, V') as

S(k,m) if m # k, and
k ifm==k

V(k,m,t) if m # k, and

“yes” ifm==k

S'(k,m) := { V'(k,m,t) := {

Is (S, V') a secure MAC? Briefly justify your answer.

Your answer:



Problem 2. (Two-time secure encryption) (20 points) Recall that the one-time-pad is a
one-time encryption system that is secure against infinitely powerful adversaries. Our goal in
this question is to design a 2-time secure encryption against infinitely powerful adversaries. If
the encryptor can be stateful then the problem is trivial — simply use two one-time pads. Here,
we design a stateless 2-time secure system: every encryption is done independently of the other
encryptions.

a. Give a precise definition for what it means for a symmetric encryption system to be semantically
secure when a secret key is used to encrypt at most two messages. Make sure to define two
experiments EXP(0) and EXP(1) as in the definition of CPA security (recall that in the CPA
security definition a secret key can be used to encrypt many messages). Keep in mind that the
adversary can be adaptive: its choice for a second message pair to encrypt may depend on the
first ciphertext it receives from the challenger.

Your answer:

b. Show that the one time pad is insecure under your definition from part (a). Can any determin-
istic encryption system (without a nonce) be secure under your definition?

Your answer:



c. Let p be a 128-bit prime and consider the following encryption system: the secret key is a
random pair (z,y) € (Z)? and to encrypt a message m € Z, do:

choose a random r - Z,, and output the ciphertext (¢, ¢2) := (1, 2r +y+m) € ZI%.

We stress that a fresh r is sampled on every invocation of the encryption algorithm. Explain
how to decrypt a given ciphertext (c1,c2) using the secret key (z,y).

Your answer: output m where m =

d. One can show that the encryption scheme from part (c) is two-time secure (using your definition
from part (a)) against infinitely powerful adversaries. Show that this scheme is not 3-time
secure. That is, show an adversary that can distinguish EXP(0) from EXP(1) after making

three encryption queries.

Your answer:



Problem 3. (Strongly secure signatures) (20 points) In Lecture 13 we defined security for a
signature scheme by requiring that the adversary cannot forge a signature on a messages m if it
did not previously ask the challenger for a signature on m. This definition does not preclude the
adversary from obtaining a valid message-signature pair (m, o) and then generating a new signature
o' # o for the same message m. For example, the signature scheme ECDSA is believed to be secure,
but given a valid signature o on m it is possible to find another valid signature ¢’ on the same m.
This has led to some unexpected attacks on systems than use ECDSA.

We say that a signature scheme is strongly secure if the adversary cannot generate a new
signature for a previously signed message. One can formulate this as a game similar to the MAC
security game. In this question we will develop a general way to transform a secure signature
scheme into a strongly secure one.

a. To start, let h : X — ) be a one-way function. Let us define another function 2’ : {0, 1} xX — Y
defined as h'(b,z) := h(x). One can show that h’ is also a one-way function. Show that A’ is
not collision resistant by exhibiting a collision. This shows that a function can be one-way, but
not collision resistant.

Your answer:

b. Consider the Lamport one-time signature scheme (Lecture 14) built from a one-way function.
We showed in class that the scheme is secure as long as the adversary obtains at most one
message-signature pair. Is this scheme strongly secure as long as the adversary obtains at most
one message-signature pair?

Hint: think what happens if you use h’ from part (a) as the one-way function in the Lamport
signature scheme.

Your answer:



c. What additional property can we require that the one-way function h : X — ) satisfy to ensure
that the derived Lamport scheme is strongly one-time secure?

Your answer:

d. So now we have a strongly secure one-time signature scheme (G, Sos, V). Let’s use that
to make any secure signature scheme strongly secure. Let (G,S,V) be a (many-time) secure
signature scheme that is not strongly secure (such as ECDSA). Consider the following candidate
for a strongly secure signature scheme (G, S’, V') derived from (G, S,V):

(pkots7 Skots) & GO"-S()7
S'(sk,m) : = a9 <& S(sk,pk,.), 01 ¢ Soe(skye,m),

ots?

output (oo, 01, pk,.) (1)

V,(pka m, (007 01, pkots)) = {accept if V(pk7 pkots’ UO) = V;tS(pkotw m, Ul) = “yesw}

One can show that this signature scheme is secure. We might hope that it is also strongly secure
because the message m is signed by a (one-time) strongly secure scheme. However, that is not
the case. Show that an adversary that is given a valid signature (og,01) on a message m, can
construct a new signature (o, 0}) on the same m.

Hint: Use the fact that (G, S, V) is not strongly secure. That is, there is an algorithm .4 that
is invoked as A(pk,m, o) — ¢’ such if ¢ is a valid signature on m then so is ¢, and o’ # o.

Your answer:



e. Show how to enhance the construction in (1) to make the resulting (G, S’, V') strongly secure.
Hint: try to add something more for S, to sign, in addition to m, when generating o;.

Your answer:
(pkots75kots) & GOtS()7

UO & S(Sk? pkots)
S’ (sk,m) =

(7'1(1

OutPUt (007 01, pkots)

V' (pk,m, (00,01, pky)) = {accept if

f. Briefly explain why your signature scheme from part (e) is a (many-time) strongly secure sig-
nature scheme.

Your answer:



Problem 4. (Private Information Retrieval) (20 points) A phone manufacturer called Avocado
wants to provide a spam filtering service. Avocado maintains a list L of all the known spamming
phone numbers. When Alice receives a phone call, her phone will check Avocado’s list to see if the
incoming number is in L, and if so, her phone will block the call. The list L is too big to download
to the phone, so it must be kept server side. Naively, the phone would send every caller’s number to
the Avocado server, but this violates Alice’s privacy since the server learns all the phone numbers
of people who call Alice. Your goal in this problem is to design a way for Alice to look up the spam
status of a caller without revealing the caller’s number to the server. The total communication
between Alice and the server should be much less than the size of L.

To simplify the problem, let us assume that the server has a vector L = ({o, ..., lyn—1) € {0,1}™
and Alice’s phone has an index i € {0,...,m — 1}. Our goal is to design a low communication
protocol between the phone and the server so that at the end of the protocol the phone learns
¢; € {0,1}, while the server learns nothing about 7. This problem is called Private Information
Retrieval or PIR. The spam problem above can be reduced to this problem using a suitable data
structure. Our goal is develop a PIR protocol that uses O(y/m) communication between the phone
and server — much less than O(m).

To build a PIR protocol we will use an additively homomorphic encryption scheme (G, E, D, A).
Algorithms G, E, D are as in a standard public key encryption scheme where the plaintext space
is M := Z, for some prime ¢. The new algorithm A is invoked as A(pk,a,c) — ¢, where pk is a

public key, a = (o, ..., @s-1) is a vector in Zg, and ¢ = (cg, ..., ¢s-1) is a vector of s ciphertexts.
The output c is a single ciphertext. The algorithm satisfies the following property: suppose that
foralli =0,...,s — 1 we have D(sk, ¢;) = m;, then D(sk,c) = agmo + - - - + as_1ms—1 € Zj.

a. Suppose that (G, E, D) is a semantically secure public key encryption system. Explain why the
existence of algorithm A means that (G, E, D) cannot be chosen ciphertext secure. That is,
describe an attack that lets an adversary win the chosen ciphertext (CCA) security game.

Your answer:

Next, suppose that the dimension of the vector L is s? for some integer s. The Avocado server
arranges the elements of L into an s X s matrix M € {0,1}°*5. For example, if s = 3 then

by 01 4o
M= 143 by Fl5])| € {0, 1}3X3.
b U7 fg

We refer to the left most column of M as column 0 and the right most column of M as column s— 1.



The phone and server now run the following PIR protocol:
e step i: The phone generates (pk,sk) < G().

e step 4i: Suppose the phone wants entry ¢; in L. Let 0 < j < s be the number of the column
in M that contains ¢;. The phone constructs the column vector e; € {0,1}* that is zero
everywhere except at position j where it is 1. For example, if s = 3 and ¢ = 4, then j = 1 and
e; = (0,1,0)". The phone sends pk and the following vector of s ciphertexts to the server

e & (E(pk, e;0]), ..., E(pk, ej[s — 1])).
o step i1i: The server responds with a vector of s ciphertexts that is the encryption of the

vector M - e; € {0,1}® obtained by multiplying the vector e; by the matrix M. We denote
this vector by ¢ = (cf,...,c,_;). Every element in the vector ¢’ is a ciphertext.

b. Explain how the server computes the vector of ciphertexts ¢’ using only M, ¢, and pk.
Hint: use algorithm A.

Your answer:

c. Explain how the phone uses ¢’ and its secret key sk to obtain the required /;.

Your answer:

d. Explain why the server learns nothing about ¢ (or j) in this protocol.

Your answer:

The total communication back and forth in this protocol is only 24/m ciphertexts, where m is the
size of L. It remains to construct an additively homomorphic encryption scheme. That can be
easily done using ElGamal encryption, but we will leave that for another day.

10



Problem 5. (Expanding the domain and range of a PRF') (20 points) Let F' be a secure PRF
defined over (K, X, X) where X = {0,1}". Our goal is to define a secure PRF that has a larger
domain or a larger range

a. Consider the PRF Fy(k,z) := (F(k:, x), F(k, x@c)) where 0 # ¢ € X is some fixed value. Then

Fy has range X’ x X', which is twice the size of the range of F'. Is I} a secure PRF? Justify your
answer.

Your answer:

b. The correct way to expand the range of F is using a secure PRG G : X — X? by setting

One can show that if G is a secure PRG and F' is a secure PRF, then Fg is a secure PRF whose
range in X2. Since all we have at our disposal is F', we need to build G from F. We can do
so using the idea behind deterministic counter mode encryption, where we built a PRG from a
PRF. Write out the explicit construction from (2) where G is built from F. Your answer should
only invoke F', possibly multiple times.

Your answer: Fg(k,x) =
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c. Finally, consider the following PRG G : Zy — Z;" for m > n and some prime g. The designer
of the PRG samples a random n x m matrix A € Z;*™. The matrix A is then fixed in the PRG
standard and made public. For s € Zj the PRG outputs the matrix-vector product

G(s)=A-sely

This PRG expands its input from a vector of dimension n to a vector of dimension m > n. Is
this a secure PRG? Justify your answer.

Hint: Observe that every output of G is some linear combination of the columns of A. These
columns span a sub-space of Zj".

Your answer:
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