
CS255: Cryptography and Computer Security Winter 2001

Assignment #2
Due: Friday, February 16th, 2001.

Problem 1 Parties A1; : : : ; An and B wish to generate a secret conference key. All parties
should know the conference key, but an eavesdropper should not be able to obtain any
information about the key. They decide to use the following variant of DiÆe-Hellman:
there is a public prime p and a public element g 2 Z�

p of order q for some large prime q
dividing p�1. User B picks a secret random b 2 [1; q�1] and computes y = gb mod p.
Each party Ai picks a secret random ai 2 [1; q� 1] and computes xi = gai mod p. User
Ai sends xi to B. User B responds to party i by sending zi = xbi mod p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1; : : : ; An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Formally prove part (b). Namely, show that if there exists an eÆcient algorithm
A that given the public values in the above protocol, outputs y, then there also
exists an eÆcient algorithm B to break the DiÆe-Hellman protocol (using p and
g as the public values). Use algorithm A as a subroutine in your algorithm B for
breaking the DiÆe-Hellman protocol. Note that algorithm B takes ga mod p and
gb mod p as input and should output gab mod p.

Problem 2 To achieve fast encryption it is desirable to make the public exponent e in the
RSA cryptosystem as small as possible. Consider the case when e = 3. Show that
given the public key an attacker can easily recover the half-most-signi�cant bits of the
private exponent d. In other words, show that when N = pq is n bits long, an attacker
can recover the n=2 most signi�cant bits of d just given the modulus N . Is this a
suÆciently serious threat that e = 3 should not be used? (just state your opinion)

a. Since ed = 1 mod '(N) there exists an integer k such that ed� k'(N) = 1. First
show that when e = 3 we must have k = 2. Recall that d is in the range
0 < d < '(N). Note that p; q � 3.

b. Next show that given k and N it is easy to construct a number d̂ that is very close
to d | suÆciently close so as to match d on the n=2 � 4 most signi�cant bits
(with very high probability).
Hint: Observe that since p and q are on the order of

p
N we have that '(N) is

very close to N .

Problem 3 Let's explore why in the RSA public key system each person has to be assigned
a di�erent modulus N = pq. Suppose we try to use the same modulus N = pq for
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everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei � di = 1 mod '(N). At �rst this appears to work �ne: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let's show that using eeve and deve
Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of '(N).

b. Show that given an integer K which is a multiple of '(N) Eve can easily recover
Bob's private key dbob from his public key ebob. You may assume K is relatively
prime to ebob.

c. Deduce that Eve can decrypt any message encrypted using the modulus N (at this
point this should be obvious).

d. extra credit: show a solution to part (b) when K is not relatively prime to ebob.

Problem 4 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x0 6= x. Here is an example
commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z�

p of large
prime order q.

Commitment: To commit to an integer x 2 [1; q � 1] Alice does the following: (1)
she picks a random r 2 [1; q� 1], (2) she computes b = gx � hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x; r) to Bob. Bob veri�es that b =
gx � hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x.
In other words, show that given b, the committed value can be any value x0 in
[1; q � 1].
Hint: show that for any x0 there exists a unique r0 2 [1; q � 1] so that b = gx

0

hr
0

.

b. To prove the binding property show that if Alice can open the commitment as
(x0; r0) where x 6= x0 then Alice can compute the discrete log of h base g. In other
words, show that if Alice can �nd an (x0; r0) such that b = gx

0

hr
0

mod p then she
can �nd the discrete log of h base g. Recall that Alice also knows the (x; r) used
to create b.

Problem 5 Let N be a 1024 bit RSA modulus, and d a secret decryption exponent. To
protect the private key d one may wish to split it into three pieces and store each piece
on a di�erent server. An attacker who breaks into one or two of the servers should learn
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no information about d. Consider the following scheme: pick three random numbers
d1; d2; d3 in [�N;N ] so that d1 + d2 + d3 = d mod '(N). Store di on server i.

a. Suppose Alice wants to decrypt a ciphertext C. Show that Alice can do the fol-
lowing: (1) she sends C to the three servers, (2) each server i performs a local
computation (using di) and responds with Mi to Alice, and (3) given M1;M2;M3

Alice can easily construct the message M . Explain how server i computes Mi and
how Alice combines M1;M2;M3 to obtain M . There is no need to reconstruct
the key d and there is no interaction between the servers. You may assume all
communication between Alice and the servers is private.

b. To provide fault tolerance, show how the key d can be shared among the three
servers so that any two of the three can be used to decrypt a ciphertext C as in
part (a). This way, if one of the servers is down Alice can still decrypt messages.
You may store multiple di's on each server. An attacker who breaks into one of
the servers should learn no information about d.

c. Briey explain how your solution for part (b) can be generalized to provide a t-out-
of-k solution. Namely, explain how the key can be shared among k servers so that
any t of them can be used to decrypt C while an attack on t � 1 servers reveals
no information about d. You may assume t and k are relatively small numbers.

Problem 6 In this problem, we see why it is a really bad idea to choose a prime p = 2k +1
for discrete-log based protocols: the discrete logarithm can be eÆciently computed for
such p.

a. Show how one can compute the least signi�cant bit of the discrete log. That is,
given y = gx (with x unknown), show how to determine whether x is even or odd
by computing y(p�1)=2 mod p.

b. If x is even, show how to compute the 2nd least signi�cant bit of x.
Hint: consider y(p�1)=4 mod p.

c. Generalize part (b) and show how to compute all of x.

The fact that p = 2k + 1 is inappropriate for crypto is unfortunate since arithmetic
modulo such p can be done very fast.

Extra credit: The danger of using unpadded RSA. Suppose one uses RSA to encrypt a
64-bit session key K 2 f0; 1g64. That is, C = Ke mod N . Furthermore, suppose
that when K is viewed as an integer we have K = K1 � K2 with K1; K2 integers in
[0; 234]. Show that given C an attacker can recover K in time approximately 34 � 234.
Approximately 15% of all 64-bit integers can be written as a product of two 34-bit
integers. Hence, your attack will break approximately 1 in 6 sessions.
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